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Abstract. In this paper, by making use of q-derivative we intro-
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1. Introduction

The q-theory has important role in various branches of mathematics and
physics as for example, in the areas of special functions, ordinary frac-
tional calculus, optimal control problems, q-difference, q-integral equa-
tions, q-transform analysis and in quantum physics (see for instance, [1],
[2],[6], [11]).
The theory of univalent functions can be described by using the the-
ory of the q-calculus. Moreover, in recent years, such q-calculus as the
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q-integral and q-derivative were used to construct several subclasses of
analytic functions (see, for example,[4], [5], [8],[9], [10]).
Let Σ denote the class of meromorphic functions of the form

f(z) =
1

z
+

+∞∑
k=1

akz
k−1, (1.1)

which are analytic in the punctured unit disk

△∗ = {z ∈ C : 0 < |z| < 1}.

Gasper and Rahman [3] defined the q- derivative of a function f(z) of
the form (1.1) by

Dqf(z) =
f(qz)− f(z)

(q − 1)z
. (1.2)

where z ∈ △∗ and 0 < q < 1.
From (1.2) for a function f(z) given by (1.1) we get

Dqf(z) =
−1

qz2
+

∞∑
k=1

[k − 1]qakz
k−2 , z ∈ △∗, (1.3)

where

[k − 1]q :=
1− qk−1

1− q
= 1 + q + q2 + · · ·+ qk−2. (1.4)

also [k − 1]q → k − 1 as q → 1. So we conclude

lim
q→1

Dqf(z) = f
′
(z) , z ∈ △∗,

see also [7, 12].
For 0 < q < 1, 0 ≤ λ ≤ 1, 0 < α ≤ 1 and β > 0.
Let

∑
q(λ, α, β) be the subclass of

∑
consisting of functions f of the

form (1.1) and satisfying the condition∣∣∣∣∣∣∣∣
z4 (Dqf(z))

′′
+ z3 (Dqf(z))

′
+

4

q

λz2 (Dqf(z))−
1

q
+

(1 + λ)α

q

∣∣∣∣∣∣∣∣ < β. (1.5)

2. Main result

Unless otherwise mentioned, we suppose throughout this paper that
0 < q < 1, 0 ≤ λ < 1, 0 < α < 1 and β > 0. First we state coefficient
estimates on the class

∑
q(λ, α, β).
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Theorem 2.1. Let f(z) ∈
∑

, then f(z) ∈
∑

q(λ, α, β) if and only if

+∞∑
k=1

[k − 1]q
(
(k − 2)2 + λβ

)
ak ≤ β(1 + λ)(1− α)

q
, (2.1)

and the result is sharp for G(z) given by

G(z) =
1

z
+

β(1 + λ)(1− α)

q[k − 1]q ((k − 2)2 + λβ)
zk. (2.2)

Proof. Let f(z) ∈
∑

q(λ, α, β), then (1.5) holds true. So by replacing

(1.3) in (1.5) we have∣∣∣∣∣∣∣∣
∑+∞

k=1[k − 1]q(k − 2)(k − 3)akz
k +

∑+∞
k=1[k − 1]q(k − 2)akz

k

−λ

q
+
∑+∞

k=1 λ[k − 1]qakzk −
1

q
+

(1 + λ)α

q

∣∣∣∣∣∣∣∣ < β,

or ∣∣∣∣∣∣∣∣
∑+∞

k=1[k − 1]q(k − 2)2akz
k

(1 + λ)

q
(1− α)−

∑+∞
k=1 λ[k − 1]qazzk

∣∣∣∣∣∣∣∣ < β.

Since Re(z) ≤ |z| for all z, therefore

Re


∑+∞

k=1[k − 1]q(k − 2)2akz
k

(
1 + λ

q
)(1− α)−

∑+∞
k=1 λ[k − 1]qakzk

 < β.

By letting z → 1 through real values, we have

+∞∑
k=1

[k − 1]q
(
(k − 2)2 + λβ

)
ak ≤ β(1 + λ)(1− α)

q
.

Conversely, Let (2.1) holds true, it is enough to show that

X(f) =

∣∣∣∣∣∣∣∣
z4 (Dqf(z))

′′
+ z3 (Dqf(z))

′
+

4

q

λz2 (Dqf(z))−
1

q
+

(1 + λ)α

q

∣∣∣∣∣∣∣∣ < β.

or

X(f) =

∣∣∣∣z4 (Dqf(z))
′′
+ z3 (Dqf(z))

′
+

4

q
|−β|λz2 (Dqf(z))−

1

q
+

(1 + λ)α

q

∣∣∣∣ < 0.
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But for 0 < |z| = r < 1 we have

X(f) =

∣∣∣∣∣
+∞∑
k=1

[k − 1]q(k − 2)2akz
k

∣∣∣∣∣− β

∣∣∣∣∣(1 + λ)

q
(1− α)− λ

+∞∑
k=1

[k − 1]qakz
k

∣∣∣∣∣
≤

+∞∑
k=1

[k − 1]q(k − 2)2|ak|rk −
β(1 + λ)(1− α)

q
+

+∞∑
k=1

λβ[k − 1]q|ak|rk

≤
+∞∑
k=1

[k − 1]q

(
(k − 2)2 + λβ

)
|ak|rk −

β(1 + λ)(1− α)

q
.

Since the above inequality holds for all r (0 < r < 1), by letting r → 1
and using (2.1) we obtain X(f) ≤ 0, and this completes the proof. □

Next we obtain extreme points and convex linear combination prop-
erty for
f(z) ∈

∑
q(λ, α, β).

Theorem 2.2. The function f(z) of the form (1.1) belongs to
∑

q(λ, α, β)

if and only if it can be expressed by f(z) =
∑∞

k=0 σkfk(z),
∑∞

k=0 σk =
1, σk ≥ 0,where

f0(z) =
1

z
and

fk(z) =
1

z
+

β(1 + λ)(1− α)

q[k − 1]q[(k − 2)2 + λβ]
zk, k = 1, 2, · · · .

Proof. Let

f(z) =

∞∑
k=0

σkfk(z),

=σ0f0(z) +

∞∑
k=1

σk

[1
z
+

β(1 + λ)(1− α)

q[k − 1]q
[
(k − 2)2 + λβ)]

zk
]

=
1

z
+

∞∑
k=1

β(1 + λ)(1− α)

q[k − 1]q
[
(k − 2)2 + λβ)]

σkz
k.

Now by using Theorem 2.1 we conclude that f(z) ∈
∑

q(λ, α, β).

Conversely, if f(z) given by (1.1) belongs to
∑

q(λ, α, β), by letting

σ0 = 1−
∑+∞

k=1 σk, where

σk =
q[k − 1]q

[
(k − 2)2 + λβ

]
β(1 + λ)(1− α)

ak, k = 1, 2, · · · .

we conclude the required result. □
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Theorem 2.3. Let for n = 1, 2, · · · ,m, fn(z) =
1

z
+
∑+∞

k=1 ak,nz
k belongs

to
∑

q(λ, α, β), then F (z) =
∑m

n=1 σnfn(z), is also in the same class,

where
∑m

n=1 σn = 1. (Hence
∑

q(λ, α, β) is a convex set.)

Proof. According to Theorem 2.1 for every n = 1, 2, · · · ,m, we have

+∞∑
n=1

[k − 1]q
(
(k − 2)2 + λβ

)
ak,n ≤ β(1 + λ)(1− α)

q
.

But

F (z) =
m∑

n=1

σnfn(z)

=
m∑

n=1

σn

(
1

z
+

∞∑
k=1

a
k,n

zk

)

=
1

z

m∑
n=1

σn +

∞∑
k=1

(
m∑

n=1

σnak,n

)
zk

=
1

z
+

∞∑
k=1

( m∑
n=1

σnak,n

)
zk.

Since
∞∑
k=1

[k − 1]q
(
(k − 2)2 + λβ

)( m∑
n=1

σnak,n

)
=

m∑
n=1

σn

( ∞∑
k=1

[k − 1]q
(
(k − 2)2 + λβ

)
a
k,n

≤
m∑

n=1

σn
(β(1 + λ)(1− α)

q

)
=
β(1 + λ)(1− α)

q

m∑
n=1

σn =
β(1 + λ)(1− α)

q
,

then by Theorem 2.1 the proof is complete. □

3. Radii Condition and partial sum property

In this section we obtain radii of starlikeness and convexity and in-
vestigate about partial sum property.

Theorem 3.1. If f(z) ∈
∑

q(λ, α, β), then f is meromorphically uni-

valent starlike of order γ in disk |z| < R1, and it is meromerphically
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univalent convex of order γ in disk |z| < R2 where

R1 = inf
k

{
q[k − 1]q

(
(k − 2)2 + λβ

)
(1− γ)

β(1 + λ)(1− α)(k + 2 + γ)

} 1
k+1

, (3.1)

and

R2 = inf
k

{
q[k − 1]q

(
(k − 2)2 + λβ

)
(1− γ)

βk(1 + λ)(1− α)(k + 2 + γ)

} 1
k+1

. (3.2)

Proof. For starlikeness it is enough to show that

∣∣zf ′

f
+ 1
∣∣ < 1− γ,

but∣∣∣∣∣zf
′

f
+ 1

∣∣∣∣∣ =
∣∣∣∣∣
∑+∞

k=1(k + 1)akz
k+1

1 +
∑+∞

k=1 akz
k+1

∣∣∣∣∣ ≤
∑+∞

k=1(k + 1)ak|z|k+1

1−
∑+∞

k=1 ak|z|k+1
≤ 1− γ,

or ∑+∞
k=1(k + 1)ak|z|k+1 ≤ 1− γ − (1− γ)

∑+∞
k=1 ak|z|k+1,

or ∑+∞
k=1

k + 2 + γ

1− γ
ak|z|k+1 ≤ 1.

By using (2.1) we obtain

∑+∞
k=1

k + 2 + γ

1− γ
ak|z|k+1 ≤∑+∞

k=1

β(1 + λ)(1− α)(k + 2 + α)

q[k − 1]q ((k − 2)2 + λβ) (1− α)
|z|k+1 ≤ 1.

So, it is enough to suppose

|z|k+1 ≤
q[k − 1]q

(
(k − 2)2 + λβ)(1− α)

β(1 + λ)(1− α)(k + 2 + α)
.

Hence we get the required result (3.1). For convexity, by using the
Alexander,s Theorem(If f be an analytic function in the unit disk and

normalized by f(0) = f
′
(0) − 1 = 0, then f(z) is convex if and only

if zf
′
(z) is starlike.) and applying an easy calculation we conclude the

required result (3.2). So the proof is complete. □
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Theorem 3.2. Let f(z) ∈
∑

, and define

S1(z) =
1

z
, Sm(z) =

1

z
+

m−1∑
k=1

akz
k , (m = 2, 3, · · · ). (3.3)

Also suppose
∑+∞

k=1 xkak ≤ 1, where

xk =
q[k − 1]q

(
(k − 2)2 + λβ

)
β(1 + λ)(1− α)

, (3.4)

then

Re

(
f(z)

Sm(z)

)
> 1− 1

xm
, Re

(
Sm(z)

f(z)

)
>

xm
1 + xm

. (3.5)

Proof. Since
∑+∞

k=1 xkak ≤ 1, then by Theorem 2.1, f(z) ∈
∑

q(λ, α, β).

Also by (1.4) we have
[k − 1]q
1− α

≥ 1, so

xk >
q
(
(k − 2)2 + λβ

)
β(1 + λ)

, (3.6)

and {xk} is an increasing sequence, therefore we obtain

m−1∑
k=1

ak + xm

+∞∑
k=m

ak ≤ 1. (3.7)

Now by putting

X(z) = xm

[
f(z)

Sm(z)
− (1− 1

xm
)

]
, (3.8)

and making use of (3.7) we obtain

Re

(
X(z)− 1

X(z) + 1

)
≤
∣∣∣∣X(z)− 1

X(z) + 1

∣∣∣∣ = ∣∣∣∣ xmf(z)− xmSm(z)

xmf(z)− xmSm(z) + 2Sm(z)

∣∣∣∣
=

∣∣∣∣∣∣∣
xm
∑+∞

k=m akz
k

xm
∑+∞

k=m akzk + 2(
1

z
+
∑m=1

k=1 )akz
k

∣∣∣∣∣∣∣
≤

xm
∑+∞

k=m |ak|
2−

∑m−1
k=1 |ak| − xm

∑+∞
k=m |ak|

≤ 1.

By a simple calculation we get

Re (X(z)) > 0, therefore Re

(
X(z)

xm

)
> 0,
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or equivalently Re

[
f(z)

Sm(z)
− (1− 1

xm
)

]
> 0, and this gives the first

inequality in (3.5).
For the second inequality we consider

Y (z) = (1 + xm)
[Sm(z)

f(z)
− xm

1 + xm

]
,

and by using (3.7) we have

∣∣∣∣Y (z)− 1

Y (z) + 1

∣∣∣∣ ≤ 1, and Hence Re (Y (z)) > 0,

therefore Re

(
Y (z)

1 + xm

)
> 0, or equivalently Re

[
Sm(z)

f(z)
− xm

1 + xm

]
> 0,

and this shows the second inequality in (3.5). So the proof is complete.
□

4. Some properties of
∑

q(λ, α, β)

Theorem 4.1. Let f(z), g(z) ∈
∑

q(λ, α, β) and given by f(z) =
1

z
+∑+∞

k=1 akz
k−1,

g(z) =
1

z
+
∑+∞

k=1 bkz
k−1. Then the function h(z) =

1

z
+
∑+∞

k=1(a
2
k +

b2k)z
k−1 is also in

∑
q(γ, α, β) where γ ≤ λ

2 − (k−2)2

2β .

Proof. Since f(z), g(z) ∈
∑

q(λ, α, β) therefore we have

+∞∑
k=1

[
[k − 1]q

(
(k − 2)2 + λβ

)]2
a2k ≤

[
+∞∑
k=1

[k − 1]q
(
(k − 2)2 + λβ

)
ak

]2

≤
[
β(1 + λ)(1− α)

q

]2
, (4.1)

and

+∞∑
k=1

[
[k − 1]q

(
(k − 2)2 + λβ

)]2
b2k ≤

[
+∞∑
k=1

[k − 1]q
(
(k − 2)2 + λβ

)
bk

]2

≤
[
β(1 + λ)(1− α)

q

]2
. (4.2)

The above inequalities yield us

+∞∑
k=1

1

2

[
[k − 1]q

(
(k − 2)2 + λβ

)]2
(a2k+b2k) ≤

[
β(1 + λ)(1− α)

q

]2
. (4.3)
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Now we must show

+∞∑
k=1

[
[k − 1]q

(
(k − 2)2 + γβ

)]2
(a2k + b2k) ≤

[
β(1 + λ)(1− α)

q

]2
. (4.4)

But above inequalities holds if

[k − 1]q
(
(k − 2)2 + γβ

)
≤ 1

2

[
[k − 1]q

(
(k − 2)2 + λβ

)]
,

or equivalently

2(k − 2)2 + 2γβ ≤ (k − 2)2 + λβ,

or

γ ≤ λ
2 − (k−2)2

2β .

□

Theorem 4.2. The class
∑

q(λ, α, β) is a convex set.

Proof. Let

f(z) =
1

z
+

+∞∑
k=1

akz
k−1,

and

g(z) =
1

z
+

+∞∑
k=1

bkz
k−1,

be in the class
∑

q(λ, α, β). For t ∈ (0, 1), it is enough to show that the

function h(z) = (1− t)f(z) + tg(z) is in the class
∑

q(λ, α, β). Since

h(z) =
1

z
+

+∞∑
k=1

((1− t)ak + tbk)z
k−1, (4.5)

then
∞∑
k=1

[
[k − 1]q

(
(k − 2)2 + λβ

)]
((1−t)ak+tbk) ≤

β(1 + λ)(1− α)

q
, (4.6)

so h(z) ∈
∑

q(λ, α, β). □

Corollary 4.3. Let fj(z) (j = 1, 2, · · · , n), defined by fj(z) =
1

z
+∑+∞

k=1 ak,jz
k−1 be in the class

∑
q(λ, α, β), then the function F (z) =∑n

j=1 cjfj(z) is also in
∑

q(λ, α, β) where
∑n

j=1 cj = 1.
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5. Hadamard product

Theorem 5.1. If f(z), g(z) ∈
∑

q(λ, α, β) then Hadamard product of f
and g defined by

f ∗ g(z) = 1

z
+

+∞∑
k=1

akbkz
k−1,

is in the class
∑

q(γ, α, β) where

γ ≤

(
[k − 1]qq

(
(k − 2)2 + λβ

)2
β2(1 + λ)(1− α)

− (k − 2)2

β

)
.

Proof. Since f(z), g(z) ∈
∑

q(λ, α, β), so by 2.1

+∞∑
k=1

[k − 1]q
(
(k − 2)2 + λβ

)
ak ≤ β(1 + λ)(1− α)

q
, (5.1)

and
+∞∑
k=1

[k − 1]q
(
(k − 2)2 + λβ

)
bk ≤ β(1 + λ)(1− α)

q
. (5.2)

We must find the smallest γ such that

+∞∑
k=1

[k − 1]q
(
(k − 2)2 + γβ

)
akbk ≤ β(1 + γ)(1− α)

q
. (5.3)

By using the Cauchy-Schwarts inequality we have

+∞∑
k=1

[k − 1]q
(
(k − 2)2 + λβ

)√
akbk ≤ β(1 + λ)(1− α)

q
. (5.4)

Now it is enough to show that

[k − 1]q
(
(k − 2)2 + γβ

)
akbk ≤ [k − 1]q

(
(k − 2)2 + γβ

)√
akbk, (5.5)

or equivalently
√
akbk ≤ (k−2)2+λβ

(k−2)2+γβ
.

But from
√
akbk ≤ β(1+λ)(1−α)

q[k−1]q((k−2)2+λβ)
,

so it is enough that

β(1+λ)(1−α)
q[k−1]q((k−2)2+λβ)

≤ (k−2)2+λβ
(k−2)2+γβ

,

or γ ≤
(

[k−1]qq((k−2)2+λβ)
2

β2(1+λ)(1−α)
− (k−2)2

β

)
.

□
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