Caspian Journal of Mathematical Sciences (CJMS) University of Mazandaran, Iran http://cjms.journals.umz.ac.ir ISSN: 2676-7260 CJMS. **10**(2)(2021), 289-299

Some properties of certain subclass of meromorphic functions associated with *q*-derivative

M. H. Golmohamadi ¹ , Sh. Najafzadeh ² and M. R. Foroutan ² ¹ Department of Mathematics, Payame Noor University, P.O.Box 19395-3697, Tehran, Iran ² Department of Mathematics, Payame Noor University, P.O.Box 19395-3697, Tehran, Iran

ABSTRACT. In this paper, by making use of q-derivative we introduce a new subclass of meromorphically univalent functions. Precisely, we give a necessary and sufficient coefficient condition for functions in this class. Coefficient estimates, extreme points, convex linear combination Radii of starlikeness and convexity and finally partial sum property are investigated.

Keywords: *q*-derivative, Meromorphic function, Coefficient bound, Extreme point, Convex set, Partial sum.

2000 Mathematics subject classification: xxxx, xxxx; Secondary xxxx.

1. INTRODUCTION

The q-theory has important role in various branches of mathematics and physics as for example, in the areas of special functions, ordinary fractional calculus, optimal control problems, q-difference, q-integral equations, q-transform analysis and in quantum physics (see for instance, [1], [2], [6], [11]).

The theory of univalent functions can be described by using the theory of the q-calculus. Moreover, in recent years, such q-calculus as the

Accepted: 19 November 2020

289

 $^{^1\}mathrm{M.}$ H. Golmohamadi: golmohamadi@yahoo.com Received: 25 April 2020

Revised: 11 November 2020

q-integral and q-derivative were used to construct several subclasses of analytic functions (see, for example, [4], [5], [8], [9], [10]). Let Σ denote the class of meromorphic functions of the form

$$f(z) = \frac{1}{z} + \sum_{k=1}^{+\infty} a_k z^{k-1},$$
(1.1)

which are analytic in the punctured unit disk

$$\Delta^* = \{ z \in \mathbb{C} : 0 < |z| < 1 \}.$$

Gasper and Rahman [3] defined the q- derivative of a function f(z) of the form (1.1) by

$$D_q f(z) = \frac{f(qz) - f(z)}{(q-1)z}.$$
(1.2)

where $z \in \triangle^*$ and 0 < q < 1.

From (1.2) for a function f(z) given by (1.1) we get

$$D_q f(z) = \frac{-1}{qz^2} + \sum_{k=1}^{\infty} [k-1]_q a_k z^{k-2} , \ z \in \Delta^*,$$
(1.3)

where

$$[k-1]_q := \frac{1-q^{k-1}}{1-q} = 1 + q + q^2 + \dots + q^{k-2}.$$
 (1.4)

also $[k-1]_q \to k-1$ as $q \to \overline{1}$. So we conclude

$$\lim_{q\to\overline{1}} D_q f(z) = f'(z) \ , \ z \in \Delta^*,$$

see also [7, 12].

For $0 < q < 1, 0 \le \lambda \le 1, 0 < \alpha \le 1$ and $\beta > 0$. Let $\sum_{q} (\lambda, \alpha, \beta)$ be the subclass of \sum consisting of functions f of the

form (1.1) and satisfying the condition

$$\left| \frac{z^4 \left(D_q f(z) \right)'' + z^3 \left(D_q f(z) \right)' + \frac{4}{q}}{\lambda z^2 \left(D_q f(z) \right) - \frac{1}{q} + \frac{(1+\lambda)\alpha}{q}} \right| < \beta.$$
(1.5)

2. Main result

Unless otherwise mentioned, we suppose throughout this paper that $0 < q < 1, 0 \leq \lambda < 1, 0 < \alpha < 1$ and $\beta > 0$. First we state coefficient estimates on the class $\sum_{q} (\lambda, \alpha, \beta)$.

Theorem 2.1. Let $f(z) \in \sum_{i} f(z) \in \sum_{i} f(z) \in \sum_{i} f(\lambda, \alpha, \beta)$ if and only if

$$\sum_{k=1}^{+\infty} [k-1]_q \left((k-2)^2 + \lambda\beta \right) a_k \le \frac{\beta(1+\lambda)(1-\alpha)}{q}, \qquad (2.1)$$

and the result is sharp for G(z) given by

$$G(z) = \frac{1}{z} + \frac{\beta(1+\lambda)(1-\alpha)}{q[k-1]_q \left((k-2)^2 + \lambda\beta\right)} z^k.$$
 (2.2)

Proof. Let $f(z) \in \sum_{q} (\lambda, \alpha, \beta)$, then (1.5) holds true. So by replacing (1.3) in (1.5) we have

$$\left| \frac{\sum_{k=1}^{+\infty} [k-1]_q (k-2)(k-3) a_k z^k + \sum_{k=1}^{+\infty} [k-1]_q (k-2) a_k z^k}{-\frac{\lambda}{q} + \sum_{k=1}^{+\infty} \lambda [k-1]_q a_k z^k - \frac{1}{q} + \frac{(1+\lambda)\alpha}{q}} \right| < \beta,$$

or

$$\left| \frac{\sum_{k=1}^{+\infty} [k-1]_q (k-2)^2 a_k z^k}{\frac{(1+\lambda)}{q} (1-\alpha) - \sum_{k=1}^{+\infty} \lambda [k-1]_q a_z z^k} \right| < \beta.$$

Since $Re(z) \leq |z|$ for all z, therefore

$$Re\left\{\frac{\sum_{k=1}^{+\infty}[k-1]_q(k-2)^2 a_k z^k}{(\frac{1+\lambda}{q})(1-\alpha) - \sum_{k=1}^{+\infty}\lambda[k-1]_q a_k z^k}\right\} < \beta.$$

By letting $z \to \overline{1}$ through real values, we have

$$\sum_{k=1}^{+\infty} [k-1]_q \left((k-2)^2 + \lambda\beta \right) a_k \le \frac{\beta(1+\lambda)(1-\alpha)}{q}.$$

Conversely, Let (2.1) holds true, it is enough to show that

$$X(f) = \left| \frac{z^4 \left(D_q f(z) \right)'' + z^3 \left(D_q f(z) \right)' + \frac{4}{q}}{\lambda z^2 \left(D_q f(z) \right) - \frac{1}{q} + \frac{(1+\lambda)\alpha}{q}} \right| < \beta.$$

or

$$X(f) = \left| z^4 \left(D_q f(z) \right)'' + z^3 \left(D_q f(z) \right)' + \frac{4}{q} \left| -\beta \right| \lambda z^2 \left(D_q f(z) \right) - \frac{1}{q} + \frac{(1+\lambda)\alpha}{q} \right| < 0.$$

But for 0 < |z| = r < 1 we have

$$\begin{split} X(f) &= \left| \sum_{k=1}^{+\infty} [k-1]_q (k-2)^2 a_k z^k \right| - \beta \left| \frac{(1+\lambda)}{q} (1-\alpha) - \lambda \sum_{k=1}^{+\infty} [k-1]_q a_k z^k \right| \\ &\leq \sum_{k=1}^{+\infty} [k-1]_q (k-2)^2 |a_k| r^k - \frac{\beta (1+\lambda)(1-\alpha)}{q} + \sum_{k=1}^{+\infty} \lambda \beta [k-1]_q |a_k| r^k \\ &\leq \sum_{k=1}^{+\infty} [k-1]_q \Big((k-2)^2 + \lambda \beta \Big) |a_k| r^k - \frac{\beta (1+\lambda)(1-\alpha)}{q}. \end{split}$$

Since the above inequality holds for all r (0 < r < 1), by letting $r \to \overline{1}$ and using (2.1) we obtain $X(f) \leq 0$, and this completes the proof. \Box

Next we obtain extreme points and convex linear combination property for

$$f(z) \in \sum_{q} (\lambda, \alpha, \beta).$$

Theorem 2.2. The function f(z) of the form (1.1) belongs to $\sum_{q} (\lambda, \alpha, \beta)$ if and only if it can be expressed by $f(z) = \sum_{k=0}^{\infty} \sigma_k f_k(z), \sum_{k=0}^{\infty} \sigma_k = 1, \sigma_k \ge 0$, where $f_0(z) = \frac{1}{z}$ and $f_k(z) = \frac{1}{z} + \frac{\beta(1+\lambda)(1-\alpha)}{q[k-1]_q[(k-2)^2+\lambda\beta]} z^k, \ k = 1, 2, \cdots$.

Proof. Let

$$\begin{split} f(z) &= \sum_{k=0}^{\infty} \sigma_k f_k(z), \\ &= \sigma_0 f_0(z) + \sum_{k=1}^{\infty} \sigma_k \Big[\frac{1}{z} + \frac{\beta(1+\lambda)(1-\alpha)}{q[k-1]_q \big[(k-2)^2 + \lambda\beta) \big]} z^k \Big] \\ &= \frac{1}{z} + \sum_{k=1}^{\infty} \frac{\beta(1+\lambda)(1-\alpha)}{q[k-1]_q \big[(k-2)^2 + \lambda\beta) \big]} \sigma_k z^k. \end{split}$$

Now by using Theorem 2.1 we conclude that $f(z) \in \sum_{q} (\lambda, \alpha, \beta)$. Conversely, if f(z) given by (1.1) belongs to $\sum_{q} (\lambda, \alpha, \beta)$, by letting $\sigma_0 = 1 - \sum_{k=1}^{+\infty} \sigma_k$, where

$$\sigma_k = \frac{q[k-1]_q \left[(k-2)^2 + \lambda \beta \right]}{\beta (1+\lambda)(1-\alpha)} a_k, \ k = 1, 2, \cdots.$$

we conclude the required result.

Theorem 2.3. Let for $n = 1, 2, \dots, m$, $f_n(z) = \frac{1}{z} + \sum_{k=1}^{+\infty} a_{k,n} z^k$ belongs to $\sum_q (\lambda, \alpha, \beta)$, then $F(z) = \sum_{n=1}^m \sigma_n f_n(z)$, is also in the same class, where $\sum_{n=1}^m \sigma_n = 1$. (Hence $\sum_q (\lambda, \alpha, \beta)$ is a convex set.)

Proof. According to Theorem 2.1 for every $n = 1, 2, \dots, m$, we have

$$\sum_{n=1}^{+\infty} [k-1]_q ((k-2)^2 + \lambda\beta) a_{k,n} \le \frac{\beta(1+\lambda)(1-\alpha)}{q}.$$

But

$$F(z) = \sum_{n=1}^{m} \sigma_n f_n(z)$$

=
$$\sum_{n=1}^{m} \sigma_n \left(\frac{1}{z} + \sum_{k=1}^{\infty} a_{k,n} z^k\right)$$

=
$$\frac{1}{z} \sum_{n=1}^{m} \sigma_n + \sum_{k=1}^{\infty} \left(\sum_{n=1}^{m} \sigma_n a_{k,n}\right) z^k$$

=
$$\frac{1}{z} + \sum_{k=1}^{\infty} \left(\sum_{n=1}^{m} \sigma_n a_{k,n}\right) z^k.$$

Since

$$\sum_{k=1}^{\infty} [k-1]_q \left((k-2)^2 + \lambda \beta \right) \left(\sum_{n=1}^m \sigma_n a_{k,n} \right)$$
$$= \sum_{n=1}^m \sigma_n \left(\sum_{k=1}^\infty [k-1]_q \left((k-2)^2 + \lambda \beta \right) a_{k,n} \right)$$
$$\leq \sum_{n=1}^m \sigma_n \left(\frac{\beta (1+\lambda)(1-\alpha)}{q} \right)$$
$$= \frac{\beta (1+\lambda)(1-\alpha)}{q} \sum_{n=1}^m \sigma_n = \frac{\beta (1+\lambda)(1-\alpha)}{q},$$

then by Theorem 2.1 the proof is complete.

3. RADII CONDITION AND PARTIAL SUM PROPERTY

In this section we obtain radii of starlikeness and convexity and investigate about partial sum property.

Theorem 3.1. If $f(z) \in \sum_{q} (\lambda, \alpha, \beta)$, then f is meromorphically univalent starlike of order γ in disk $|z| < R_1$, and it is meromerphically

univalent convex of order γ in disk $|z| < R_2$ where

$$R_{1} = \inf_{k} \left\{ \frac{q[k-1]_{q} \left((k-2)^{2} + \lambda\beta \right) (1-\gamma)}{\beta (1+\lambda)(1-\alpha)(k+2+\gamma)} \right\}^{\frac{1}{k+1}}, \quad (3.1)$$

and

$$R_2 = \inf_k \left\{ \frac{q[k-1]_q \left((k-2)^2 + \lambda\beta \right) (1-\gamma)}{\beta k (1+\lambda)(1-\alpha)(k+2+\gamma)} \right\}^{\frac{1}{k+1}}.$$
 (3.2)

Proof. For starlikeness it is enough to show that

$$\left|\frac{zf'}{f} + 1\right| < 1 - \gamma,$$

but

$$\left|\frac{zf'}{f} + 1\right| = \left|\frac{\sum_{k=1}^{+\infty}(k+1)a_k z^{k+1}}{1 + \sum_{k=1}^{+\infty}a_k z^{k+1}}\right| \le \frac{\sum_{k=1}^{+\infty}(k+1)a_k |z|^{k+1}}{1 - \sum_{k=1}^{+\infty}a_k |z|^{k+1}} \le 1 - \gamma,$$
 or

$$\sum_{k=1}^{+\infty} (k+1)a_k |z|^{k+1} \le 1 - \gamma - (1-\gamma) \sum_{k=1}^{+\infty} a_k |z|^{k+1},$$

 or

$$\sum_{k=1}^{+\infty} \frac{k+2+\gamma}{1-\gamma} a_k |z|^{k+1} \le 1.$$

By using (2.1) we obtain

$$\sum_{k=1}^{+\infty} \frac{k+2+\gamma}{1-\gamma} a_k |z|^{k+1} \le \sum_{k=1}^{+\infty} \frac{\beta(1+\lambda)(1-\alpha)(k+2+\alpha)}{q[k-1]_q \left((k-2)^2+\lambda\beta\right)(1-\alpha)} |z|^{k+1} \le 1.$$

So, it is enough to suppose

$$|z|^{k+1} \le \frac{q[k-1]_q ((k-2)^2 + \lambda\beta)(1-\alpha)}{\beta(1+\lambda)(1-\alpha)(k+2+\alpha)}.$$

Hence we get the required result (3.1). For convexity, by using the Alexander,s Theorem(If f be an analytic function in the unit disk and normalized by f(0) = f'(0) - 1 = 0, then f(z) is convex if and only if zf'(z) is starlike.) and applying an easy calculation we conclude the required result (3.2). So the proof is complete.

Theorem 3.2. Let $f(z) \in \sum$, and define

$$S_1(z) = \frac{1}{z}$$
, $S_m(z) = \frac{1}{z} + \sum_{k=1}^{m-1} a_k z^k$, $(m = 2, 3, \cdots)$. (3.3)

Also suppose $\sum_{k=1}^{+\infty} x_k a_k \leq 1$, where

$$x_k = \frac{q[k-1]_q \left((k-2)^2 + \lambda\beta \right)}{\beta(1+\lambda)(1-\alpha)},\tag{3.4}$$

then

$$Re\left(\frac{f(z)}{S_m(z)}\right) > 1 - \frac{1}{x_m} , \ Re\left(\frac{S_m(z)}{f(z)}\right) > \frac{x_m}{1 + x_m}.$$
(3.5)

Proof. Since $\sum_{k=1}^{+\infty} x_k a_k \leq 1$, then by Theorem 2.1, $f(z) \in \sum_q (\lambda, \alpha, \beta)$. Also by (1.4) we have $\frac{[k-1]_q}{1-\alpha} \geq 1$, so

$$x_k > \frac{q\left((k-2)^2 + \lambda\beta\right)}{\beta(1+\lambda)},\tag{3.6}$$

and $\{x_k\}$ is an increasing sequence, therefore we obtain

$$\sum_{k=1}^{m-1} a_k + x_m \sum_{k=m}^{+\infty} a_k \le 1.$$
(3.7)

Now by putting

$$X(z) = x_m \left[\frac{f(z)}{S_m(z)} - (1 - \frac{1}{x_m}) \right],$$
(3.8)

and making use of (3.7) we obtain

$$Re\left(\frac{X(z)-1}{X(z)+1}\right) \le \left|\frac{X(z)-1}{X(z)+1}\right| = \left|\frac{x_m f(z) - x_m S_m(z)}{x_m f(z) - x_m S_m(z) + 2S_m(z)}\right|$$
$$= \left|\frac{x_m \sum_{k=m}^{+\infty} a_k z^k}{x_m \sum_{k=m}^{+\infty} a_k z^k + 2(\frac{1}{z} + \sum_{k=1}^{m=1}) a_k z^k}\right|$$
$$\le \frac{x_m \sum_{k=m}^{+\infty} |a_k|}{2 - \sum_{k=1}^{m-1} |a_k| - x_m \sum_{k=m}^{+\infty} |a_k|} \le 1.$$

By a simple calculation we get

$$Re(X(z)) > 0$$
, therefore $Re\left(\frac{X(z)}{x_m}\right) > 0$,

or equivalently $Re\left[\frac{f(z)}{S_m(z)} - (1 - \frac{1}{x_m})\right] > 0$, and this gives the first inequality in (3.5).

For the second inequality we consider

$$Y(z) = (1 + x_m) \left[\frac{S_m(z)}{f(z)} - \frac{x_m}{1 + x_m} \right],$$

and by using (3.7) we have $\left|\frac{Y(z)-1}{Y(z)+1}\right| \leq 1$, and Hence Re(Y(z)) > 0, therefore $Re\left(\frac{Y(z)}{1+x_m}\right) > 0$, or equivalently $Re\left[\frac{S_m(z)}{f(z)} - \frac{x_m}{1+x_m}\right] > 0$, and this shows the second inequality in (3.5). So the proof is complete.

4. Some properties of $\sum_{a} (\lambda, \alpha, \beta)$

Theorem 4.1. Let $f(z), g(z) \in \sum_{q} (\lambda, \alpha, \beta)$ and given by $f(z) = \frac{1}{z} + \sum_{k=1}^{+\infty} a_k z^{k-1}$, $g(z) = \frac{1}{z} + \sum_{k=1}^{+\infty} b_k z^{k-1}$. Then the function $h(z) = \frac{1}{z} + \sum_{k=1}^{+\infty} (a_k^2 + b_k^2) z^{k-1}$ is also in $\sum_{q} (\gamma, \alpha, \beta)$ where $\gamma \leq \frac{\lambda}{2} - \frac{(k-2)^2}{2\beta}$.

Proof. Since $f(z), g(z) \in \sum_{q} (\lambda, \alpha, \beta)$ therefore we have

$$\sum_{k=1}^{+\infty} \left[[k-1]_q \left((k-2)^2 + \lambda \beta \right) \right]^2 a_k^2 \le \left[\sum_{k=1}^{+\infty} [k-1]_q \left((k-2)^2 + \lambda \beta \right) a_k \right]^2 \\ \le \left[\frac{\beta (1+\lambda)(1-\alpha)}{q} \right]^2, \quad (4.1)$$

and

$$\sum_{k=1}^{+\infty} \left[[k-1]_q \left((k-2)^2 + \lambda\beta \right) \right]^2 b_k^2 \le \left[\sum_{k=1}^{+\infty} [k-1]_q \left((k-2)^2 + \lambda\beta \right) b_k \right]^2 \\ \le \left[\frac{\beta(1+\lambda)(1-\alpha)}{q} \right]^2.$$
(4.2)

The above inequalities yield us

$$\sum_{k=1}^{+\infty} \frac{1}{2} \left[[k-1]_q \left((k-2)^2 + \lambda\beta \right) \right]^2 (a_k^2 + b_k^2) \le \left[\frac{\beta(1+\lambda)(1-\alpha)}{q} \right]^2.$$
(4.3)

Now we must show

$$\sum_{k=1}^{+\infty} \left[[k-1]_q \left((k-2)^2 + \gamma \beta \right) \right]^2 (a_k^2 + b_k^2) \le \left[\frac{\beta (1+\lambda)(1-\alpha)}{q} \right]^2.$$
(4.4)

But above inequalities holds if

$$[k-1]_q \left((k-2)^2 + \gamma \beta \right) \le \frac{1}{2} \left[[k-1]_q \left((k-2)^2 + \lambda \beta \right) \right],$$

or equivalently

$$2(k-2)^2 + 2\gamma\beta \le (k-2)^2 + \lambda\beta,$$

or

$$\gamma \le \frac{\lambda}{2} - \frac{(k-2)^2}{2\beta}.$$

Theorem 4.2. The class $\sum_{q} (\lambda, \alpha, \beta)$ is a convex set.

Proof. Let

$$f(z) = \frac{1}{z} + \sum_{k=1}^{+\infty} a_k z^{k-1},$$

and

$$g(z) = \frac{1}{z} + \sum_{k=1}^{+\infty} b_k z^{k-1},$$

be in the class $\sum_{q} (\lambda, \alpha, \beta)$. For $t \in (0, 1)$, it is enough to show that the function h(z) = (1 - t)f(z) + tg(z) is in the class $\sum_{q} (\lambda, \alpha, \beta)$. Since

$$h(z) = \frac{1}{z} + \sum_{k=1}^{+\infty} ((1-t)a_k + tb_k)z^{k-1}, \qquad (4.5)$$

then

$$\sum_{k=1}^{\infty} \left[[k-1]_q \left((k-2)^2 + \lambda\beta \right) \right] \left((1-t)a_k + tb_k \right) \le \frac{\beta(1+\lambda)(1-\alpha)}{q}, \quad (4.6)$$

so $h(z) \in \sum_q (\lambda, \alpha, \beta).$

so
$$h(z) \in \sum_{q} (\lambda, \alpha, \beta)$$
.

Corollary 4.3. Let $f_j(z)$ $(j = 1, 2, \dots, n)$, defined by $f_j(z) = \frac{1}{z} + \sum_{k=1}^{+\infty} a_{k,j} z^{k-1}$ be in the class $\sum_q (\lambda, \alpha, \beta)$, then the function $F(z) = \sum_{j=1}^n c_j f_j(z)$ is also in $\sum_q (\lambda, \alpha, \beta)$ where $\sum_{j=1}^n c_j = 1$.

5. HADAMARD PRODUCT

Theorem 5.1. If $f(z), g(z) \in \sum_{q} (\lambda, \alpha, \beta)$ then Hadamard product of f and g defined by

$$f * g(z) = \frac{1}{z} + \sum_{k=1}^{+\infty} a_k b_k z^{k-1},$$

is in the class $\sum_q (\gamma, \alpha, \beta)$ where

$$\gamma \le \left(\frac{[k-1]_q q \left((k-2)^2 + \lambda\beta\right)^2}{\beta^2 (1+\lambda)(1-\alpha)} - \frac{(k-2)^2}{\beta}\right).$$

Proof. Since $f(z), g(z) \in \sum_{q} (\lambda, \alpha, \beta)$, so by 2.1

$$\sum_{k=1}^{+\infty} [k-1]_q \left((k-2)^2 + \lambda\beta \right) a_k \le \frac{\beta(1+\lambda)(1-\alpha)}{q}, \tag{5.1}$$

and

$$\sum_{k=1}^{+\infty} [k-1]_q \left((k-2)^2 + \lambda\beta \right) b_k \le \frac{\beta(1+\lambda)(1-\alpha)}{q}.$$
 (5.2)

We must find the smallest γ such that

$$\sum_{k=1}^{+\infty} [k-1]_q \left((k-2)^2 + \gamma \beta \right) a_k b_k \le \frac{\beta (1+\gamma)(1-\alpha)}{q}.$$
 (5.3)

By using the Cauchy-Schwarts inequality we have

$$\sum_{k=1}^{+\infty} [k-1]_q \left((k-2)^2 + \lambda\beta \right) \sqrt{a_k b_k} \le \frac{\beta (1+\lambda)(1-\alpha)}{q}.$$
 (5.4)

Now it is enough to show that

$$[k-1]_q \left((k-2)^2 + \gamma \beta \right) a_k b_k \le [k-1]_q \left((k-2)^2 + \gamma \beta \right) \sqrt{a_k b_k}, \quad (5.5)$$

or equivalently

$$\sqrt{a_k b_k} \le \frac{(k-2)^2 + \lambda\beta}{(k-2)^2 + \gamma\beta}.$$

But from

$$\sqrt{a_k b_k} \le \frac{\beta(1+\lambda)(1-\alpha)}{q[k-1]_q((k-2)^2+\lambda\beta)},$$

so it is enough that

$$\frac{\beta(1+\lambda)(1-\alpha)}{q[k-1]_q((k-2)^2+\lambda\beta)} \le \frac{(k-2)^2+\lambda\beta}{(k-2)^2+\gamma\beta},$$
$$\gamma \le \left(\frac{[k-1]_qq((k-2)^2+\lambda\beta)^2}{\beta^2(1+\lambda)(1-\alpha)} - \frac{(k-2)^2}{\beta}\right).$$

or

References

- M.H. Abu-Risha, M.H. Annaby, M.E.H. Ismail and Z.S. Mansour, Linear q-difference equations, Z. Anal. Anwend., 26 (4) (2007), 481-494.
- [2] D. Albayrak, S.D. Purohit and F. Uçar, On q-analogues of sumulu transforms, An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat., 21 (1) (2013), 239-260.
- [3] G. Gasper and M. Rahman, Basic Hypergeometric series, Cambridge University Press, Cambridge, 1990.
- [4] F. H. Jackson, On q-functions and a certain difference operator, Trans. Roy. Soc. Edinb. 46 (1908), 64-72.
- [5] F. H. Jackson, q-definite integrals, Q. J. pure Appl. Math., 41 (1910), 193-203.
- [6] Z.S.I. Mansour, Linear sequential q-difference equations of fractional order, Fract. Calc. Appl. Anal., 12 (2) (2009), 159-178.
- [7] A. O. Mostafa, M. k. Aouf, H. M. Zayed and T. Bulboaca, Convolution conditions for subelasse of mermorphic functions of complex order associated with basic Bessel functions, J. Egyptian Math. Soc 25 (2017), 286-290.
- [8] H. E. Ozkan Ucar, coefficient inequalties for q-starlike functions, Appl. Math. Comput. 276 (2016), 122-126.
- [9] Y. Polatoglu, Growth and distortion theorems for generalized ~ q-starlike functions, Adv. Math. Sci. J. 5 (2016), 7-12.
- [10] S. D. Purohit and R. K. Raina, Certain subclass of analytic functions associated with fractional q-calculus operators, *Math. Scand.* 109 (2011), 55-70.
- [11] P.M. Rajković, S.D. Marinković and M.S. Stanković, Fractional integrals and derivatives in q-calculus, Appl. Anal. Discrete Math, bf 1 (2007), 311-323.
- [12] Zhi-Gang Wang and Ming-Liang Li, Some properties of Certain family of Multiplier transforms, Filomat, 31(1), (2017), 159173.