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CONE NORMED SPACES
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ABSTRACT. In this paper, we introduce the cone normed spaces and cone bounded
linear mappings. Among other things, we prove the Baire category theorem and the
Banach–Steinhaus theorem in cone normed spaces.
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1. INTRODUCTION

Let E be a Banach space andP be a subset ofE. P is called a cone whenever
(1) P is a closed, non-empty set andP 6= {0},
(2) ax + by ∈ P for all x, y ∈ P anda, b ≥ 0,
(3) P ∩ (−P ) = {0}.

For a given coneP ⊆ E, we can define a partial ordering≤with respect toP by x ≤ y
if and only if y − x ∈ P . We shall writex < y if x ≤ y andx 6= y, while x � y will
stands fory − x ∈ intP , whereintP denoted the interior ofP . The coneP is normal
if there is a numberM > 0 such that for allx, y ∈ E

0 ≤ x ≤ y =⇒ ‖x‖ ≤ M‖y‖.
The least positive number satisfying the above is called the normal constant ofP [1].
It is clear thatM ≥ 1. In the following we always suppose thatE is a real Banach
space andP is a cone inE with intP 6= ∅ and≤ is a partial ordering with respect to
P .

Definition 1.1. ([1]) Let X be non-empty set . Suppose that the mappingd : X×X →
E satisfies:

(1) 0 ≤ d(x, y) for all x, y ∈ X andd(x, y) = 0 if and only if x = y,
(2) d(x, y) = d(y, x) for all x, y ∈ X,
(3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.
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Thend is called a cone metric onX, and(X, d) is called cone metric space.

Example 1.2.Let E = R2, P = {(x, y) ∈ E : x, y ≥ 0}, X = R andd : X×X → E
defined byd(x, y) = (|x− y|, α|x−y|), whereα ≥ 0 is a constant. ThenP is a normal
cone with normal constantM = 1 and(X, d) is a cone metric space[2].

Definition 1.3. ([1]) Let (X, d) be a cone metric space,x ∈ X and{xn} a sequence
in X. Then

(1) {xn} is said to convergent tox whenever for everyc ∈ E, with 0 � c there
is a positive integerN such thatd(xn, x) � c for all n ≥ N . We denote this by
limn→∞ xn = x or xn → x asn →∞.

(2) {xn} is said to be a Cauchy sequence whenever for everyc ∈ E with 0 � c
there is a positive integerN such thatd(xn, xm) � c for all n, m ≥ N .

(3) (X, d) is called a complete cone metric space if every Cauchy sequence is con-
vergent.

Let us recall [1] that ifP is a normal cone, then{xn} ⊆ X converges tox if and
only if d(xn, x) → 0 asn →∞. Furthermore,{xn} ⊆ X is a Cauchy sequence if and
only if d(xn, xm) → 0 asn, m →∞.

Definition 1.4. Let (X, d) be a cone metric space andB ⊆ X.
(1) A point b ∈ B is called an interior point ofB whenever there exists a pointp,

0 � p, such thatBp(b) ⊆ B whereBp(b) := {y ∈ X : d(b, y) � p}.
(2) A subsetB ⊆ X is called open if each element ofB is an interior point ofB.

The family β = {Be(x) : x ∈ X, 0 � e} is a sub-basis for a topology onX. We
denote this cone topology byτc. The topologyτc is a Hausdorff and first countable [2].

In this paper we suppose thatP is a normal cone with normal constantM and fixed
c0 with 0 � c0.

2. CONE NORMED SPACES

Definition 2.1. Let X be real vector space. Suppose that the mapping‖.‖p : X → E
satisfies:

(1) ‖x‖p ≥ 0 for all x ∈ X and‖x‖p = 0 if and only if x = 0 ,
(2) ‖αx‖p = |α| ‖x‖p, for all x ∈ X andα ∈ R ,
(3)‖x + y‖p ≤ ‖x‖p + ‖y‖p for all x, y ∈ X.

Then‖.‖p is called a cone norm onX and(X, ‖.‖p) is called a cone normed space.

It is easy to see that every normed space is a cone normed space by puttingE := R,
P := [0.∞).

Example 2.2. Let E = l1, P = {{xn} ∈ E : xn ≥ 0, for all n} and(X, ‖.‖) be a
normed space and‖.‖p : X → E defined by‖x‖p = {‖x‖

2n }. ThenP is a normal cone
with constant normalM = 1 and(X, ‖.‖p) is a cone normed space.
Let (X, ‖.‖p) be a cone normed space. Setd(x, y) = ‖x − y‖p. It is easy to see that
(X, d) is a cone metric space.d is called getting cone metric of cone norm‖.‖p.

Definition 2.3. We say that the cone normed space(X, ‖.‖p) is a cone Banach space
when getting cone metric of‖.‖p is complete.



CONE NORMED SPACES 9

Lemma 2.4. Let (X, ‖.‖p) and(Y, ‖.‖p) be cone normed spaces, and letT be a linear
map fromX into Y . If T has any one of the five following properties, it has all five of
them:
(a) (continuity at a point) For some fixedx0 ∈ X we have: Given0 � c there is a
0 � t such that‖Tx− Tx0‖p � c whenever‖x− x0‖p � t.
(b) (continuity at zero) For0 � c there is a0 � t such that‖Tx‖p � c whenever
x ∈ X and‖x‖p � t.
(c) (continuity at every point of x) For anyx ∈ X we have: Given0 � c there is a
0 � t such that‖Tx− Ty‖p � c whenevery ∈ X and‖y − x‖p � t.
(d) (uniform continuity) Given0 � c there is a0 � t such that‖Tx − Ty‖p � c
wheneverx, y ∈ X and‖x− y‖p � t.
(e) (sequential continuity) Given any sequence{xn} ⊆ X which is convergent to a
pointx0 ∈ X, the sequence{Txn} ⊆ Y is convergent to the pointTx0 ∈ Y .

Proof: First assume thatT has property (a). So for somex0 ∈ X and any0 � c we
can choose0 � t such that‖Tx−Tx0‖p � c whenever‖x−x0‖p � t. Then for any
w ∈ X with ‖w‖p � t we have‖T (w+x0)−Tx0‖ � c because‖(w+x0)−x0‖p � t.
But T is linear this says that‖Tw‖p � c whenever‖w‖p � t and we have shown that
(a) implies (b).
Now suppose thatT has property (b), letx ∈ X and0 � c be given. There is a0 � t
such that‖Tw‖p � c whenever‖w‖p � t. We have‖T (y − x)‖p � c whenever
‖y− x‖p � t; just usey− x in place ofw. Again recalling thatT is linear we see that
(b) implies (c). Clearly (c) implies (a). Thus (a), (b) and (c) are equivalent.
Let us show that (b) implies (d). Given0 � c we may choose0 � t so that‖w‖p � t
implies ‖Tw‖p � c. Now if x, y ∈ X and‖x − y‖p � t then‖T (x − y)‖p � c.
SinceT is linear (b) implies (d) and clearly (d) implies (b). Thus (a) through (d) are
equivalent.
We will complete the proof by showing that (b) and (e) are equivalent. First suppose
that T has property (b) and let0 � c be given. Then we have choose0 � t that
‖Tw‖p � c whenever‖w‖p � t. Now suppose{xn} ⊆ X convergesx0. Then
we can find positive integerN such that‖xn − x0‖p � t whenevern ≥ N . Thus
‖T (xn− x0)‖p � c whenevern ≥ N . Clearly this says that{Txn} converges toTx0.
Now assume (e) and negation of (b). So we are supposing that there is a0 � c such
that for any0 � t we can findwt ∈ X with ‖wt‖p � t and‖Twt‖p 6� c. Thus for
this c we can find{wn} ⊆ X such that‖wn‖p � c

2n and‖Twn‖p 6� c for all n. But

{wn} is converges to0 because‖ ‖wn‖p‖ ≤
M‖c‖

2n → 0 asn → ∞. By (e) {Twn}
must converge toT0 = 0 and this impossible. �

Proposition 2.5. Let (X, ‖.‖p) be a cone normed space, andx ∈ X, 0 � c. Then

y ∈ Bc(x) ⇐⇒ (∃{zn} ⊆ Bc(x) ; zn → y).

Proof: Let y ∈ Bc(x). Then for any positive integern, zn ∈ B c
2n

(y) ∩ Bc(x) 6= ∅.
We obtainzn → y asn → ∞. Now we suppose that{zn} ∈ Bc(x) is a sequence that
zn → y asn → ∞. Let W be a open set such thatW consists ofy. There is0 � p
such thatBp(y) ⊆ W . We choose the positive integern such that‖zn − y‖p � p.
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Hence,zn ∈ Bp(y) andW ∩Bc(x) 6= ∅. Soy ∈ Bc(x). �

We need the following lemma to prove the Baire category theorem.

Lemma 2.6. Let(X, ‖.‖p) be a cone normed space,x ∈ X and0 � c. ThenB c
2
(x) ⊆

Bc(x).

Proof: Let y ∈ B c
2
(x). Then there is a sequence{zn} ⊆ B c

2
(x) such thatzn → y as

n → ∞. We can choose the positive integern such that‖zn − y‖p � c
2
. We obtain

that‖x− y‖p ≤ ‖x− zn‖p + ‖zn− y‖p � c
2
+ c

2
= c. Lettinga = (‖x− zn‖p + ‖zn−

y‖p)− ‖x− y‖p, by attention that action+ is continuous inE, we have

c−‖x− y‖p = (c− (‖x− zn‖p + ‖zn− y‖p) + a ∈ a + intP = int(a + P ) ⊆ intP.

So‖x− y‖p � c and thusy ∈ Bc(x). �

Theorem 2.7. (Baire Category Theorem) Let(X, ‖.‖p) be a cone Banach space. Then
every countable intersection of dense and open sets is dense.

Proof: Let{An} ⊆ X be a sequence of dense and open sets. Supposex ∈ X, andW is
a open set such thatW consists ofx. Then there is0 � r such thatBr(x) ⊆ W . Since
A1 is dense inX, we obtainz1 ∈ A1 ∩Br(x) 6= ∅. But A1 ∩Br(x) is open and hence
there exists0 � r′ such thatBr′(z1) ⊆ A1 ∩ Br(x). We can choose the positive real
numberk1 such thatk1 < min{1

2
, 1

2‖r′
1‖}. By settingr1 = k1r

′
1, we haver1 � r′

2
and

Br1(z1) ⊆ Br′
1
(z1). SinceA2 is dense inX, we havez2 ∈ A2 ∩ Br1(z1) 6= ∅, but this

set is open. Thus there exists0 � r′2 such thatBr′
2
(z2) ⊆ A2 ∩ Br1(z1). By choosing

0 < k2 < min{1
2
, 1

22‖r′
2‖}, we haver2 = k2r

′
2 � r′

2

2
and henceBr2(z2) ⊆ Br′

2
(z2).

SinceA3 is dense inX then letz3 ∈ A3 ∩ Br2(z2). SinceA3 is open, there is a
0 � r′3 such thatBr′

3
(z3) ⊆ A3 ∩ Br2(z2). We can choose the real number0 < k3

for which k3 < min{1
2
, 1

23‖r′
3‖}. Settingr3 = k3r

′
3, we conclude thatr3 � r′

3

2
and

Br3(z3) ⊆ Br′
3
(z3). Repeating the above argument we obtain

...Br3(z3) ⊆ Br2(z2) ⊆ Br1(z1).

We claimrn → 0, becausern = knr
′
n � 1

2n‖r′
n‖

r′n. So‖rn‖ ≤ M
2n‖r′

n‖
‖r′n‖ = M

2n → 0

asn → ∞. Moreover , we can show that{zn} is Cauchy sequence inX. To see this,
let ε > 0 is given, there is a positive integerN such thatM‖rn‖ < ε for all n ≥ N .
So‖‖zm − zn‖p‖ ≤ M‖rn‖ < ε for all m > n ≥ N . This means that{zn} is Cauchy
sequence. SinceX is cone Banach space, there isz ∈ X such that lim

n→∞
zn = z. For

any positive integerN , if n > N thenzn ∈ BrN
(zN), soz ∈ BrN

(zN) and hence

z ∈
∞⋂

N=1

BrN
(zN) ⊆

∞⋂
N=1

AN

⋂
Br(x) ⊆

∞⋂
N=1

AN

⋂
W.

This says that
⋂∞

N=1 AN is dense inX. �

Corollary 2.8. Every cone Banach space is second category.
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Definition 2.9. A subsetA ⊆ E is upper bounded, if there exists0 ≤ t such thata ≤ t
for all a ∈ A, t is an upper bound forA. We say thatP has supremum property, if for
every upper bounded setA in P least upper bound exists inP , we show this element
to supA.

Example 2.10.Let E = R2 , P = {(x, y) ∈ E : x, y ≥ 0}. P is a normal cone
with normal constantM = 1, andP has supremum property. Because ifA ⊆ P is
upper bounded set, thensupA = (supz∈Aπ1(z), supz∈Aπ2(z)). Whereπ1 andπ2 are
projections on first and second components, respectively.

From now on, we suppose thatP has supremum property.

Definition 2.11. Let (X, ‖.‖p) be a cone normed space. A subsetA in X is cone
bounded, if{‖x‖p; x ∈ A} is upper bounded.

Definition 2.12. Let (X, ‖.‖p) and(Y, ‖.‖p) be cone normed spaces, andΛ : X → Y
be a linear mapping.Λ is cone bounded if the setΛ(Bc0(0)) is a cone bounded set.
Let B(X, Y ) denotes the set of all cone bounded linear mappings fromX into Y . It is
easy to see that‖Λ‖p = sup{‖Λ(x)‖p : ‖x‖p � c0} is a cone norm onB(X, Y ).

In the following, we obtain a linear mapping that is not cone bounded.

Example 2.13.Let E = R2, P = {(x, y) ∈ E : x, y ≥ 0}, c0 = (1, 1) and letX be
the set of all real- valued polynomials on interval[0, 1] and‖.‖u is supremum norm on
X, that is‖f‖u = sup{|f(x)| : x ∈ [0, 1]} for all f ∈ X. Let ‖.‖p : X → E defined
by ‖f‖p = ‖f‖uc0. It is easy to see that(X, ‖.‖p) is a cone normed space. Suppose
D : X → X defined byD(f) = f ′. ThenD is a linear mapping that is not cone
bounded.

Theorem 2.14. (The Uniform Boundness Principle) Let(X, ‖.‖p) be a cone Banach
space and(Y, ‖.‖p) be a cone normed space. SupposeA ⊆ B(X, Y ) is pointwise
bounded, that is for eachx ∈ X, the set{Tx : T ∈ A} is cone bounded. ThenA is a
cone bounded set inB(X,Y ).

Proof: Let
En = {x ∈ X : ‖Tx‖p ≤ nc0 forall T ∈ A}

for all n ∈ N. It is easy too see that the set{y ∈ Y : ‖y‖p ≤ nc0} is closed. Hence,
for each positive integern, En is a closed set. We claimX =

⋃∞
n=0 En. Too see this,

since0 � c0, choose0 < δ such that

c0 + {x ∈ E : ‖x‖ ≤ δ} ⊆ P.

If x ∈ X is given. Settingαx = sup{‖Tx‖p : T ∈ A}. Choose a positive integern
such that‖αx

n
‖ < δ. Soc0 − αx

n
∈ c0 + {x ∈ E : ‖x‖ ≤ δ} ⊆ P andαx � nc0. This

shows thatx ∈ En. SoX =
⋃∞

n=0 En. But X is a cone Banach space and haenceX

is second category. Then there is a positive integerk such thatintEk = intEk 6= ∅.
Supposey ∈ intEk. We can choose0 � r such thatBr(y) ⊆ Ek. Repeating the

above method, there exists a positive integerm such that
c0

m
� r. Now, we letT ∈ A

andx ∈ X, ‖x‖p � c0. Then‖(y +
x

m
)− y‖p = ‖ x

m
‖p �

c0

m
� r. This means that
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y + x
m
∈ Br(y). We have

‖Tx‖p = m‖T x

m
‖p = m‖T (y +

x

m
)− Ty‖p

≤ m(‖T (y +
x

m
)‖p + ‖Ty‖p)

≤ m(k + k) = 2mk.

Thus‖T‖p ≤ 2mk. In the other wordsA is a cone bounded set inB(X, Y ). �

The question arises here is whether Hahn Banach theorem and open mapping theo-
rem can be extended similar to cone normed spaces or not?
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