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CONE NORMED SPACES
M. ESHAGHI GORDJ}*, M. RAMEZANI?, H. KHODAEI®* AND H. BAGHANI*

ABSTRACT. In this paper, we introduce the cone normed spaces and cone bounded
linear mappings. Among other things, we prove the Baire category theorem and the
Banach-Steinhaus theorem in cone normed spaces.
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1. INTRODUCTION

Let &' be a Banach space aitlbe a subset of/. P is called a cone whenever

(1) P is a closed, non-empty set aftl#~ {0},

(2) ax + by € Pforall x,y € Panda,b > 0,

(3) PN (—=P) = {0}.
For a given coné® C F, we can define a partial orderirgwith respectta? by x < y
ifand only ify — z € P. We shall writex < y if z < y andz # y, while z < y will
stands fory — x € int P, whereint P denoted the interior oP. The coneP is normal
if there is a numben/ > 0 such thatfor alk,y € £

0<z<y = |z|| <Myl

The least positive number satisfying the above is called the normal const&rtLjpf

It is clear thatM > 1. In the following we always suppose thatis a real Banach
space and’ is a cone inF with int P # @ and< is a partial ordering with respect to
P.

Definition 1.1. ([1]) Let X be non-empty set. Suppose that the mappindg x X —
E satisfies:

(1)0 < d(z,y) forall z,y € X andd(z,y) = 0if and only if z = v,

(2 d(z,y) =d(y,z) forall z,y € X,

) d(z,y) <d(x,z)+d(z,y) forall z,y,z € X.
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Thend is called a cone metric o, and(X, d) is called cone metric space.

Example 1.2.LetE =R* P={(z,y) € E: 2,y >0}, X =Randd: X xX — F
defined by (z,y) = (|]z — y|, a|x—y|), wherea > 0 is a constant. TheR is a normal
cone with normal constari/ = 1 and(X, d) is a cone metric space[2].

Definition 1.3. ([1]) Let (X, d) be a cone metric space,c X and{z,} a sequence
in X. Then
(1) {x,} is said to convergent to whenever for every € FE, with 0 < ¢ there
is a positive integerV such thatd(z,,z) < c for all n > N. We denote this by
lim, .z, = x Orx, — T asn — oo.
(2) {x,} is said to be a Cauchy sequence whenever for everyE’ with 0 < ¢
there is a positive intege¥ such thati(x,,, z,,) < cforalln,m > N.
(3) (X, d) is called a complete cone metric space if every Cauchy sequence is con-
vergent.

Let us recall [1] that ifP is a normal cone, thefiz,} C X converges ta if and
only if d(z,,z) — 0 asn — oo. Furthermore{z, } C X is a Cauchy sequence if and
only if d(z, z,,) — 0asn, m — oo.

Definition 1.4. Let (X, d) be a cone metric space amdC X.
(1) A pointb € B is called an interior point o8 whenever there exists a point
0 < p, such thatB,(b) C B whereB,(b) := {y € X : d(b,y) < p}.
(2) A subsetB C X is called open if each element 8fis an interior point ofB.
The family 5 = {B.(z) : + € X,0 < e} is a sub-basis for a topology ox. We
denote this cone topology by. The topologyr. is a Hausdorff and first countable [2].

In this paper we suppose thatis a normal cone with normal constaht and fixed
Co with 0 <« Co-

2. CONE NORMED SPACES

Definition 2.1. Let X be real vector space. Suppose that the mappijhg: X — E
satisfies:

(1) ||z||, > O forall z € X and||z||, = 0ifand only ifxr =0,

(2) ||lax|l, = | ||x]|p, forallz € X anda € R,

@l +ylly < |zl + yll, for all 2,y € X.
Then||.||, is called a cone norm oX and(.X, ||.||,,) is called a cone normed space.

It is easy to see that every normed space is a cone normed space by puttng,
P :=[0.00).
Example 2.2.Let £ = [}, P = {{z,,} € F : x, > 0, for all n} and(X, ||.||) be a

normed space anf||, : X — E defined by||z||, = {”2?‘/’—"”}. ThenP is a normal cone
with constant normad/ = 1 and(X, ||.||,) is a cone normed space.
Let (X, |.||,) be a cone normed space. Fét,y) = ||z — yl|,. Itis easy to see that

(X, d) is a cone metric spacé.is called getting cone metric of cone nofim,,.

Definition 2.3. We say that the cone normed spdc¢g ||.||,,) is a cone Banach space
when getting cone metric df ||, is complete.
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Lemma 2.4. Let (X, ||.||,) and(Y, ||.||,) be cone normed spaces, andJébe a linear
map fromX into Y. If T has any one of the five following properties, it has all five of
them:

(a) (continuity at a point) For some fixed, € X we have: Giver) < c there is a
0 < tsuch thall|Tx — Txo||, < c whenevel|z — x|, < t.

(b) (continuity at zero) Fof < c there is a0 < ¢ such that||Tz|, < ¢ whenever
r € X and|z||, < t.

(c) (continuity at every point of x) For any € X we have: Giver) < c there is a
0 < t such that| Tz — Ty||, < c whenever € X and||y — z|, < t.

(d) (uniform continuity) Giver) < ¢ there is a0 < ¢ such that|7z — Ty||, < ¢
whenever, y € X and ||z — yl|, < t.

(e) (sequential continuity) Given any sequefeg} C X which is convergent to a
pointz, € X, the sequencél'z, } C Y is convergent to the poirfz, € Y.

Proof: First assume that has property (a). So for somg € X and any0 < c we
can choos® < t such that|Tx — T'z||, < c whenevel|z — x|, < t. Then for any
w € X with ||w||, < twe have||T (w+xz)—Tz|| < cbecausd (w+zy)—zo||, < t.
But T is linear this says thatT'w||, < ¢ wheneveljw||, < ¢t and we have shown that
(a) implies (b).

Now suppose thdf' has property (b), let € X and0 < ¢ be given. Thereisa < t
such that|Tw|, < ¢ whenever||w||, < t. We have||T(y — x)||, < ¢ whenever
|y — z||, < t; just usey — = in place ofw. Again recalling thaf” is linear we see that
(b) implies (c). Clearly (c) implies (a). Thus (a), (b) and (c) are equivalent.

Let us show that (b) implies (d). Givén< ¢ we may choose < t so that||w||, < ¢
implies || Tw|, < ¢. Now if 2,y € X and|z — y||, < t then||T(z — v)|, < c.
SinceT is linear (b) implies (d) and clearly (d) implies (b). Thus (a) through (d) are
equivalent.

We will complete the proof by showing that (b) and (e) are equivalent. First suppose
that 7" has property (b) and lét < ¢ be given. Then we have chooBe< t that
|Twl||, < ¢ whenever||wl||, < t. Now suppos€z,} C X convergesr,. Then
we can find positive integel such that||z,, — zo||, < ¢t whenevem > N. Thus

| T (z,, — x0)]||, < c Whenevem > N. Clearly this says thatT'z,, } converges tdz.
Now assume (e) and negation of (b). So we are supposing that thefe<s asuch
that for any0 < ¢ we can findw; € X with ||w;||, < t and||Tw;||, « c. Thus for
this c we can find{w,} € X such that|w, |, < 5= and||Tw,|, « c for all n. But
{w,} is converges t® because| ||jw,||,|| < *2 — 0asn — co. By (e) {Tw,}
must converge t@'0 = 0 and this impossible. O

Proposition 2.5. Let (X, ||.||,) be a cone normed space, and: X, 0 < ¢. Then
y € Bo(r) <= ({2} C Bo(x); 2z, —y).

Proof: Lety € B.(z). Then for any positive integet, z, € B (y) N B.(r) # 2.
We obtainz,, — y asn — oco. Now we suppose thdt:, } € B.(z) is a sequence that
z, — y asn — oo. Let W be a open set such thHt consists ofy. There is0 < p
such thatB,(y) € W. We choose the positive integersuch that||z, — y|/, < p.
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Hence,, € B,(y) andIW N B.(x) # @. Soy € B.(x). O

We need the following lemma to prove the Baire category theorem.

Lemma 2.6.Let (X, [|.[|,) be a cone normed spacec X and0 < c. ThenB:(z) C
B.(z).

Proof: Lety € B:(z). Then there is a sequen¢e,} C B:(z) such that,, — y as
n — oo. We can choose the positive integesuch that|z, — y||, < 5. We obtain
thatl|z —yll, < & — zully + 120 — yll, < &+ = c. Lettinga = (& — 2|, + |2 -
yll,) — ll= — y|,, by attention that actios- is continuous inF, we have

c—|lz—yll, = (c= (|l — zullp + |20 — ¥llp) + @ € a+intP = int(a+ P) C intP.
So||z — y|l, < cand thug € B.(z). O

Theorem 2.7. (Baire Category Theorem) L€K, ||.||,) be a cone Banach space. Then
every countable intersection of dense and open sets is dense.

Proof: Let{A,,} C X be asequence of dense and open sets. Suppesg, andiV is
aopen set such thélt' consists ofc. Then there i® < r such thatB,(x) C W. Since
A, is dense inX, we obtainz; € A; N B,(z) # @. But A; N B,.(z) is open and hence
there exist$) < 7’ such thatB,.(z;) C A; N B,(z). We can choose the positive real
numberk; such that:; < min{3, m}. By settingr; = k7’1, we haver; < % and
B,,(z1) € B, (21). SinceA, is dense inX, we havez, € A; N B, (21) # @, but this
set is open. Thus there exists< 1’, such thatB,, (z,) € A; N B, (21). By choosing
0 < ky < m’m{g, 22Hr' H} we havers = kor's < ” and henceBT2(22) C By (22).
Since A; is dense inX then letz; € A3 N BTQ(ZQ). Since A3 is open, there is a
0 < r'3 such thatB,, (z3) € Az N B,,(22). We can choose the real numiiex k3
for which k3 < min{%,ﬁ}. Settingrs = ksr's, we conclude that; < % and
B,,(z3) € B, (23). Repeating the above argument we obtain

BT3(23) C BTQ(ZQ) C BTl (Zl)'
M

We claimr,, — 0, because,, = k,r,, < 2n| AT SOl < A ”HrnH =5 —0
asn — oo. Moreover , we can show thét,,} is Cauchy sequence . To see this,
lete > 0 is given, there is a positive integéf such thatV/||r,,|| < e for all n > N.
So||||zm — znllpll < M||rn|] < eforallm > n > N. This means thafz, } is Cauchy
sequence. Sinc is cone Banach space, therezis X such thatlim z, = 2. For

n—oo

any positive integen, if n > N thenz, € B, (zy), S0z € B, (zx) and hence

z€ () Bry(an) € () Av[)Br(z) € () Av[ W

N=1

This says thaf)y_, Ay is dense inX. O

Corollary 2.8. Every cone Banach space is second category.
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Definition 2.9. A subsetd C F is upper bounded, if there exisis< ¢ such thatt < ¢
forall a € A, tis an upper bound fad. We say that” has supremum property, if for
every upper bounded sdtin P least upper bound exists A, we show this element
to supA.

Example 2.10.Let E = R? , P = {(x,y) € E : z,y > 0}. P is a normal cone
with normal constanfi/ = 1, and P has supremum property. BecausedifC P is

upper bounded set, thempA = (sup.cami(2), sup.cam(z)). Wherer; andr, are

projections on first and second components, respectively.

From now on, we suppose th&athas supremum property.

Definition 2.11. Let (X, ||.||,) be a cone normed space. A subsein X is cone
bounded, if{||z||,; z € A} is upper bounded.

Definition 2.12. Let (X, ||.||,) and(Y, ||.||,) be cone normed spaces, ahd X — Y
be a linear mapping\ is cone bounded if the sét( B, (0)) is a cone bounded set.
Let B(X,Y') denotes the set of all cone bounded linear mappings fxoimto Y. It is
easy to see that\ ||, = sup{||A(z)|l, : [|z||, < ¢} is @ cone norm o (X,Y).

In the following, we obtain a linear mapping that is not cone bounded.

Example 2.13.Let E = R, P = {(z,y) € E : 2,y > 0}, ¢o = (1,1) and letX be
the set of all real- valued polynomials on inter{f@l1] and||.||,, is supremum norm on
X, thatis||f|l. = sup{|f(z)| : z € [0,1]} forall f € X. Let|.||, : X — E defined

by || fll, = || flluco- Itis easy to see thdtX, ||.||,) is a cone normed space. Suppose
D : X — X defined byD(f) = f’. ThenD is a linear mapping that is not cone
bounded.

Theorem 2.14.(The Uniform Boundness Principle) LEX, ||.||,) be a cone Banach
space andY, ||.||,) be a cone normed space. Suppose_ B(X,Y) is pointwise
bounded, that is for each € X, the sef{ Tz : T € A} is cone bounded. Thefiis a
cone bounded setiB(X,Y).

Proof: Let

E,={re X ||Tz|, <nc forall T € A}
forall n € N. It is easy too see thatthe st € Y : ||y||, < nco} is closed. Hence,
for each positive integet, E,, is a closed set. We claidt = | J,~ , E,,. Too see this,
sincel < ¢y, choosd) < § such that

cot+{reFE |z <o} CP

If © € X is given. Settingv, = sup{||Tz||, : T € A}. Choose a positive integer
such that|%=|| < 6. Socy — 2= € ¢ +{z € I : ||z|| <} € P anda, < nc. This
shows that: € E,. SoX = |J°, E,. But X is a cone Banach space and haefice
is second category. Then there is a positive intégeuch thaintE), = intE), # @.
Supposey € intE;. We can choosé < r such thatB,(y) C E,. Repeating the

above method, there exists a positive integesuch that™ < r. Now, we letl' € A
m

T T C .
andz € X, ||z]|, < ¢. Then||(y + E) —yll, = Hallp < EO < r. This means that



12 M. ESHAGHI GORDJI, M. RAMEZANI, H. KHODAEI AND H. BAGHANI
y+ = € B,.(y). We have
T x
ITall, = milT-l, = m|T(y + ) = Tyl

i
< m([T(y + o + 1 Tyll,)
<m(k+k)=2mk.
Thus||T||, < 2mk. In the other words! is a cone bounded set (X, Y). O

The question arises here is whether Hahn Banach theorem and open mapping theo-
rem can be extended similar to cone normed spaces or not?
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