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Abstract. The object of wreath product of permutation groups is
defined the actions on cartesian product of two sets. In this paper
we consider S (Γ) and S (∆) be permutation groups on Γ and ∆

respectively, and S (Γ)∆ be the set of all maps of ∆ into the permu-

tations group S (Γ). That is S (Γ)∆ = {f : ∆ −→ S (Γ)}. S (Γ)∆

is a group with respect to the multiplication defined by for all δ in
∆ by (f1f2) (δ) = f1 (δ) f2 (δ). After that, we introduce the notion

of S (∆) actions on S (Γ)∆ : S (∆)× S (Γ)∆ −→ S (Γ)∆ , (s, f) 7−→
s · f = fs, where fs (δ) =

(
f ◦ s−1

)
(δ) =

(
fs−1

)
(δ) for all δ ∈ ∆.

Finaly, we give the wreath product W of S (Γ) by S (∆), and the
action of W on Γ×∆
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1. Introduction

The product of two groups can be generalized from semi-direct products
even further to wrath products. In Mathematics, the wreath product
in group theory is specialized product of two groups. Wreath product
is an important tool in the classification of permutation groups and
also provides a way of constructing interesting examples of groups. The
wreath product and its generalisations play an important role in the
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algebraic theory. For example, the can be used to prove the theorem
on the decomposition of every finite semi-group automation into a step
wise combination of flip-flope and simple group automata.

The remainder of this paper is organized as follows. In Section 2,
some mathematical preliminaries. In Section 3, we give the proposition
in the concept of wreath product of groups.In Section 3, we introduce
the wreat product of permutation groups and the notion of group actions
on a set and its concepts like the orbit and the stabilizer. Finally, we
draw our conclusions in Section 4.

2. Preliminaries

Let S (X) the set of one to one and onto functions on the n-element
set X, with multiplication to composition of functions. The elements of
S (X) are called permutations and S (X) is called the symmetric group
on X.
A group homomorphism is a well-defined map φ : G −→ H between two
groups G and H which preserves the multiplicative structure. In other
words, φ (xy) = φ (x)φ (y) for all x, y ∈ G. A bijective homomorphisme
is called an isomorphism. When there is an isomorphism between two
groups G and H, we say G and H are isomorphic and we write G ∼= H.
Let G and H be group and φ : G −→ H be a homomorphism. Then
N = ker φ is a normal subgroup of G and the induced map φ : G/N −→
Im (φ) ≤ H,Ng 7−→ φ (g) is an isomorphism between the quotient group
G/N and the image Im (φ).
Let G be a group and X be a non empty set. We say that G acts on
the set X if to each g in G and each x in X, there corresponds a unique
point gx in X such that, for all x in X and g1, g2 in G we have that

(g1g2) .x = g1. (g2.x) and 1Gx = x.

To be explicit, we say under the condition that G acts on the set X on
the left. The stabilizer of an element x ∈ X under the action of G is
defined by :

Gx = {g ∈ G : g.x = x} .
The kernel of an action G×X −→ X, (g, x) 7−→ g.x is given by:

ker = {g ∈ G : g.x = x for all x ∈ X} .

We define the orbit containing x ∈ X to be G.x = {g.x, g ∈ G}.
LetG be a group acting on a setX. Then, for all x ∈ X, |Gx| |G.x| = |G|.
Let G and K be two groups. We say that G acts on K as a group if to
each k in K there corresponds a unique element kg in K such that for
g1, g2, g in G and k1, k2, k in K we have that

(kg1)g2 = kg1g2 , k1G = k and (k1k2)
g = kg1k

g
2 .
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Given any groups G and H and a morphism θ : G −→ Aut (H), denote
the automorphism θ (g) by θg, then G × H is a group with the mul-
tiplication (g1, h1) · (g2, h2) = (g1g2, h1θg1 (h2)), where g1, g2 ∈ G and
h1, h2 ∈ H.
The group (G×H, ·) is called the semi-direct product of G and H with
respect to θ.

3. The wreath product of groups

In this section, we introduce the concept of wreath product of groups.

Theorem 3.1. Let G and H be two groups. Let HG be the set of all
functions defined on G with values in H.

(1) The set HG forms a group such that for any φ,ψ ∈ HG, let
φψ ∈ HG in HG be defined for all x ∈ G by:

(φψ) (x) = φ (x)ψ (x) .

(2) The group G acts on HGas a group in the following was:
if a ∈ G,φ ∈ HG, then

(a · φ) (x) = φa (x) = φ
(
xa−1

)
for x ∈ G.

(3) The set of all pairs (a, φ) where a ∈ G,φ ∈ HG, with multipli-
cations operation given by:

(a, φ) (b, ψ) =
(
ab, φbψ

)
where a, b ∈ G and φ,ψ ∈ HG

The resulting groupe W is called the wreath product of G and H, and
is denoted by GWrH.

Proof.

(1) First we will prove that the set HG froms a group shch that for
any φ,ψ ∈ HG, let φψ ∈ HG in HG ,
be defined for all x ∈ G by (φψ) (x) = φ (x)ψ (x).
(i) HG is non-empty and is closed with respect to multiplica-

tion. If φ,ψ ∈ HG, then φ (x) , ψ (x) ∈ H, for all x ∈ G.
Hence φ (x)ψ (x) ∈ H. This implies that (φψ) (x) ∈ H and
so φψ ∈ HG.

(ii) Since multuplication in H is associative, so also is the mul-
tuplication in HG.

(iii) The identity element in HG is the map e : G −→ H given
by: e(x) = 1H , for all x ∈ G, where 1H is the identity
element of H.

(iv) For every element φ ∈ HG is defined for all x ∈ G by

φ−1 (x) = (φ (x))−1. Thus HG is a group with respect to
the multiplication defined above.
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(2) Second we will prove that G acts on HG as group, assume that
G acts on HG as follows G × HG −→ HG; (a, φ) −→ φa such
that for x ∈ G we have φa (x) = φ

(
xa−1

)
, a ∈ G,φ ∈ HG. Take

φ,ψ ∈ HG and a, b ∈ G, then

(i) (φa)b (x) = φa
(
xb−1

)
= φ

((
xb−1

)
a−1
)
= φ

(
x (ab)−1

)
=

φab (x) .
(ii) φ1G (x) = φ

(
x1−1

G

)
= φ (x) .

(iii) (φψ)a (x) = φψ
(
xa−1

)
= φ

(
xa−1

)
ψ
(
xa−1

)
= φa (x)ψa (x) .

(3) Now we can construct the wreath product W of G and H, that
is, the semidirect product of G and HG, then we will prove that
G×HG is a group with multiplication (a, φ) (b, ψ) =

(
ab, φbψ

)
.

Then
(i) Closure property follows from the definition of multiplication.
(ii) Take φ,ψ, η ∈ HG and a, b, c ∈ G, then

((a, φ) (b, ψ)) (d, η) =
(
ab, φbψ

)
(d, η)

=

(
(ab) d,

(
φbψ

)d
η

)
.

Also we have:

(a, φ) ((b, ψ) (d, η)) = (a, φ)
(
bd, ψdη

)
=
(
a (bd) , φbdψdη

)
=
(
(ab) d, φbdψdη

)
.

Now if x ∈ G, then:(
φbψ

)d
η (x) =

(
φbψ

)d
(x) η (x)

=
(
φb
)d

(x)ψd (x) η (x)

= φb
(
xd−1

)
ψ
(
xd−1

)
η (x)

= φ
(
xd−1b−1

)
ψ
(
xd−1

)
η (x)

= φ
(
x (bd)−1

)
ψ
(
xd−1

)
η (x)

= φbd (x)ψd (x) η (x) .

And

φbdψdη (x) = φbd (x)ψd (x) η (x) .

And thus we have established the associativity of the multipli-
cation on the set G×HG.
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(iii) We know that for every φ ∈ HG, φ1G = φ, now for every g ∈ G,
the map φ −→ φg is an automorphism of HG. Also if e is the
identity element in HG, then eg = e. We have:

(a, φ) (1G, e) =
(
a1G, φ

1Ge
)

= (a, φe)

= (a, φ) .

Also

(1G, e) (a, φ) = (1Ga, e
aφ)

= (a, eφ)

= (a, φ) .

Thus identity element exists.
(iv) We have:

(a, φ)

(
a−1,

(
φ−1

)(a)−1
)

=

(
a−1,

(
φ−1

)(a)−1
)
(a, φ)

= (1G, e) .

Thus the inverse element of (a, φ) is
(
a−1,

(
φ−1

)(a)−1)
.

Hence G × HG is a group with respect to the multiplication defined
above. �

In following proposition, we show that the group HG is a normal
subgroup of W and G is a subgroup of W .

Proposition 3.2.

(1) If G and HG are finite groups, then the wreath product W is a

finite group of order |W | = |G| . |H||G|.
(2) The group HG is a normal subgroup of W and G is a subgroup

of W .
(3) G ∩HG = (1G, e).
(4) GWrH

G = G×HG.

Proof.

(1) It is clear.
(2) We have injective maps Φ : HG −→ G × HG given by f 7−→

(1G, f), and Ψ : G −→ G×HG given by a 7−→ (a, e).
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And both are homomorphisms since

Φ (f1f2) = (1G, f1f2)

=
(
1G1G, f

(1G)
1 f2

)
= (1G, f1)Wr (1G, f2)

= Φ (f1)WrΦ(f2) .

And
Ψ (ab) = (ab, e)

=
(
ab, ebe

)
= (a, e)Wr (b, e)

= Ψ (a)WrΨ(b) .

Then HG ∼= Im (Φ) ≤ G × HG. And G ∼= Im (Ψ) ≤ G × HG.
These injective homomorphisms let us think of HG and G as
subgroups of G×HG.
Finally we must show that HG is normal in G×HG, follow from
the calculation,

(a, e) (1G, f) (a, e)
−1 = (a, e) (1G, f)

(
a−1,

(
e−1
)a−1)

= (a, e) (1G, f)
(
a−1, e

)
=
(
a1G, e

1Gf
) (
a−1, e

)
=
(
aa−1, f

)
= (1G, f) .

(3) It is clear that G ∩HG = (1G, e).
(4) We have GWrH

G = G×HG, since

(a, e)Wr (1G, f) =
(
a1G, e

1Gf
)
= (a, f) ,

for all (a, f) ∈ G×HG.

�

4. Wreath product of permutation groups

This section is issentially an upgrand of the results of Ibrahim A. A
and Audu M. S (see [2]) on wreat product of permutation groups. After
that, we introduce the notion of group actions on a set and its concepts
like the orbit and the stabilizer.

Theorem 4.1. Let S (Γ) and S (∆) be permutation groups on Γ and ∆

respectively. Let S (Γ)∆ be the set of all maps of ∆ into the permutations

group S (Γ). That is S (Γ)∆ = {f : ∆ −→ S (Γ)}. For any f1, f2 in
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S (Γ)∆, let f1f2 in S (Γ)∆ be defined for all δ in ∆ by (f1f2) (δ) =

f1 (δ) f2 (δ). With respect to this operation of multiplication, S (Γ)∆

acquires the structure of a group.

Proof.

(i) S (Γ)∆ is non-empty and is cosed with respect to multiplication.

If f1, f2 ∈ S (Γ)∆, then f1 (δ) , f2 (δ) ∈ S (Γ).
Hence f1 (δ) f2 (δ) ∈ S (Γ). This implies that (f1f2) (δ) ∈ S (Γ)

and so f1f2 ∈ S (Γ)∆.
(ii) Since multiplication is associative so also is the multiplication in

S (Γ)∆.

(iii) The identity element in S (Γ)∆ is the map e : ∆ −→ S (Γ) given
by:

e (δ) = idΓ for all δ ∈ ∆

where idΓ is the identity element of S (Γ).

(iv) Every element f ∈ S (Γ)∆ is defined for all δ ∈ ∆ by:

f−1(δ) = (f (δ))−1 .

Thus S (Γ)∆ is a group with respect to the multiplication defined above.
We denote this group by P . �

Proposition 4.2. Assume that S (∆) acts on P as follows:

S (∆)× S (Γ)∆ −→ S (Γ)∆

(s, f) 7−→ s · f = fs

where f s (δ) =
(
f ◦ s−1

)
(δ) =

(
fs−1

)
(δ) for all δ ∈ ∆. Then S (∆)

acts on P as a group.

Proof. Take, f, f1, f2 ∈ S (Γ)∆ and s, s1, s2 ∈ S (∆) then

(i) ((s1s2) · f) (δ) = f (s1s2) (δ) =
(
f (s1s2)

−1
)
(δ) =

(
f
(
s−1
2 s−1

1

))
(δ)

=
(
fs−1

2

) (
s−1
1 (δ)

)
= (s1 · (s2 · f)) (δ) .

(ii) f id∆ (δ) =
(
fid−1

∆

)
(δ) = (fid∆) (δ) = (f) (δ).

(iii) (f1f2)
s (δ) =

(
f1f2 ◦ s−1

)
(δ) = f1f2

(
s−1 (δ)

)
= f1

(
s−1 (δ)

)
f2
(
s−1 (δ)

)
= fs1 (δ) f

s
2 (δ).

�

Proposition 4.3. The set of all ordered (f, s) with f ∈ S (Γ)∆ and
s ∈ S (∆) acquires the structure of a group when we define for all f1, f2 ∈
S (Γ)∆ and s1, s2 ∈ S (∆)

(f1, s1) (f2, s2) =

(
f1f

s−1
1

2 , s1s2

)
.
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Thus S (Γ)∆×S (∆) is a group with respect to the multiplication defined
above. We denote this group by W . The resulting groupe W is called the
wreath product of S (Γ) by S (∆), and is denoted by W = S (Γ)WrS (∆).

Proof.

(i) Closure property follows from the definition of multiplication.

(ii) Take f1, f2, f3 ∈ S (Γ)∆ and s1, s2, s3 ∈ S (∆). Then,

[(f1, s1) (f2, s2)] (f3, s3) =

(
f1f

s−1
1

2 , s1s2

)
(f3, s3)

=

(
f1f

s−1
1

2 f
(s1s2)

−1

3 , s1s2s3

)
=

(
f1f

s−1
1

2 f
s−1
2 s−1

1
3 , s1s2s3

)
.

Also, we have in the same manner that,

(f1, s1) [(f2, s2) (f3, s3)] = (f1, s1)

(
f2f

s−1
2

3 , s2s3

)
=

(
f1

(
f2f

s−1
2

3

)s−1
1

, s1s2s3

)

=

(
f1f

s−1
1

2 f
s−1
2 s−1

1
3 , s1s2s3

)
.

Hence multiplication is associative.
(iii) We know that for every f ∈ S (Γ)∆, f id∆ = f . Now for every

s ∈ S (∆), the map f 7−→ f s is an automorphism of S (Γ)∆.

Also if e is the identity element in S (Γ)∆, then es = e. Also,(
f−1

)s
= (fs)−1. Now (f, s) (e, id∆) =

(
fes

−1
, s ◦ id∆

)
= (f, s).

Also, using the reverse order, we have that,

(e, id∆) (f, s) =
(
ef (id∆)−1

, id∆ ◦ s
)

= (f, s) .

Thus identity element exists.
(iv) (f, s)

((
f−1

)s
, s−1

)
=
((
f−1

)s
, s−1

)
(f, s) = (e, id∆).

�
In following proposition, we show that the group S (Γ)∆ is a normal

subgroup of W and S (∆) is a subgroup of W .

Proposition 4.4.

(1) If S (∆) and S (Γ) are finite groups, then the wreath product W

is a finite group of order |W | = |S (Γ)||∆| . |S (∆)|.
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(2) The group S (Γ)∆ is a normal subgroup of W and S (∆) is a
subgroup of W .

(3) S (Γ)∆ ∩ S (∆) = (e, id∆).

(4) S (Γ)∆WrS (∆) = S (Γ)∆ × S (∆).
(5) The action of W on Γ×∆ is given by:

(f, s) (γ, δ) = (f (δ) (γ) , s (δ))

for all (f, s) ∈ S (Γ)∆ × S (∆) and (γ, δ) ∈ Γ×∆.

Proof.

(1) It is clear.
(2) We have injective maps:

Φ : S (Γ)∆ −→ S (Γ)∆ × S (∆)
f 7−→ (f, id∆)

, and

Ψ : S (∆) −→ S (Γ)∆ × S (∆)
s 7−→ (e, s)

And both are homomorphisms since

Φ (f1f2) = (f1f2, id∆)

=
(
f1f

(id∆)−1

2 , id∆ ◦ id∆
)

= (f1, id∆)Wr (f2, id∆)

= Φ (f1)WrΦ(f2) .

And
Ψ (s1 ◦ s2) = (e, s1 ◦ s2)

=
(
ee(s1)

−1

, s1 ◦ s2
)

= (e, s1)Wr (e, s2)

= Ψ (s1)WrΨ(s2) .

Then S (Γ)∆ ∼= Im (Φ) ≤ S (Γ)∆×S (∆). And S (∆) ∼= Im (Ψ) ≤
S (Γ)∆ × S (∆). These injective homomorphisms let us think of

S (Γ)∆ and S (∆) as subgroups of S (Γ)∆ × S (∆).

Finally we must show that S (Γ)∆ is normal in S (Γ)∆ × S (∆),
follow from the calculation,

(e, s) (f, id∆) (e, s)
−1 = (e, s) (f, id∆)

((
e−1
)s
, s−1

)
= (e, s) (f, id∆)

(
e, s−1

)
=
(
ef (s)

−1

, s ◦ id∆
) (
e, s−1

)
=
(
f (s)

−1

, id∆

)
.
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(3) It is clear that S (Γ)∆ ∩ S (∆) = (e, id∆).

(4) We have S (Γ)∆WrS (∆) = S (Γ)∆ × S (∆) since

(f, id∆)Wr (e, s) =
(
fe(id∆)−1

, id∆ ◦ s
)
= (f, s)

for all (f, s) ∈ S (Γ)∆ × S (∆)

(5) Take, (f1, s1) , (f2, s2) ∈ S (Γ)∆×S (∆) and (γ, δ) ∈ Γ×∆, then
(i) (e, id∆) (γ, δ) = (e (δ) (γ) , id∆ (δ)) = (idΓ (γ) , δ) = (γ, δ).

(ii) [(f1, s1) (f2, s2)] (γ, δ) =

(
f1f

s−1
1

2 , s1s2

)
(γ, δ)

=

(
f1f

s−1
1

2 (δ) (γ) , s1s2 (δ)

)
=

((
f1 (δ) f

s−1
1

2 (δ)

)
(γ) , s1s2 (δ)

)
= ((f1 (δ) (f2 ◦ s1) (δ)) (γ) , s1s2 (δ)).
Also, we have in the same manner that,
(f1, s1) [(f2, s2) (γ, δ)] = (f1, s1) (f2 (δ) (γ) , s2 (δ))

= (f1 (s2 (δ)) (f2 (δ) (γ)) , s1s2 (δ)) .

�
Proposition 4.5. Under the action of W on Γ × ∆, the stabilizer of
any point (γ, δ) in Γ×∆ denoted by W(γ,δ) is given by:

W(γ,δ) = S (Γ)∆ (δ)γ × S (∆)δ .

Where S (Γ)∆ (δ)γ is the set of all f (δ) that stabilize γ, and S (∆)δ is

the stabilizer of δ under the action of S (∆) on ∆.

Proof. We have:

W(γ,δ) =
{
(f, s) ∈ S (Γ)∆ × S (∆) / (f, s) (γ, δ) = (γ, δ)

}
=
{
(f, s) ∈ S (Γ)∆ × S (∆) / (f (δ) γ, s (δ)) = (γ, δ)

}
=
{
(f, s) ∈ S (Γ)∆ × S (∆) /f (δ) γ = γ, s (δ) = δ

}
= S (Γ)∆ (δ)γ × S (∆)δ .

�
Example 4.6. Consider the permutation groups S (Γ) = {(1) , (12)}
and S (∆) = {(1) , (12) , (13) , (23) , (123) , (132)} on the sets Γ = {1, 2}
and ∆ = {1, 2, 3} respectively. Let S (Γ)∆ = {f : ∆ −→ S (Γ)}, then
|S (Γ)||∆| = 23 = 8. The mappings are follows:
f1 : 1 7−→ (1) , 2 7−→ (1) , 3 7−→ (1)
f2 : 1 7−→ (1) , 2 7−→ (1) , 3 7−→ (12)
f3 : 1 7−→ (1) , 2 7−→ (12) , 3 7−→ (1)
f4 : 1 7−→ (1) , 2 7−→ (12) , 3 7−→ (12)
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f5 : 1 7−→ (12) , 2 7−→ (1) , 3 7−→ (1)
f6 : 1 7−→ (12) , 2 7−→ (1) , 3 7−→ (12)
f7 : 1 7−→ (12) , 2 7−→ (12) , 3 7−→ (1)
f8 : 1 7−→ (12) , 2 7−→ (12) , 3 7−→ (12).

We can easily verify that S (Γ)∆ is a group with respect to the operation

(φψ) (δ) = (φ) (δ) (ψ) (δ) where δ ∈ ∆.

We have:

S (Γ)∆ × S (∆) =
{
(f, s) /f ∈ S (Γ)∆ , s ∈ S (∆)

}
= {(fi, (1)) , (fi, (12)) , (fi, (12)) , (fi, (23)) ,

(fi, (123)) , (fi, (132)) , 1 ≤ i ≤ 8}.

And
∣∣∣S (Γ)∆ × S (∆)

∣∣∣ = ∣∣∣S (Γ)∆
∣∣∣ . |S (∆)| = 8.6 = 48.

S (Γ)∆ × S (∆) is a group with respect to the operation

(φ, s1) (ψ, s2) =
(
φψ(s1)

−1

, s1s2

)
.

We have Γ×∆ = {(1, 1) , (1, 2) , (1, 3) , (2, 1) , (2, 2) , (2, 3)}.
The stabilizer of (1, 1) denoted by:

W(1,1) = S (Γ)∆ (1)1 × S (∆)1
= {f1, f2, f3, f4} × {(1) , (23)}
= {(f1, (1)) , (f2, (1)) , (f3, (1)) , (f4, (1)) , (f1, (23)) , (f2, (23)) ,

(f3, (23)) , (f4, (23))}.

Then W(1,1) is a subgroup of S (Γ)∆ × S (∆) of order 8.
Also, we have is the same manner that,
W(1,2) = S (Γ)∆ (2)1 × S (∆)2

= {f1, f2, f5, f6} × {(1) , (13)}
= {(f1, (1)) , (f2, (1)) , (f5, (1)) , (f6, (1)) , (f1, (13)) , (f2, (13)) ,

(f5, (13)) , (f6, (13))}
Then W(1,2) is a subgroup of S (Γ)∆ × S (∆) of order 8.

W(1,3) = S (Γ)∆ (3)1 × S (∆)3
= {f1, f3, f5, f7} × {(1) , (12)}
= {(f1, (1)) , (f3, (1)) , (f5, (1)) , (f7, (1)) , (f1, (12)) , (f3, (12)) ,

(f5, (12)) , (f7, (12))}.
Then W(1,3) is a subgroup of S (Γ)∆ × S (∆) of order 8.
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W(2,1) = S (Γ)∆ (1)2 × S (∆)1
= {f1, f2, f3, f4} × {(1) , (23)}
= {(f1, (1)) , (f2, (1)) , (f3, (1)) , (f4, (1)) , (f1, (23)) , (f2, (23)) ,

(f3, (23)) , (f4, (23))}.
Then W(1,3) is a subgroup of S (Γ)∆ × S (∆) of order 8.

W(2,2) = S (Γ)∆ (2)2 × S (∆)2
= {f1, f2, f5, f6} × {(1) , (13)}
= {(f1, (1)) , (f2, (1)) , (f5, (1)) , (f6, (1)) , (f1, (13)) , (f2, (13)) ,

(f5, (13)) , (f6, (13))}.
Then W(2,2) is a subgroup of S (Γ)∆ × S (∆) of order 8.

W(2,3) = S (Γ)∆ (3)2 × S (∆)3
= {f1, f3, f5, f7} × {(1) , (12)}
= {(f1, (1)) , (f3, (1)) , (f5, (1)) , (f7, (1)) , (f1, (12)) , (f3, (12)) ,

(f5, (12)) , (f7, (12))}.
Then W(2,3) is a subgroup of S (Γ)∆ × S (∆) of order 8.
Finally, we have:

W(1,1) =W(2,1),W(1,2) =W(2,2),W(1,3) =W(2,3).

For (γ, δ) ∈ Γ×∆, we have
∣∣W(γ,δ)

∣∣ . |W (γ, δ)| = |W |, then

|W (γ, δ)| = |W |∣∣W(γ,δ)

∣∣ = 48

8
= 6.

In this example, we have:
(f1, (1)) (1, 1) = (f2, (1)) (1, 1) = (f3, (1)) (1, 1) = (f4, (1)) (1, 1) = (1, 1)
(f1, (12)) (1, 1) = (f2, (12)) (1, 1) = (f3, (12)) (1, 1) = (f4, (12)) (1, 1)

= (1, 2)
(f1, (13)) (1, 1) = (f2, (13)) (1, 1) = (f3, (13)) (1, 1) = (f4, (13)) (1, 1)

= (1, 1)
(f1, (23)) (1, 1) = (f2, (23)) (1, 1) = (f3, (23)) (1, 1) = (f4, (23)) (1, 1)

= (1, 1)
(f1, (123)) (1, 1) = (f2, (123)) (1, 1) = (f3, (123)) (1, 1) = (f4, (123)) (1, 1)

= (1, 2)
(f1, (132)) (1, 1) = (f2, (132)) (1, 1) = (f3, (132)) (1, 1) = (f4, (132)) (1, 1)

= (1, 3)
(f5, (1)) (1, 1) = (f6, (1)) (1, 1) = (f7, (1)) (1, 1) = (f8, (1)) (1, 1)

= (2, 1)
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(f5, (12)) (1, 1) = (f6, (12)) (1, 1) = (f7, (12)) (1, 1) = (f8, (12)) (1, 1)

= (2, 2)
(f5, (13)) (1, 1) = (f6, (13)) (1, 1) = (f7, (13)) (1, 1) = (f8, (13)) (1, 1)

= (2, 3)
(f5, (23)) (1, 1) = (f6, (23)) (1, 1) = (f7, (23)) (1, 1) = (f8, (23)) (1, 1)

= (2, 1)
(f5, (123)) (1, 1) = (f6, (123)) (1, 1) = (f7, (123)) (1, 1) = (f8, (123)) (1, 1)

= (2, 2)
(f5, (132)) (1, 1) = (f6, (132)) (1, 1) = (f7, (132)) (1, 1) = (f8, (132)) (1, 1)

= (2, 3)
Then the orbit of (1, 1) is

{(1, 1) , (1, 2) , (1, 3) , (2, 1) , (2, 2) , (2, 3)} = Γ×∆.

5. Conclusion

In this paper, we present some propositions on the wreath product of
groups. And we give some examples.
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