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Abstract. Our aim in this paper is to investigate some ge-
ometrical properties of Berger spheres i.e., homogeneous Ricci
solitons and harmonicity properties of invariant vector fields.
We determine all vector fields, which are critical points for
the energy functional restricted to vector fields of the same
length. We also see that do not exist any vector fields defining har-
monic map, and the energy of critical points is explicitly calculated.
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1. Introduction

In Riemannian geometry, a Berger sphere is a standard 3-sphere with
Riemannian metric from a one-parameter family, which can be obtained
from the standard metric by shrinking along fibers of a Hopf fibration.
These spaces, found by M. Berger [6] in his classification of all sim-
ply connected normal homogeneous Riemannian manifolds of positive
sectional curvature, have not constant curvature, and their metrics are
obtained from the round metric on S3 by deforming it along the fibers
of the Hopf fibration S3 → S2 by ϵ. In [11], the homogeneous Riemann-
ian structures on the 3-dimensional Berger spheres, their corresponding
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reductive decompositions, and the associated groups of isometries have
been obtained. These spaces are of great interest in Riemannian geom-
etry and provide excellent examples; for instance, they served as coun-
terexamples to a conjecture of Klingenberg about closed geodesics and
to conjectures on the first eigenvalue of the Laplacian on spheres ([5]).
The Berger spheres S3

ϵ are homogeneous Riemannian spaces diffeomor-
phic to the 3- dimensional sphere. The metrics so constructed are known
as Berger metrics; they consist of a 1-parameter variation gϵ for ϵ > 0.
We will also consider the Lorentzian Berger metrics, i.e., when ϵ < 0.
Up to our knowledge, no geometrical properties such as homogeneous
Ricci solitons have been obtained yet for Berger spheres.
A natural generalization of an Einstein manifold is Ricci soliton, i.e., a
pseudo-Riemannian metric g on a smooth manifold M , such that the
equation

LXg = ςg − ϱ, (1.1)

holds for some ς ∈ R and some smooth vector field X on M , where ϱ
denotes the Ricci tensor of (M, g) and LX is the usual Lie derivative.
According to whether ς > 0, ς = 0, or ς < 0, a Ricci soliton g is said to
be shrinking, steady, or expanding, respectively. A homogeneous Ricci
soliton on a homogeneous space M = G/H is a G-invariant metric g for
which the equation (1.1) holds, and an invariant Ricci soliton is a homo-
geneous apace, such that equation (1.1) is satisfied by an invariant vector
field. Indeed, the study of Ricci solitons homogeneous spaces is an inter-
esting area of research in pseudo-Riemannian geometry. For example,
algebraic solitons and the Alekseevskii Conjecture properties[14], confor-
mally flat Lorentzian gradient Ricci solitons[7], algebraic Ricci solitons
[4]. In case (G, g) be a simply-connected completely solvable Lie group
equipped with a left-invariant metric, and (g, ⟨, ⟩) be the corresponding
metric Lie algebra, then (G, g) is a Ricci soliton if and only if (g, ⟨, ⟩) is
an algebraic Ricci soliton [15].
On the other hand, investigating critical points of the energy associ-
ated with vector fields is an interesting purpose under different points
of view. As an example, by the Reeb vector field ξ of a contact metric
manifold, somebody can see how the criticality of such a vector field
is related to the geometry of the manifold ([16],[17]). Recently, it has
been [12] proved that critical points of E : X(M) → R, that is, the en-
ergy functional restricted to vector fields, are again parallel vector fields.
Moreover, the same paper, also has been determined the tension field
associated with a unit vector field V , and investigated the problem of
determining when V defines a harmonic map.
A Riemannian manifold admitting a parallel vector field is locally re-
ducible. The same is true for a pseudo-Riemannian manifold admitting
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either space-like or time-like parallel vector field. This leads us to con-
sider different situations, where some interesting types of non-parallel
vector fields can be characterized in terms of harmonicity properties.
We may refer to the recent references [2] and [3] for an overview of har-
monic vector fields.
This paper is organized in the following way. We devote Section 2 to
recall the definitions and state the results we will need in the sequel.
In Section 3, we investigate the required conditions for Berger spheres
Ricci solitons. Harmonicity properties of vector fields on Berger spheres
will be determined in Sections 4. Finally, the energy of all these vector
fields is explicitly calculated in Section 5.

2. preliminaries

LetM = G/H be a homogeneous manifold (with H connected), g the
Lie algebra of G, and h the isotropy subalgebra. Consider m = g/h the
factor space, which identifies with a subspace of g complementary to h.
The pair (g, h) uniquely defines the isotropy representation

ψ : g −→ gl(m), ψ(x)(y) = [x, y]m,

for all x ∈ g, y ∈ m. Suppose that {e1, ..., er, u1, ..., un} be a basis of g,
where {ej} and {ui} are bases of h and m respectively, then with respect
to {ui}, Hj would be the isotropy representation for ej . With regard
to curvature properties, an invariant nondegenerate symmetric bilinear
form g on m uniquely defines its invariant linear Levi-Civita connection
as the corresponding homomorphism of h-modules Λ : g −→ gl(m) such
that Λ(x)(ym) = [x, y]m for all x ∈ h, y ∈ g. In other word

Λ(x)(ym) =
1
2 [x, y]m + v(x, y), (2.1)

for all x, y ∈ g, where v : g×g → m is the h-invariant symmetric mapping
uniquely determined by

2g(v(x, y), zm) = g(xm, [z, y]m) + g(ym, [z, x]m),

for all x, y, z ∈ g, Then the curvature tensor can be determined by

R : m×m −→ gl(m), R(x, y) = [Λ(x),Λ(y)]− Λ([x, y]), (2.2)

and with respect to ui, the Ricci tensor ρ of g is given by

ρ(ui, uj) =
4∑

k=1

g(R(uk, ui)uj , uk), i, j = 1, . . . , 4. (2.3)

Let (M, g) be a compact Riemannian manifold and gs be the Sasaki
metric on the tangent bundle TM , then the energy of a smooth vector
field V : (M, g) −→ (TM, gs) on M is;

E(V ) =
n

2
vol(M, g) +

1

2

∫
M

||∇V ||2dv, (2.4)
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(assuming M compact; in the non-compact case, one works over rela-
tively compact domains see [8]). If V : (M, g) −→ (TM, gs) be a critical
point for the energy functional, then V is said to define a harmonic map.
The Euler-Lagrange equations characterize vector fields V defining har-
monic maps as the ones whose tension field θ(V ) = tr(∇2V ) vanishes.
Consequently, V defines a harmonic map from (M, g) to (TM, gs) if and
only if

tr[R(∇.V, V ).] = 0, ∇∗∇V = 0, (2.5)

where with respect to an orthonormal local frame {e1, ..., en} on (M, g),
with εi = g(ei, ei) = ±1 for all indices i, one has

∇∗∇V =
∑

i εi(∇ei∇eiV −∇∇eiei
V ).

A smooth vector field V is said to be a harmonic section if and only
if it is a critical point of Ev(V ) = (1/2)

∫
M ||∇V ||2dv where Ev is the

vertical energy. The corresponding Euler-Lagrange equations are given
by

∇∗∇V = 0, (2.6)

Let Xρ(M) = {V ∈ X(M) : ||V ||2 = ρ2} and ρ ̸= 0. Then, one can
consider vector fields V ∈ X(M), which are critical points for the en-
ergy functional E|Xρ(M), restricted to vector fields of the same constant
length. The Euler-Lagrange equations of this variational condition are
given by

∇∗∇V is collinear to V. (2.7)

As usual, condition (2.7) is taken as a definition of critical points for
the energy functional restricted to vector fields of the same length in the
non-compact case.
Following [11], the sphere S3 and the Lie group SU(2) have been iden-
tified by a map that sends (z, w) ∈ S3 ⊂ C2 to(

z w
−w̄ z̄

)
∈ SU(2).

We consider the basis {X1, X2, X3} of the Lie algebra su(2) of SU(2)
given by

X1 =

(
i 0
0 ī

)
, X2 =

(
0 1
−1 0

)
, X3 =

(
0 i
i 0

)
. (2.8)

Then, the Lie brackets are determined by

[X1, X2] = 2X3, [X2, X3] = 2X1, [X3, X1] = 2X2. (2.9)

The one-parameter family {gϵ : ϵ > 0} of left-invariant Riemannian
metrics on S3 = SU(2) given at the identity, with respect to the basis
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of left-invariant vector fields X1, X2, X3 by

gϵ =

 ϵ 0 0
0 1 0
0 0 1

 , (2.10)

are called the Berger metrics on S3; if ϵ = 1 we have the canonical (bi-
invariant) metric and for ϵ < 0 the one-parameter family {gϵ : ϵ < 0}
are left-invariant Lorentzian metrics. The Berger spheres are the simply
connected complete Riemannian manifolds S3ϵ = (S3, gϵ), ϵ > 0. We will
use the name ”Lorentzian Berger spheres” for case ϵ < 0.

3. Homogeneous Ricci solitons on Berger spheres

Setting Λi = ∇ei , the components of the Levi-Civita connection are
calculated using the well known Koszul formula and are

Λ1 =

 0 0 0
0 0 ϵ− 2
0 2− ϵ 1

 , (3.1)

Λ2 =

 0 0 1
0 0 0
−ϵ 0 0

 , Λ3 =

 0 −1 0
ϵ 0 0
0 0 0

 .

Using (2.2) we can determine the non-zero curvature components;

R(X1, X2)X1 = ϵ2X2, R(X1, X2)X2 = −ϵX1,
R(X1, X3)X3 = −ϵX1, R(X1, X3)X1 = ϵ2X3,

R(X2, X3)X2 = (4− 3ϵ)X3, R(X2, X3)X3 = (3ϵ− 4)X2.

Since R(X,Y, Z,W ) = g(R(X,Y )Z,W ) we have;

R(X1, X2, X1, X2) = R(X1, X3, X1, X3) = ϵ2,
R(X2, X3, X2, X3) = (4− 3ϵ).

Applying the Ricci tensor formula (2.3), we get;

(ρ)ij =

 2ϵ2 0 0
0 4− 2ϵ 0
0 0 4− 2ϵ

 , (3.2)

which is diagonal with eigenvalues r1 = 2ϵ2 and r2 = r3 = 4− 2ϵ.
For an arbitrary left-invariant vector field X = aX1+bX2+cX3 ∈ su(2)
we have;

∇X1X = (ϵ− 2)(cX2 − bX3),
∇X2X = cX1 − aϵX3,
∇X3X = −bX1 + aϵX2.
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Using the relation (LXg)(Y, Z) = g(∇YX,Z) + g(Y,∇ZX) we have;

LXg =

 0 2(1− ϵ)c 2(ϵ− 1)b
2(1− ϵ)c 0 0
2(ϵ− 1)b 0 0

 . (3.3)

By the Ricci soliton formula (1.1), we get the following system of differ-
ential equations;

2(1− ϵ)c = 0,
2(ϵ− 1)b = 0,
2ϵ2 − λϵ = 0,
4− 2ϵ− λ = 0.

(3.4)

If ϵ = 1, then from (3.2) we can see ρij = λgij for all indices i, j and
therefore g1 is an Einstein metric on S3. So, we suppose that ϵ ̸= 1. From
the first and the second equations in (3.4), we get b = c = 0 and the
third and the last equations in (3.4) give us ϵ = 0 and λ = 4. Therefore
the only solution occurs when ϵ = 0, and for an arbitrary ϵ ̸= 0, 1 the
system of differential equations (3.4) is incompatible. Thus, we have the
following propositions.

Proposition 3.1. Let (S3, gϵ) be a Berger sphere (ϵ > 0). Then (S3, gϵ)
can not be a homogeneous Ricci soliton manifold.

Proposition 3.2. Let (S3, gϵ) be a Lorentzian Berger sphere (ϵ < 0).
Then (S3, gϵ) can not be a homogeneous Ricci soliton manifold.

Remark 1. Proposition (3.2) confirms the classification result in [7],
while Proposition (4.3) emphasizes that there are no left-invariant Ricci
solitons on three-dimensional Riemannian Lie groups [9].

A D’ Atri space is defined as a Riemannian manifold (M, g) whose
local geodesic symmetries are volume-preserving. Let us recall that the
property of being a D’ Atri space is equivalent to the infinite number of
curvature identities called the odd Ledger conditions L2k+1, k ≥ 1. In
particular, the two first non-trivial Ledger conditions are:

L3 : (∇Xρ)(X,X) = 0,
L5 :

∑n
a,b=1R(X,Ea, X,Eb)(∇XR)(X,Ea, X,Eb) = 0,

(3.5)

where X is any tangent vector at any point m ∈ M and {E1, ..., En} is
an orthonormal basis of TmM . Here R denotes the curvature tensor and
ρ the Ricci tensor of (M, g), respectively, and n = dimM .
Thus, it is natural to start with the investigation of all homogeneous
Riemannian Berger spheres satisfying the simplest Ledger condition L3,
which is the first approximation of the D’ Atri property. This condition
is called in [18] ”the classA condition.” Equivalently Ledger condition L3
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holds if and only if the Ricci tensor is cyclic-parallel, i.e. (∇Xρ)(Y, Z)+
(∇Y ρ)(Z,X) + (∇Zρ)(X,Y ) = 0. For more detail, see [8].

Proposition 3.3. Let (S3, gϵ) be a Berger sphere. Then (S3, gϵ) is a D’
Atri space, which its first approximation holds.

Proof. In Ledger condition L3,

∇iρjk = −
∑

t(εjBijtρtk + εkBiktρtj),

where Bijk components can be obtained by the relation ∇eiej =∑
k εjBijkek with εi = g(ei, ei) = ±1 for all indices i. Hence ∇1ρ11 =

∇2ρ22 = ∇3ρ33 = 0, as desired. �

A pseudo-Riemannian manifold which admits a parallel degenerate
distribution is called a Walker manifold. Walker spaces were introduced
by Arthur Geoffrey Walker in 1949. The existence of such structures
causes many interesting properties for the manifold with no Riemann-
ian counterpart. Walker also determined standard local coordinates for
these kinds of manifolds [19].

Proposition 3.4. Let (S3, gϵ) be a Lorentzian Berger sphere (ϵ < 0).
Then (S3, gϵ) can not be a Walker manifold.

Proof. Set X = aX1+bX2+cX3 ∈ su and suppose that D = span(X) is
an invariant null parallel line field. Then, the following equations must
satisfy for some parameters ω1, . . . , ω3

∇X1X = ω1X, ∇X2X = ω2X, ∇X3X = ω3X.

By straight forward calculations we conclude that the following equa-
tions must satisfy

ω1a = 0, ω1b+ c(2− ϵ) = 0, ω1c+ b(ϵ− 2) = 0,
ω2b = 0, ω2a− c = 0, −ω2c+ aϵ = 0,
ω3c = 0, ω3a+ b = 0, ω3b− a = 0.

X is null, hence X must satisfy g(X,X) = a2ϵ+ b2+ c2 = 0 described in
(2.10). For solving the above system of equations, as we can see, since
ϵ ̸= 0, a non-trivial solution can not occur. �

4. Harmonicity of vector fields on Berger spheres

In this section, we investigate the harmonicity of invariant vector fields
on a Berger sphere (S3, gϵ) in both Riemannian (ϵ > 0) and Lorentzian
(ϵ < 0). We treat separately the case when g is Lorentzian and the
Riemannian case.
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4.1. Lorentzian case. In Lorentzian case (ϵ < 0) we can construct an
orthonormal frame field {e1, e2, e3} with respect to gϵ;

e1 =
1√
−ϵ
X1, e2 = X2, e3 = X3, (4.1)

and we get;

[e1, e2] =
2√
−ϵ
e3, [e2, e3] = 2

√
−ϵe1, [e3, e1] =

2√
−ϵ
e2. (4.2)

Considering formula (2.1) the connection components are;

∇e1e2 =
2−ϵ√
−ϵ
e3, ∇e1e3 =

ϵ−2√
−ϵ
e2, ∇e2e1 =

√
−ϵe3,

∇e2e3 =
√
−ϵe1, ∇e3e1 = −

√
−ϵe2, ∇e3e2 = −

√
−ϵe1,

(4.3)

while ∇eiej = 0 in the remaining cases.
For an arbitrary left-invariant vector field V = ae1 + be2 + ce3 ∈ su(2)
we can now use (4.3) to calculate ∇eiV for all indices i. We get

∇e1V = 2−ϵ
ϵ ce2 +

ϵ−2
ϵ be3, ∇e2V =

√
−ϵce1 + ae3,

∇e3V = −
√
−ϵbe1 − ae2.

(4.4)

From (4.10) it follows at once that there are no parallel vector fields
V ̸= 0 belonging to su(2). We can now calculate ∇ei∇eiV and ∇∇eiei

V
for all indices i. We obtain

∇e1∇e1V = − (ϵ−2)2

ϵ2
(be2 + ce3), ∇e2∇e2V =

√
−ϵae1 − ϵce3,

∇e3∇e3 =
√
−ϵae1 − ϵbe2, ∇∇e1e1

V = 0,
∇∇e2e2

V = 0, ∇∇e3e3
V = 0.

(4.5)

Thus, we find

∇∗∇V =
∑

i εi(∇ei∇eiV −∇∇eiei
V )

= −2ϵae1 − ( ϵ
3−ϵ2+4ϵ−4

ϵ2
)(be2 + ce3).

(4.6)

Since ∇∗∇V = − ϵ3−ϵ2+4ϵ−4
ϵ2

V + −ϵ3−ϵ2+4ϵ−4
ϵ2

ae1, condition (2.7) results

that a = 0. In the other direction, let V = − ϵ3−ϵ2+4ϵ−4
ϵ2

(be2 + ce3). A

direct calculation yields that ∇∗∇V = − ϵ3−ϵ2+4ϵ−4
ϵ2

V.

On the other hand, from (4.12), since ∇∗∇V = −2ϵV + ϵ3+ϵ2−4ϵ+4
ϵ2

(be2+
ce3), then (2.7) results that b = c = 0. Vice versa, let V = ae1, by
standard calculations, we obtain ∇∗∇V = −2ϵV. Thus, we have the
following.

Theorem 4.1. Let (S3, gϵ) be a Lorentzian Berger sphere and V =
ae1 + be2 + ce3 ∈ su(2) be a left-invariant vector field on the Berger
sphere for some real constants a, b, c.
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(a) V is a critical point for the energy functional restricted to vector

fields of the same length if and only if V = −2( ϵ
2−2ϵ+2

ϵ )(be2 +
ce3). However, none of these vector fields is harmonic (in par-
ticular, defines a harmonic map).

(b) V is a critical point for the energy functional restricted to vector
fields of the same length if and only if V = −2ϵae1. However,
none of these vector fields is harmonic (in particular, defines a
harmonic map).

4.2. Riemannian case. Consider now a Riemannian Berger sphere
(S3, gϵ), ϵ > 0. su(2) admits a pseudo-orthonormal frame field
{e1, e2, e3}, where

e1 =
1√
ϵ
X1, e2 = X2, e3 = X3, (4.7)

and we get;

[e1, e2] =
2√
ϵ
e3, [e2, e3] = 2

√
ϵe1, [e3, e1] =

2√
ϵ
e2. (4.8)

Considering formula (2.1) the connection components are;

∇e1e2 =
2−ϵ√

ϵ
e3, ∇e1e3 =

ϵ−2√
ϵ
e2, ∇e2e1 =

√
ϵe3,

∇e2e3 =
√
ϵe1, ∇e3e1 = −

√
ϵe2, ∇e3e2 = −

√
ϵe1,

(4.9)

while ∇eiej = 0 in the remaining cases.
For an arbitrary left-invariant vector field V = ae1 + be2 + ce3 ∈ su(2)
we can now use (4.9) to calculate ∇eiV for all indices i. We get

∇e1V = −2−ϵ
ϵ ce2 − ϵ−2

ϵ be3, ∇e2V =
√
ϵce1 − ae3,

∇e3V = −
√
ϵbe1 + ae2.

(4.10)

From (4.10) it follows at once that there are no parallel vector fields
V ̸= 0 belonging to su(2). We can now calculate ∇ei∇eiV and ∇∇eiei

V
for all indices i. We obtain

∇e1∇e1V = − (ϵ−2)2

ϵ2
(be2 + ce3), ∇e2∇e2V = −

√
ϵae1 − ϵce3,

∇e3∇e3 = −
√
ϵae1 − ϵbe2, ∇∇e1e1

V = 0,
∇∇e2e2

V = 0, ∇∇e3e3
V = 0.

(4.11)

Thus, we find

∇∗∇V =
∑

i εi(∇ei∇eiV −∇∇eiei
V )

= −2ϵae1 − ( ϵ
3+ϵ2−4ϵ+4

ϵ2
)(be2 + ce3).

(4.12)

Since ∇∗∇V = − ϵ3+ϵ2−4ϵ+4
ϵ2

V + −ϵ3+ϵ2−4ϵ+4
ϵ2

ae1, condition (2.7) results

that a = 0. In the other direction, let V = − ϵ3+ϵ2−4ϵ+4
ϵ2

(be2 + ce3). A

direct calculation yields that ∇∗∇V = − ϵ3+ϵ2−4ϵ+4
ϵ2

V .

On the other hand, from (4.12) since ∇∗∇V = −2ϵV + ϵ3−ϵ2+4ϵ−4
ϵ2

(be2+
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ce3), then (2.7) results that b = c = 0. Vice versa, let V = ae1, by
standard calculations we obtain ∇∗∇V = −2ϵV . So, we proved the
following.

Theorem 4.2. Each vector field V = ae1 and V = be2+ ce3 ∈ su(2) on
a Riemannian Berger sphere (S3, gϵ), ϵ > 0 are a critical point for the
energy functional restricted to vector fields of the same length. However,
none of these vector fields is harmonic (in particular, defines a harmonic
map).

Therefore by theorems 4.1 and 4.2 there is no harmonic vector field
nor harmonic map on Berger spheres.

4.3. Geodesic and Killing vector fields. A vector field V is a geo-
desic if ∇V V = 0, and is Killing if LV g = 0, where L denotes the Lie
derivative i.e. X is Killing if and only if g(∇YX,Z) + g(Y,∇ZX) = 0
for all Y, Z ∈ X(M)(the equation above is called the Killing equation).
Parallel vector fields are both geodesic and Killing, and vector fields
with these special geometric features often have particular harmonicity
properties [1, 13]. By standard calculations, we obtain the following
result.

Proposition 4.3. Let (S3, gϵ) be the Berger sphere and V ∈ su(2) be a
left-invariant vector field on the Berger sphere, then V is geodesic if and
only if V = be2 + ce3 or V = ae1. Moreover, by (3.3), V is Killing if
and only if V = ae1.

In particular, from Theorems 4.1, 4.2, and Proposition 4.3, a straight-
forward calculation proves the following main classification result.

Theorem 4.4. For a vector field V = ae1+be2+ce3 ∈ su on the (S3, gϵ),
the following conditions are equivalent:

(1) V is geodesic;
(2) V is a critical point for the energy functional restricted to vector

fields of the same length;
(3) V = be2 + ce3 or V = ae1.
(4) V is Killing if and only if b = c = 0.

5. The energy of vector fields on Berger spheres

We calculate explicitly the energy of a vector field V ∈ su(2) of a
Berger sphere. This gives us the opportunity to determine some critical
values of the energy functional on Berger spheres. We shall first discuss
the geometric properties of the map V defined by a vector field V ∈
su(2).
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Proposition 5.1. Let (S3, gϵ) be a Berger sphere, V = ae1+be2+ce3 ∈
su(2) be a left-invariant vector field on the Berger sphere for some real
constants a, b, c. Denote by E(V ) the energy of V.

(a) In the Lorentzian case (ϵ < 0) the energy of V is

E(V ) = (2 + ϵ3−(ϵ−2)2

2ϵ2
||V ||2 − ϵ3−(ϵ−2)2−2ϵ2

2ϵ2
a2)vol(S3, gϵ).

(b) In the Riemannian case (ϵ > 0) the energy of V is

E(V ) = (2 + ϵ3+(ϵ−2)2

2ϵ2
||V ||2 − ϵ3+(ϵ−2)2−2ϵ2

2ϵ2
a2)vol(S3, gϵ).

Proof. Let (S3, gϵ) be the Berger sphere. For case (a) consider the local
orthonormal basis {e1, e2, e3} of vector fields described in (4.1). Then,
locally,

||∇V ||2 =
∑n

i=1 εig(∇eiV,∇eiV ).

Let V ∈ su(2) be a left-invariant vector field on the Berger sphere, then
(4.10) easily yields that

||∇V ||2 = ϵ3−(ϵ−2)2

ϵ2
||V ||2 − ϵ3−(ϵ−2)2−2ϵ2

ϵ2
a2.

In the Riemannian case, consider the local orthonormal basis {e1, e2, e3}
of vector fields, where ei is the base described in (4.7). After a similar
and straightforward calculation, we find that

||∇V ||2 = ϵ3+(ϵ−2)2

ϵ2
||V ||2 − ϵ3+(ϵ−2)2−2ϵ2

ϵ2
a2.

�
We already know from Theorems 4.1 and 4.2 which vector fields in

su(2) of Berger spheres are critical points for the energy functional.
Taking into account the Proposition (5.1), we then have the following.

Theorem 5.2. Let (S3, gϵ) be the Berger sphere (in both Riemannian
and Lorentzian cases).

(a) If ϵ > 0, (2 + ( ϵ
3+(ϵ−2)2

2ϵ2
)ρ2)vol(S3, gϵ) is the minimum value of

the energy functional E restricted to vector fields of constant
length ρ. Such a minimum is attained by all vector fields V =
be2 + ce3 ∈ su(2) of length ||V || = ρ =

√
b2 + c2.

(b) If ϵ < 0, (2 + ( ϵ
3−(ϵ−2)2

2ϵ2
)ρ2)vol(S3, gϵ) is the minimum value of

the energy functional E restricted to vector fields of constant
length ρ. Such a minimum is attained by all vector fields V =
be2 + ce3 ∈ su(2) of length ||V || = ρ =

√
b2 + c2.

(c) (2+ϵρ2)vol(S3, gϵ) is the minimum value of the energy functional
E restricted to vector fields of constant length ρ. Such a mini-
mum is attained by all vector fields V = ae1 ∈ su(2) of length

||V || = ρ =
√
a2.
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