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ABSTRACT. The aim of this paper is to introduce the notions
of the length and the mean of a hyper structure in UP-algebras.
The notions of length fuzzy UP-subalgebras and mean fuzzy UP-
subalgebras of UP-algebras are introduced, and related properties
are investigated. Characterizations of length fuzzy UP-subalgebras
and mean fuzzy UP-subalgebras are discussed. Relations between
length fuzzy UP-subalgebras (resp., mean fuzzy UP-subalgebras)
and hyperfuzzy UP-subalgebras are established. Moreover, we dis-
cuss the relationships among length fuzzy UP-subalgebras (resp.,
mean fuzzy UP-subalgebras) and upper level subsets, lower level
subsets, and equal level subsets of the length (resp., mean) of a
fuzzy structure in UP-algebras.
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1. INTRODUCTION

The branch of the logical algebra, UP-algebras were introduced by
Tampan [4] in 2017, and it is known that the class of KU-algebras [10]
is a proper subclass of the class of UP-algebras. It have been examined
by several researchers, for example, Somjanta et al. [16] introduced the
notion of fuzzy sets in UP-algebras, the notion of intuitionistic fuzzy
sets in UP-algebras was introduced by Kesorn et al. [9], Kaijae et al.
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[8] introduced the notions of anti-fuzzy UP-ideals and anti-fuzzy UP-
subalgebras of UP-algebras, the notion of Q-fuzzy sets in UP-algebras
was introduced by Tanamoon et al. [19], Sripaeng et al. [18] introduced
the notion anti Q-fuzzy UP-ideals and anti @)-fuzzy UP-subalgebras of
UP-algebras, the notion of N -fuzzy sets in UP-algebras was introduced
by Songsaeng and Iampan [17], Senapati et al. [14, 15] applied cubic set
and interval-valued intuitionistic fuzzy structure in UP-algebras, Ro-
mano [11] introduced the notion of proper UP-filters in UP-algebras,
ete.

A fuzzy subset f of a set S is a function from S to a closed interval
[0,1]. The concept of a fuzzy subset of a set was first considered by
Zadeh [20] in 1965. The fuzzy set theories developed by Zadeh and
others have found many applications in the domain of mathematics and
elsewhere.

Hyperstructures have a lot of applications in several domains of math-
ematics and computer science. In a classical algebraic structure, the
composition of two elements is an element, while in an algebraic hy-
perstructure, the composition of two elements is a set. The study
of fuzzy hyper structures is an interesting research area of fuzzy sets.
As a generalization of fuzzy sets and interval-valued fuzzy sets, Ghosh
and Samanta [3] introduced the notion of hyperfuzzy sets, and ap-
plied it to group theory. Jun et al. [7] applied the hyperfuzzy sets
to BCK/BCl-algebras, and introduced the notion of k-fuzzy substruc-
tures for k € {1,2,3,4}. They introduced the concepts of hyperfuzzy
substructures of several types by using k-fuzzy substructures, and inves-
tigated their basic properties. They also defined hyperfuzzy subalgebras
of type (i,j) for i,57 € {1,2,3,4}, and discussed relations between the
hyperfuzzy substructure/subalgebra and its length. They investigated
the properties of hyperfuzzy subalgebras related to upper-level subsets
and lower-level subsets.

In this paper, we introduce the notions of the length and the mean
of a hyper structure in UP-algebras. The notions of length fuzzy UP-
subalgebras and mean fuzzy UP-subalgebras of UP-algebras are intro-
duced, and related properties are investigated. Characterizations of
length fuzzy UP-subalgebras and mean fuzzy UP-subalgebras are dis-
cussed. Relations between length fuzzy UP-subalgebras (resp., mean
fuzzy UP-subalgebras) and hyperfuzzy UP-subalgebras are established.
Moreover, we discuss the relationships among length fuzzy UP-subalgebras
(resp., mean fuzzy UP-subalgebras) and upper level subsets, lower level
subsets, and equal level subsets of the length (resp., mean) of a fuzzy
structure in UP-algebras.
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2. PRELIMINARIES

Before we begin our study, we will give the definition of a UP-algebra.

Definition 2.1. [4] An algebra A = (A,-,0) of type (2,0) is called a
UP-algebra where A is a nonempty set, - is a binary operation on A,
and 0 is a fixed element of A (i.e., a nullary operation) if it satisfies the
following axioms:

(UP-1): (Vz,y,z € A)((y-2) - ((z-y) - (z-2)) =0),
(UP-2): (Vx € A)(0-z =2x),

(UP-3): (Vx € A)(x-0=0), and

(UP-4): (Vz,yc A)(z-y=0,y-z=0=x=y).

From [4], we know that the notion of UP-algebras is a generalization
of KU-algebras (see [10]).

Example 2.2. [13] Let X be a universal set and let Q € P(X) where
P(X) means the power set of X. Let Po(X) ={A € P(X) | Q C A}
Define a binary operation - on Pq(X) by putting A- B = BN (A UQ)
for all A, B € Po(X) where A® means the complement of a subset A.
Then (Pq(X),-, ) is a UP-algebra and we shall call it the generalized
power UP-algebra of type 1 with respect to Q. Let P%(X) = {A €
P(X) | A C Q}. Define a binary operation * on P*(X) by putting
AxB=DBU(A°NQ) for all A,B € P*X). Then (P(X),*,Q) is
a UP-algebra and we shall call it the generalized power UP-algebra of
type 2 with respect to . In particular, (P(X),-, () is a UP-algebra and
we shall call it the power UP-algebra of type 1, and (P(X),*,X) is a
UP-algebra and we shall call it the power UP-algebra of type 2.

Example 2.3. [2] Let IN be the set of all natural numbers with two
binary operations o and e defined by

oy i<y,
(Vz,y € IN) <xoy—{ 0 otherwise >

and

_Jy ffz>yoraz=0,
(Vz,y € IN) (xoy—{ 0 otherwise )

Then (IN,0,0) and (IN, e, 0) are UP-algebras.
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Example 2.4. [17] Let A = {0,1,2,3,4,5,6} be a set with a binary
operation - defined by the following Cayley table:

012 3 45 6
0j01 2 3 4 5 6
110 0 2 3 2 3 6
2/0 103 15 3
3101 2 0 4 1 2
410 0 0 3 0 3 3
5/0 0 2 0 2 0 2
6/0 1 00110

Then (A4,-,0) is a UP-algebra.

For more examples of UP-algebras, see [1, 5, 12, 13].
The following proposition is important for the study of UP-algebras.

Proposition 2.5. [4, 5] In a UP-algebra A = (A,-,0), the following

properties hold:

1) Vz e A)(z-x=0),

(Ve,y,z€ A)(z-y=0,y-2=0=2x-2=0),

(Vary.2 € -y =0 = (2-2) - (2-y) = 0).

(Vo2 € Az-y=0= (y-2)- (z-) = 0)

(Vo,y € A)(z - (y-z) =0),

Ve,ye A)((y-x) - z=0x=y-x),

(Vo,y € A)(z- (y-y) =0),

(Va,z,y,2 € A)((z- (y-2)) - (x (( y) - (a-2))) =

(Vawy,zEA)(((( z)-(a- ) - ‘2

(Vo,y,2 € A)(((x-y)-2) - (y-2) =0),

Va,y,z€ A)(x-y=0=z-(2-y ,

(Vo,y,z € A)(((x-y)-2)- (x-(y-2)) =0), and

13) (Va,z,y,2 € A)(((z-y)-2) - (y-(a-2)) =0).
From [4], the binary relation < on a UP-algebra A = (4, -, 0) is defined

as follows:

~—
~—

(Vo,y € A)(z <y s a-y=0).

Definition 2.6. [4] A nonempty subset S of a UP-algebra A = (4, -,0)
is called a UP-subalgebra of A if

(Vz,y e S)(xz-y€9).

Definition 2.7. [20] Let A be a nonempty set. A mapping f : A — [0,1]
is called a fuzzy set in A (or a fuzzy subset of A) where [0, 1] is the unit
segment of the real line. An ordered pair (A, f) is called a fuzzy structure
in A. A fuzzy structure (A, f) in A is said to be constant if a fuzzy set
f is constant.
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Definition 2.8. [3] Let A be a nonempty set. A mapping f : A —
P([0,1]) is called a hyperfuzzy set over A where P([0,1]) is the family of
all nonempty subsets of [0,1]. An ordered pair (A4, f) is called a hyper
structure over A.

Definition 2.9. [6] Given a hyper structure (4, f) over a nonempty set
A, we define two fuzzy structures (A4, finf) and (A, fsup) in A as follows:

fint : A = [0,1], 2 — inf f(z),
fsup : A — [0,1], 2 — sup f(x).
In what follows, let A denote a UP-algebra (A,-,0) unless otherwise
specified.

The following is a definition of all 4 types of fuzzy UP-subalgebras
which will lead to other definitions.

Definition 2.10. A fuzzy structure (A4, f) in A is called

(1) a fuzzy UP-subalgebra of A with type 1 (briefly, 1-fuzzy UP-
subalgebra of A) if

(Vo,y € A)(f(z - y) = min{f(z), f(y)})-

(2) a fuzzy UP-subalgebra of A with type 2 (briefly, 2-fuzzy UP-
subalgebra of A) if

(V,y € A)(f(z-y) < min{f(z), f(y)})-

(3) a fuzzy UP-subalgebra of A with type 3 (briefly, 3-fuzzy UP-
subalgebra of A) if

(Va,y € A)(f (- y) = max{f(x), f(y)})-

(4) a fuzzy UP-subalgebra of A with type 4 (briefly, 4-fuzzy UP-
subalgebra of A) if

(Va,y € A)(f(x - y) < max{f(x), f(y)})-

Proposition 2.11. If (A, f) is a k-fuzzy UP-subalgebra of A for k =
1,3, then

(Ve € A)(f(0) = f(x)). (2.1)
Proof. If (A, f) is a 1-fuzzy UP-subalgebra of A, then for all z € A,
£(0) = f(z - 2) > min{f(z), f(2)} = f(x).  (Proposition 2.5 (1))
If (A, f) is a 3-fuzzy UP-subalgebra of A, then for all z € A,
f(0) = f(z - 2) = max{f(x), f(x)} = f(z).  (Proposition 2.5 (1))
Therefore, f(0) > f(x) for all z € A. O
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Proposition 2.12. If (A, f) is a k-fuzzy UP-subalgebra of A for k =
2,4, then

(Ve € A)(f(0) < (). (2.2)
Proof. If (A, f) is a 2-fuzzy UP-subalgebra of A, then for all z € A,
J(0) = flw-2) < min{f(2), f@@)} = f(@).  (Proposition 2.5 (1))
If (A, f) is a 4-fuzzy UP-subalgebra of A, then for all z € A,
£(0) = flw-2) < max{f(2), f(2)} = f(x).  (Proposition 2.5 (1))
Therefore, f(0) < f(z) for all x € A. O

Theorem 2.13. FEvery 3-fuzzy UP-subalgebra of A is a 1-fuzzy UP-
subalgebra.

Proof. Assume that (A, f) is a 3-fuzzy UP-subalgebra of A. Let z,y € A.
Then

f(a-y) =2 max{f(z), f(y)} = min{f(z), f(y)}.
Hence, (A, f) is a 1-fuzzy UP-subalgebra of A. O

The following example show that the converse of Theorem 2.13 is not
true.

Example 2.14. Consider a UP-algebra A = {0,1,2,3,4} with the bi-
nary operation - which is given as follows:

01 2 3 4
0j0 1 2 3 4
110 0 0 3 0
210 2 0 3 0
310 2 2 00
410 2 2 3 0

Let (A, f) be a fuzzy structure in A in which f is given as follows:

(0 1 2 3 4
~ 108 08 08 05 05 )"

Then (A, f) is 1-fuzzy UP-subalgebra of A. We see that
f(0-3)=0.5# 0.8 =max{0.8,0.5} = max{f(0), f(3)}.
Thus f is not a 3-fuzzy UP-subalgebra of A

Theorem 2.15. Every 2-fuzzy UP-subalgebra of A is a 4-fuzzy UP-
subalgebra.



270 N. Tacha, P. Phayapsiang, A. Iampan

Proof. Assume that (A, f) is a 2-fuzzy UP-subalgebra of A. Let z,y € A.
Then

f(@-y) <min{f(z), f(y)} <max{f(z), f(y)}.
Hence, (A, f) is a 4-fuzzy UP-subalgebra of A. O

The following example show that the converse of Theorem 2.15 is not
true.

Example 2.16. Consider a UP-algebra A = {0,1,2,3,4} in Example
2.14. Let (A, f) be a fuzzy structure in A in which f is given as follows:

(0 1 2 3 4
—\02 02 02 02 07 )

Then (A, f) is a 4-fuzzy UP-subalgebra of A. We see that

f(0-4) = f(4) = 0.7 £ 0.2 = min{ f(0), f(4)}.
Thus (A, f) is not a 2-fuzzy UP-subalgebra of A.

Theorem 2.17. A fuzzy structure (A, f) in A is a 2-fuzzy UP-subalgebra
of A if and only if it is constant.

Proof. Assume that (A, f) is a 2-fuzzy UP-subalgebra of A. Then by
Proposition 2.12, we have f(0) < f(x) for all z € A. By (UP-2), we
have f(z) = f(0-z) < min{f(0), f(z)} = f(0) for all x € A. Thus
f(z) = f(0) for all z € A, so f is constant. Hence, (A, f) is constant.

Conversely, assume that (A, f) is constant. Then f(x) = f(0) for
all x € A. Let z,y € A. Then f(x-y) = f(0) = min{f(0), f(0)} =
() min{f(z), f(y)}. Therefore, (A, f) is a 2-fuzzy UP-subalgebra of
A. O

Theorem 2.18. A fuzzy structure (A, f) in A is a 3-fuzzy UP-subalgebra
of A if and only if it is constant.

Proof. Assume that (A, f) is a 3-fuzzy UP-subalgebra of A. Then by
Proposition 2.11, we have f(0) > f(x) for all x € A. By (UP-2), we
have f(z) = f(0-x) > max{f(0), f(z)} = f(0). Thus f(z) = f(0) for

all x € A, so f is constant. Hence, (A, f) is constant.
Conversely, assume that (A4, f) is constant. Then f(0) = f(z) for
all z € A. Let z,y € A. Then f(z-y) = f(0) = max{f(0), f(0)} =

(>)max{f(z), f(y)}. Therefore, (A, f) is a 3-fuzzy UP-subalgebra of
A. O

By Theorems 2.17 and 2.18, we obtain that 2-fuzzy UP-subalgebras,
3-fuzzy UP-subalgebras, and constant fuzzy structures coincide.
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Definition 2.19. For any ¢, j € {1, 2, 3,4}, a hyper structure (A, f) over
A is called an (i, j)-hyperfuzzy UP-subalgebra of A if a fuzzy structures
(A, finf) is an i-fuzzy UP-subalgebra of A and a fuzzy structures (A, fsup)
is a j-fuzzy UP-subalgebra of A.

3. LENGTH OF A HYPER STRUCTURE IN UP-ALGEBRAS

In this section, we introduce the notion of the length of a hyper struc-
ture in UP-algebras. The notions of length fuzzy UP-subalgebras of
UP-algebras are introduced, and related properties are investigated.
Relations between length fuzzy UP-subalgebras and hyperfuzzy UP-
subalgebras are established. Moreover, we discuss the relationships
among length fuzzy UP-subalgebras and upper level subsets, lower level
subsets, and equal level subsets of the length of a hyper structure in
UP-algebras.

Definition 3.1. Given a hyper structure (A,f) over A, we define a
fuzzy structures (A, fi) in A as follows:

fi:A=[0,1],2 — fsup(:r;) — fint ()
which is called the length of f.
Definition 3.2. A hyper structure (A, f) over A is called a length 1-
fuzzy (resp., 2-f~uzzy, 3-fuzzy, and 4-fuzzy) UP-subalgebra of A if a fuzzy

structures (A4, f1) is a 1-fuzzy (resp., 2-fuzzy, 3-fuzzy, and 4-fuzzy) UP-
subalgebra of A.

Example 3.3. Consider a UP-algebra A = {0,1,2,3,4} with the binary
operation - which is given as follows:

10 1 2 3 4
0[0 1 2 3 4
110 0 2 3 4
2/0 0 0 3 4
310 0 2 0 4
410 0 0 0O
Let (A, f ) be a hyper structure over A in which f is given as follows:

i 0 1 2 3 4
-\ [0.2,0.4)U[0.5,1) (0.5,0.9] [0.2,0.3] U (0.4,0.8] [0.7,0.9] [0.2,0.3] ]~
Then the length of f is given as follows:
j_(0 1 2 3 4
7108 04 06 02 01 )"
Thus (A, fl) is a 1-fuzzy UP-subalgebra of A, that is, (4, f) is a length
1-fuzzy UP-subalgebra of A.
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Proposition 3.4. If (A, f) is a length k-fuzzy UP-subalgebra of A for
k=1,3, then B B

(Ve € A)(Ai(0) = fiz)). (3.1)
Proof. 1t is straightforward by Proposition 2.11. O

Proposition 3.5. If (A, f) is a length k-fuzzy UP-subalgebra of A for
k=2,4, then B B

(Vz € A)(A(0) < filz)). (3:2)
Proof. 1t is straightforward by Proposition 2.12. O

Theorem 3.6. FEvery length 3-fuzzy UP-subalgebra of A is a length 1-
fuzzy UP-subalgebra.

Proof. 1t is straightforward by Theorem 2.13. O

Theorem 3.7. Every length 2-fuzzy UP-subalgebra of A is a length 4-
fuzzy UP-subalgebra.

Proof. 1t is straightforward by Theorem 2.15. U

Theorem 3.8. Length 2-fuzzy UP-subalgebra and length 3-fuzzy UP-
subalgebra of A coincide.

Proof. 1t is straightforward by Theorems 2.17 and 2.18. (|

Theorem 3.9. Given a UP-subalgebra S of A and By, By € P([0,1]),
let (A, f) be a hyper structure over A given by

FiAo P0A]), s 402 FTES
By otherwise.

If By C Bs, then (4, f) is a length 1-fuzzy UP-subalgebra of A. Also, if
By C By, then (A, f) is a length 4-fuzzy UP-subalgebra of A.

Proof. If z € S, then f(z) = By and so
(@) = foup(x) = fint(x) = sup f(z) — inf f(x) = sup By — inf Bs.
If 2 ¢ S, then f(z) = By and so
fila) = faup(@) = fint(x) = sup f(z) — inf f(z) = sup By — inf By.
Assume that By C By. Then sup By — inf By > sup By — inf Bj.
Case 1: Let z,y € S. Then fl(a:) = sup By — inf By and fi(y) =

sup By — inf By. Thus min{fi(z), fi(y)} = sup By — inf By. Since S is a
UP-subalgebra of A, we have z -y € .S and so

ﬁ(w -y) = sup By — inf Bs.
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Thus
Az - y) = sup By — inf By = (>) min{ fi(z), Ai(y)}.

Case 2: Let z,y € S. Then fl( ) = sup B; — inf By and fl(y) =
sup By — inf By, so min{fi(x), fi(y)} = sup By — inf B;. Thus

fl(:r -y) >sup By —inf By = mln{fl(:c),fl(y)}

Case 3: Let x ¢ Sand y € S. Then fl( ) = sup By — inf By and
fi(y) = sup By — inf By, so min{fi(z), fi(y)} = sup B; — inf B;. Thus

f (x-y) >sup By —inf B = min{ﬁ(fv), fl(y)}

Case 4: Let x € S and y € S. Then fl( ) = sup By — inf By and
fily) = sup By — inf By, so min{ fi(x), fi(y)} = sup By — inf B;. Thus

A -y) > sup By — inf B; = min{ fi(z), fi(y)}.
Hence, fi is a 1-fuzzy UP-subalgebra of A and so (A4, f) is a length
1-fuzzy UP-subalgebra of A.
Assume that Bs C By. Then sup By — inf By < sup By — inf Bj.

Case 1: Let x,y € S. Then f1( ) = sup By — inf By and fi(y) =
sup By — inf By. Thus max{fi(z), fi(y)} = sup By — inf By. Since S is a
UP-subalgebra of A, we have x -y € S and so

ﬂ(l‘ -y) = sup By — inf Bs.
Thus
fi(z - y) = sup By — inf By = (<) max{ fi(z), fi(y)}.

Case 2: Let x,y € S. Then f1( ) = sup B; — inf By and fl(y) =
sup By — inf By, so max{fi(z), fi(y)} = sup B; — inf B;. Thus

fl(m y) < sup By —inf By = max{fl(az), fl(y)}

Case 3: Let ¢ S and y € S. Then fl( ) = sup B; — inf B; and
fi(y) = sup By — inf By, so max{fi(x), fi(y)} = sup By — inf B;. Thus

filz - y) <sup By — inf By = max{fi(z), fi(y)}.

Case 4: Let x € S and y ¢ S. Then fl( ) = sup By — inf By and
fily) = sup By — inf By, so max{fi(x), fi(y)} = sup By — inf B;. Thus

filz - y) < sup By — inf By = max{ fi(z), fi(y)}.

Hence, fi is a 4-fuzzy UP-subalgebra of A and so (A, f) is a length
4-fuzzy UP-subalgebra of A. O
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Example 3.10. Consider a UP-algebra A = {0, 1, 2,3,4}~ in Example
2.14. Then S = {0, 1,2} is a UP-subalgebra of A. Let (A, f) be a hyper
structure over A in which f is given as follows:

" 0 1 2 3 4
F= < 0.1,0.9) [0.1,0.9) [0.1,0.9) (0.3,0.8] (0.3,0.8] )

Then the length of f is given as follows:

j_(0 1 2 3 4
17108 08 08 05 05 )"
By Theorem 3.9, we have (A, f ) is a length 1-fuzzy UP-subalgebra of A.
We see that
£1(0-3) = 0.5 # 0.8 = max{0.8,0.5} = max{f(0), /i(3)}.
Thus (A, fi) is not a 3-fuzzy UP-subalgebra of A, that is, (A, f) is

not a length 3-fuzzy UP-subalgebra of A. Give a UP-subalgebra S =
{0,1,2,3} of A, let (A, f) be a hyper structure over A given by

. 0 1 2 3 4
F= < (0.3,0.5) (0.3,0.5) (0.3,0.5) (0.3,0.5) [0.2,0.9) >

Then the length of f is given as follows:

j_(0 1 2 3 4

=102 02 02 02 07 )"

By Theorem 3.9, we have (A, f ) is a length 4-fuzzy UP-subalgebra of A.
We see that

£1(0-4) = fi(4) = 0.7 £ 0.2 = min{ £1(0), fi(4)}.

Thus (A, fi) is not a 2-fuzzy UP-subalgebra of A, that is, (4, f) is not
a length 2-fuzzy UP-subalgebra of A.

Definition 3.11. [16] Let (A, f) be a fuzzy structure in A. For any
t € [0,1], the sets
U(fit) ={z e Af f(x) > t},
L(fit) ={z e A[ f(z) <t}
E(fit) ={zec Al f(z) =1}

are called upper t-level subset, lower t-level subset, and equal t-level sub-
set of f, respectively.

i

Theorem 3.12. A hyper structure (A, f) over A is a length 1-fuzzy
UP-subalgebra of A if and only if the set U(fi;t) is a UP-subalgebra of
A for all t € [0,1] with U(fi;t) # 0.
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Proof. Assume that (A, f) is a length 1-fuzzy UP-subalgebra of A. Let
t € [0,1] be such that U(f~17 t) # 0 and let z,y € U(fi;t). Then fi(z) >
and fi(y) > t. Since (A4, f) is a length 1-fuzzy UP-subalgebra of A, we
have

Az - y) > min{fi(2), fi(y)} > .
Thus z -y € U(fi;t). Hence, U(fi;t) is a UP-subalgebra of A.

Conversely, assume that for all ¢ € [0,1], the set U(fi;t) is a UP-
subalgebra of A if U(fl, t) #0. Let z,y € A. Then fi(z), Aily) € [0,1].
Choose t = min{fi(z), fi(y)}. Thus fi(z) > t and fi(y) > t and so
x,y € U(fi;t) # 0. By assumption, we have U(f;t) is a UP-subalgebra
of A and so z-y € U(fi;t). Thus

Az -y) >t = min{fi(z), fi(y)}.

Hence, (A, f]) is a 1-fuzzy UP-subalgebra of A, that is, (4, f) is a length
1-fuzzy UP-subalgebra of A. O

Corollary 3.13. If (A, f) is a length 3-fuzzy UP-subalgebra of A, then
the set U(fi;t) is a UP-subalgebra of A for all t € [0,1] with U(fi;t) # 0.

Proof. 1t is straightforward by Theorems 4.6 and 3.12. O

The following example show that the converse of Corollary 3.13 is not
true.

Example 3.14. Consider a UP-algebra A = {0,1,2,3,4} with the bi-
nary operation - which is given as follows:

10 1 2 3 4
0(o0 1 2 3 4
110 0 2 0 O
210 0 0 00
310 1 2 0 4
410 1 2 3 0

Let (A, f ) be a hyper structure over A in which f is given as follows:

B 0 1 2 3 4
F= ( (0.1,0.3) U [0.5,0.8) (0.5,0.8] [0.1,0.3] U (0.5,0.7] [0.5,0.7] (0.3,0.5]>

Then the length of f is given as follows:

. 0 1 2 3 4
'=\1 07 03 06 02 02 /"
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We have
0 if t € (0.7,1],
{0} if t € (0.6,0.7],
U(fi;t) =<{{0,2}  ift e (0.3,0.6],
{0,1,2} ift € (0.2,0.3],
A if t €10,0.2]

and so U(fi;t) is a UP-subalgebra of A for all t € [0, 1] with U(fi;t) # 0.
We see that

£(0-4) = fi(4) = 0.2 # 0.7 = max{£(0), /i(4)}.

Thus (A4, f) is not a 3-fuzzy UP-subalgebra of A, that is, (4, f) is not
a length 3-fuzzy UP-subalgebra of A.

Theorem 3.15. A hyper structure (A, f) over A is a length 4-fuzzy
UP-subalgebra of A if and~0nly if the set L(fi;t) is a UP-subalgebra of
A for all t € [0,1] with L(fi;t) # 0.

Proof. Assume that (A, f~ ) is a length 4-fuzzy UP-subalgebra of A. Let
t € [0,1] be such that L(fi;t) # 0 and let z,y € L(fi;t). Then fi(z) <t
and fi(y) < t. Since (A, f) is a length 4-fuzzy UP-subalgebra of A, we
have

Aie - y) < max{fi(z), fity)} <t.
Thus « -y € L(fi;t). Hence, L(fi;t) is a UP-subalgebra of A.

Conversely, assume that for all ¢ € [0,1], the set Ly(f;t) is a UP-
subalgebra of A if L(fi;t) # 0. Let x,y € A. Then fi(z), fi(y) € [0,1].
Choose t = max{fi(x), fi(y)}. Thus fi(z) < ¢ and fi(y) < t and so
x,y € L(fi;t) # 0. By assumption, we have L(f;;t) is a UP-subalgebra

of A and so z-y € L(f;;t). Thus
Az y) <t = max{fi(x), Aly)}.

Hence, (A, fy) is a 4-fuzzy UP-subalgebra of A, that is, (A4, f) is a length
4-fuzzy UP-subalgebra of A. (]

Corollary 3.16. If (4, f) is a length 2-fuzzy UP-subalgebra of A, then
the set L(fi;t) is a UP-subalgebra of A for allt € [0, 1] with L(fi;t) # 0.

Proof. 1t is straightforward by Theorems 4.7 and 3.15. O

The following example show that the converse of Corollary 3.16 is not
true.
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Example 3.17. Consider a UP-algebra A = {0,1,2,3,4} in Example
3.14. Let (A, f) be a hyper structure over A in which f is given as
follows:

- 0 1 2 3 4
F= ( (0.6,0.9) (0.3,0.8] [0.4,0.6)U(0.7,0.8] [0.1,0.8] (0.2,0.9] >

Then the length of f is given as follows:

7— 0 1 2 3 4
=103 05 04 07 07 )"
We have

A if t € {0.7,1],

[
{0,1,2} if t €[0.5,0.7),
L(fit) ={{0,2}  ifte[0.4,0.5),
{0} if ¢ € [0.3,0.4),
0 if ¢ € [0,0.3)

and so L(fi;t) is a UP-subalgebra of A for all ¢ € [0,1] with L(fi;t) # 0
We see that

£(0-3) =0.7 £ 0.3 = min{ £1(0), /1(3)}.

Thus (A, f1) is not a 2-fuzzy UP-subalgebra of A, that is, (4, f) is not
a length 2-fuzzy UP-subalgebra of A.

Theorem 3.18. A hyper structure (A, f) over A is a length 2(3)-fuzzy
UP-subalgebra of A if and only if the set E(fi; f1(0)) = A.

Proof. Assume that (A, f ) is a length 2-fuzzy UP-subalgebra of A. Then
fi is a 2-fuzzy UP- subalgebra of A. By Theorem 2.17, we have fi is
constant and so fi(z) = f1( ) for all z € A. Thus x € E(fi; f1(0)) for all
x € A. Therefore, E(fi; f1(0)) = A.

Conversely, assume that E(fi; f1(0)) = A. Then fi(z) = £1(0), for all
z € A. Thus fj is constant. By Theorem 2.17, we have f] is a 2-fuzzy
UP-subalgebraA. Therefore, (A, f) is a length 2-fuzzy UP-subalgebra of
A. O

Theorem 3.19. If (4, f) is a hyper structure over A in which (A, fmf)
is constant and (A, fbup) is a 1-fuzzy UP-subalgebra of A, then (A, f) is
a length 1-fuzzy UP-subalgebra of A.

Proof. Assume that (4, f) is a hyper structure over A in which (A, finf)
is constant and (A, feup) is a 1-fuzzy UP-subalgebra of A. Let z,y €
A. Since (A, fint) is constant, we have finr(x) = fine(0) for all x € A.
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Since ~(A, fsup) is a 1-fuzzy UP-subalgebra of A, we have fsup(a: cy) >
min{ fsup(2), foup(y)}. Thus

Az y) = faup(@-y) = finr(z - y)

= fSup( “y) — fin(0)

> min{ foup (2), foup(¥)} — fine (0)
= mm{fsup(x) J;mf(o) fsup(y) - ﬁnf(o)}
= mm{fsup(x) fmf(x) fsup(y) - finf(y)}

)

= min{fi(x), f(y)}-
Hence, (A4, fi) is a 1-fuzzy UP-subalgebra of A, that is, (A, f) is a length
1-fuzzy UP-subalgebra of A. O

Corollary 3.20. If~(A, f) is a hyper structure over A in which (A, fin)
is constant and (A, fsup) is a 3-fuzzy UP-subalgebra of A, then (A, )
a length 1-fuzzy UP-subalgebra of A.

Proof. 1t is straightforward by Theorems 2.13 and 3.19. O

Corollary 3.21. Forj € {1,3}, every (2(3), j)-hyperfuzzy UP-subalgebra
of A is a length 1-fuzzy UP-subalgebra.

Proof. 1t is straightforward by Theorem 3.19 and Corollary 3.20. O

The following example show that the converse of Corollary 3.21 is not
true.

Example 3.22. Consider a UP-algebra A = {0,1,2,3,4} with the bi-
nary operation - which is given in as follows:

101 2 3 4
0jo 1 2 3 4
10 0 2 3 0
2101 0 0 4
3|10 1 2 0 4
410 4 2 3 0

Let (A, f) be a hyper structure over A in which f is given as follows:

. 0 1 2 3 4
F= < [0.1,1) (0.3,0.8] [0,0.8] [0.1,0.3) [0.1,0.3) )

Then the length of f is given as follows:

. 0 1 2 3 4
=109 02 08 02 02 /-
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Thus (A4, f ) is a length 1-fuzzy UP-subalgebra of A. Since

. 0 1 2 3 4
nf =101 03 0 01 01 )°

we have finf is not constant. By Theorems 2.17 an(j 2.18, we have finf
is not 2(3)-fuzzy UP-subalgebra of A. Hence, (A4, f) is not a (2(3),7)-
hyperfuzzy UP-subalgebra of A for j € {1, 3}.

Theorem 3.23. If (4, f) is a hyper structure over A in which (A, finf)
is constant and (A, fsup) is a 4-fuzzy UP-subalgebra of A, then (A, f) is
a length 4-fuzzy UP-subalgebra of A.

Proof. Assume that (A, f) is a hyper structure over A in which (A, finf)
is constant and (A, fsup) is a 4-fuzzy UP-subalgebra of A. Let z,y €
A. Since (4, fint) is constant, we have fine(z) = fine(0) for all z € A.
Since (A fsup) is a 4-fuzzy UP-subalgebra of A, we have fsup(:c y) <

max{fsup( z), fsup( )} Thus
filz - y) = faup(@ - y) = fint(z - y)
= foup(@ - y) = fint(0)
< max{ foup(®), foup(¥)} = fint (0)
= max{ foup(2) = fint (0), foup(y) — fine(0)}
= max{fsup(a:) fmf(l’), fsup(y) - fmf(y)}
)

= max{fi(z), fi(y)}.
Hence, (A, fl) is a 4-fuzzy UP-subalgebra of A, that is, (4, f) is a length
4-fuzzy UP-subalgebra of A. O

Corollary 3.24. If~(A, f) is a hyper structure over A in which (A, finf)
is constant and (A, fsup) is a 2-fuzzy UP-subalgebra of A, then (A, f) is
a length 4-fuzzy UP-subalgebra of A.

Proof. 1t is straightforward by Theorems 2.15 and 3.23. U

Corollary 3.25. Forj € {2,4}, every (2(3), j)-hyperfuzzy UP-subalgebra
of A is a length 4-fuzzy UP-subalgebra.

Proof. 1t is straightforward by Theorem 3.23 and Corollary 3.24. U

The following example show that the converse of Corollary 3.25 is not
true.

Example 3.26. Consider a UP-algebra A = {0, 1,2, 3, 4} in Example
3.22. Let (A, f) be a hyper structure over A in which f is given as
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follows:

Fe 0 1 2 3 4
~\ [0.1,0.4) (0.2,0.5] [0.2,0.7] [0.3,0.9) [0.1,1) /°
Then the length of f is given as follows:

j_(0 1 2 3 4
7103 03 05 06 09 )"
Thus (A4, f ) is a length 4-fuzzy UP-subalgebra of A. Since

. 0 1 2 3 4
nf =101 02 02 03 01 /°

we have finf is not constant. By Theorems 2.17 ang 2.18, we have finf
is not 2(3)-fuzzy UP-subalgebra of A. Hence, (A4, f) is not a (2(3),)-
hyperfuzzy UP-subalgebra of A for j € {2,4}.

Theorem 3.27. If (A, f) is a hyper structure over A in which (A, fsup)
is constant and (A, fint) s a 4-fuzzy UP-subalgebra of A, then (A, f) is
a length 1-fuzzy UP-subalgebra of A.

Proof. Assume that (A, f) is a hyper structure over A in which (A, foup)
is constant and (A, fiyf) is a 4-fuzzy UP-subalgebra of A. Let z,y € A.
Since (A, faup) is constant, we have foup(z) = faup(0) for all z € A.
Since ~(A, finfz is a 4-fuzzy UP-subalgebra of A, we have fiys(z - y) <
| fnt (), fnt(4)}. Thus

le(l’ y) = fsw(fﬁ "y) — Jzinf(ﬂ'j X))
= foup(0) = fint (2 - )
> foup(0) — max{ fin(2), finr(y)}
= min{ foup(0) — fint (2
= min{ foup (€) — fint (@
= min{ fi(z), fi(y)}.

Hence, (A4, fl) is a 1-fuzzy UP-subalgebra of A, that is, (4, f) is a length
1-fuzzy UP-subalgebra of A. O

Corollary 3.28. If (A, f) is a hyper structure over A in which (A, fsup)
is constant and (A, fint) i a 2-fuzzy UP-subalgebra of A, then (A, f) is
a length 1-fuzzy UP-subalgebra of A.

Proof. 1t is straightforward by Theorems 2.15 and 3.27. O

Corollary 3.29. Fori € {2,4}, every (i,2(3))-hyperfuzzy UP-subalgebra
of A is a length 1-fuzzy UP-subalgebra.

)7 sup(o) - finf(y)}
) faup(¥) — fins ()}
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Proof. 1t is straightforward by Theorem 3.27 and Corollary 3.28. (]

The following example show that the converse of Corollary 3.29 is not
true.

Example 3.30. Consider a UP-algebra A = {0, 1,2, 3, 4} in Example

3.22. Let (A, f) be a hyper structure over A in which f is given as
follows:

. 0 1 2 3 4
F= ( [0.1,1) (0.2,0.8] [0.3,0.8] [0.4,0.7) [0.5,0.7) )

Then the length of f is given as follows:

j_(0 1 2 3 4
=109 06 05 03 02 )"
Thus (A4, f) is a length 1-fuzzy UP-subalgebra of A. Since

(0 1 2 3 4
s =\ 01 08 08 0.7 0.7 )°

we have fsup is not constant. By Theorems 2.17 and 2.18, we have fsup
is not 2(3)-fuzzy UP-subalgebra of A. Hence, (4, f) is not a (j,2(3))-
hyperfuzzy UP-subalgebra of A for j € {2,4}.

Theorem 3.31. If (A, f) is a hyper structure over A in which (A, fsup)
is constant and (A, fint) is a 1-fuzzy UP-subalgebra of A, then (A, f) is
a length 4-fuzzy UP-subalgebra of A.

Proof. Assume that (A, f) is a hyper structure over A in which (A, foup)
is constant and (A, fiy) is a 1-fuzzy UP- subalgebra of A. Let z,y € A.
Since (A, fsup) is constant, we have foup(r) = foup(0) for all 2 € A.
Since ~(A fmf2 is a 1-fuzzy UP-subalgebra of A, we have fiys(z -y) >
min{finf(x)a finf(y)}' Thus
filz-y) = foup(x - y) = fint(z - y)

= foup(0) = fint (- y)

S fsup(o) - min{finf(x)a flnf(y)}

= max{fsup(o) - .]Z.inf(x)a Jgsup(()) - JI.inf(y)}

= max{ foup(®) = fint (), fsup(¥) — fint(y)}

= max{fi(z), fi(y)}-

Hence, (A, fl) is a 4-fuzzy UP-subalgebra of A, that is, (A, f) is a length
4-fuzzy UP-subalgebra of A. O
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Corollary 3.32. If (A, f) is a hyper structure over A in which (A, fsup)
is constant and (A, fint) is a 3-fuzzy UP-subalgebra of A, then (A, f) is
a length 4-fuzzy UP-subalgebra of A.

Proof. 1t is straightforward by Theorems 2.13 and 3.31. (]

Corollary 3.33. Fori € {1,3}, every (i,2(3))-hyperfuzzy UP-subalgebra
of A is a length 4-fuzzy UP-subalgebra.

Proof. 1t is straightforward by Theorem 3.31 and Corollary 3.32. (]

The following example show that the converse of Corollary 3.33 is not
true.

Example 3.34. Consider a UP-algebra A = {0,1,2, 3, 4} in Example

3.22. Let (A, f) be a hyper structure over A in which f is given as
follows:

. 0 1 2 3 4
F= < (0.5,0.6) (0.4,0.75] [0.3,0.8] [0.2,0.8) [0.1,1) >

Then the length of f is given as follows:

7- 0 1 2 3 4
=101 03 05 07 09 )°

Thus (A4, f) is a length 4-fuzzy UP-subalgebra of A. Since

(0 1 2 34
s» =\ 06 075 08 08 1 )’

we have fsup is not constant. By Theorems 2.17 and 2.18, we have fsup
is not 2(3)-fuzzy UP-subalgebra of A. Hence, (A, f) is not a (j,2(3))-
hyperfuzzy UP-subalgebra of A for j € {1, 3}.

Theorem 3.35. If (4, f) is a length 1-fuzzy UP-subalgebra of A in
which fing is constant, then (A, f) is a (k,1)-hyperfuzzy UP-subalgebra
of A for k € {1,2,3,4}.

Proof. Assume that (A, f) is a length 1-fuzzy UP-subalgebra of A in
which fmf is constant. By Theorems 2.13, 2.15, 2.17, and 2.18, we have
fing is a k-fuzzy UP- subalgebra of A for k € {1 2,3,4}. Since fing 1S
constant, we have fmf( ) = fmf( ) for all x € A. Let z,y € A. Then
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ng(x y) = fsup(x Y) — finf(o)' Thus
fap(@ - y) = Az - y) + fins (0)
> min{ fi(z), fi(y)} + fint (0)
= min{/i(z) + fiur(0), fi(y) + finr(0)}
= min{fi() + fir (), i(y) + fiur(v)}
= min{ foup (), foup()}-

Hence, (A, fsup) is a 1-fuzzy UP-subalgebra of A. Therefore, (A, f) is a
(k, 1)-hyperfuzzy UP-subalgebra of A. O

Corollary 3.36. If (A, f) is a length 3-fuzzy UP-subalgebra of A in
which fine is constant, then (A, f) is a (k,1)-hyperfuzzy UP-subalgebra
of A fork € {1,2,3,4}.

Proof. 1t is straightforward by Theorems 4.6 and 3.35. (]
Theorem 3.37. If (A, f) is a length 4-fuzzy UP-subalgebra of A in

which fine is constant, then (A, f) is a (k,4)-hyperfuzzy UP-subalgebra
of A for k € {1,2,3,4}.

Proof. Assume that (A, f) is a length 4-fuzzy UP-subalgebra of A in
which fmf is constant. By Theorems 2.13, 2.15, 2.17, and 2.18, we have
fing is a k-fuzzy UP- subalgebra of A for k € {1 2,3,4}. Since fing 1S
constant, we have fmf( ) = fmf( ) for all x € A. Let z,y € A. Then

A y) = faup(z - y) — fine(0). Thus
fap(@ - y) = filz - y) + finr(0)
< max{fi(z), fi(y)} + fint (0)
= max{fi(z) + fint(0), Aiy) + finr (0)}
= max{fi(z) + fiur(2), Ay) + fint (1)}
= max{ foup(7), foup(¥) }-

Hence, (A, fsup) is a 4-fuzzy UP-subalgebra of A. Therefore, (4, f) is a
(k,4)-hyperfuzzy UP-subalgebra of A. O

Corollary 3.38. If (4, f) is a length 2-fuzzy UP-subalgebra of A in
which fine is constant, then (A, f) is a (k,4)-hyperfuzzy UP-subalgebra
of A for k € {1,2,3,4}.

Proof. 1t is straightforward by Theorems 4.7 and 3.37. O

Theorem 3.39. If (A, f) is a length 1-fuzzy UP-subalgebra of A in
which fsup is constant, then (A, f) is a (4, k)-hyperfuzzy UP-subalgebra
of A fork € {1,2,3,4}.
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Proof. Assume that (A, f) is a length 1-fuzzy UP-subalgebra of A in
which fsup is constant. By Theorems 2.13, 2.15, 2.17, and 2.18, we have
fsup is a k-fuzzy UP-subalgebra of A for k € {1,2,3,4}. Since fsup is
constant, we have foup () = feup(0) for all z € A. Let x,y € A. Then
filz - y) = fsup(0) — fine(2 - y). Thus

fint(@ - y) = foup(0) — fi(z - y)

< fsup( ) mln{fl(x) 1( )}
= max{ foup(0) — fi(2), foup(0) — fily)}
= max{ fsup(z) — filz), f p() — fiy)}

= max{finf (x), f.inf(y) }-

Hence, (A, fing) is a 4-fuzzy UP-subalgebra of A. Therefore, (A, f) is a
(4, k)-hyperfuzzy UP-subalgebra of A. O

Corollary 3.40. If (A, f) is a length 3-fuzzy UP-subalgebra of A in
which fsup is constant, then (A, f) is a (4, k)-hyperfuzzy UP-subalgebra
of A for ke {1,2,3,4}.

Proof. Tt is straightforward by Theorems 4.6 and 3.39. (]

Theorem 3.41. If (A, f) is a length 4-fuzzy UP-subalgebra of A in
which fbup is constant, then (A, f) is a (1, k)-hyperfuzzy UP-subalgebra
of A fork € {1,2,3,4}.

Proof. Assume that (A, f) is a length 4-fuzzy UP-subalgebra of A in
which fsup is constant. By Theorems 2.13, 2.15, 2.17, and 2.18, we have
fsup is a k-fuzzy UP- subalgebra of A for k € {1,2,3,4}. Since fsup is
constant, we have fsup( z) = foup(0) for all z € A. Let x,y € A. Then

fl(ﬂlj y) = fsup( ) — fmf(ﬂl7 y). Thus
fint (@ - y) = faup(0) = filz - )
> fuup(0) — max{fi(x), fi(y)}
= min{ foup(0) = fi(2), fup(0) — fi(y)}
= min{fsup(x) - le(x), fsur)(y) - fl(y)}
= min{ fins(2), fint (y)}-

Hence, (A, fmf) is a 1-fuzzy UP-subalgebra of A. Therefore, (A, f) is a
(1, k)-hyperfuzzy UP-subalgebra of A. O

Corollary 3.42. If (4, f) is a length 2-fuzzy UP-subalgebra of A in
which fsup is constant, then (A, f) is a (1, k)-hyperfuzzy UP-subalgebra
of A fork € {1,2,3,4}.
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Proof. 1t is straightforward by Theorems 4.7 and 3.41. (]

4. MEAN OF A HYPER STRUCTURE IN UP-ALGEBRAS

In this section, we introduce the notion of the mean of a hyper struc-
ture in UP-algebras. The notions of mean fuzzy UP-subalgebras of UP-
algebras are introduced, and related properties are investigated. Rela-
tions between mean fuzzy UP-subalgebras and hyperfuzzy UP-subalgebras
are established. Moreover, we discuss the relationships among mean
fuzzy UP-subalgebras and upper level subsets, lower level subsets, and
equal level subsets of the length of a hyper structure in UP-algebras.

Definition 4.1. Given a hyper structure (A,f) over A, we define a
fuzzy structures (A, fin) in A as follows:

Fsup(®) + fint ()

fm:A—=10,1], 2 — 5

which is called the mean of f.

Definition 4.2. A hyper structure (A, f) over A is called a mean 1-
fuzzy (resp., 2-fuzzy, 3-fuzzy and 4-fuzzy) UP-subalgebra of A if a fuzzy
structures (A, fi) is a 1-fuzzy (resp., 2-fuzzy, 3-fuzzy and 4-fuzzy) UP-
subalgebra of A.

Example 4.3. Consider a UP-algebra A = {0,1,2,3,4} with the binary
operation - which is given as follows:

-0 1 2 3 4
0j0 1 2 3 4
110 0 2 3 4
210 0 0 30
3]0 0 2 0 4
410 01 3 0

Let (A, f ) be a hyper structure over A in which f is given as follows:

: 0 1 2 3 4
F= ( (0.6,0.9) (0.5,0.9] [0.2,0.4)U[0.5,0.8) [0.3,0.5] [0.1,0.3] U (0.4,0.6] >

Then the mean of f is given as follows:

foo( 0 12 3 4

w075 07 05 04 035 )

Thus (A, fu) is a 1-fuzzy UP-subalgebra of A, that is, (4, f) is a mean
1-fuzzy UP-subalgebra of A.

Proposition 4.4. If (A, f) 18 a mean k-fuzzy UP-subalgebra of A for
k=1,3, then B B
(Vo € A)(fm(0) = fm(2)). (4.1)
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Proof. 1t is straightforward by Proposition 2.11. O

Proposition 4.5. If (A, f) 18 a mean k-fuzzy UP-subalgebra of A for
k=2,4, then

(Ve € A)(fn(0) < fu(2)). (4.2)
Proof. 1t is straightforward by Proposition 2.12. (]

Theorem 4.6. Every mean 3-fuzzy UP-subalgebra of A is a mean 1-
fuzzy UP-subalgebra.

Proof. 1t is straightforward by Theorem 2.13. O

Theorem 4.7. Every mean 2-fuzzy UP-subalgebra of A is a mean 4-
fuzzy UP-subalgebra.

Proof. 1t is straightforward by Theorem 2.15. (|

Theorem 4.8. Mean 2-fuzzy UP-subalgebra and mean 3-fuzzy UP-subalgebra

of A coincide.
Proof. 1t is straightforward by Theorems 2.17 and 2.18. (]

Theorem 4.9. Given a UP-subalgebra S of A and By, By € 15([0, 1)),
let (A, f) be a hyper structure over A given by
. _ {32 ifx €8,

:A— P(]0,1]), 2z —
/ (0, 1)), By otherwise.

(i) If sup By > sup By and inf By > inf By, then (A, f) is a mean
1-fuzzy UP-subalgebra of A.

(i) If sup By < sup By and inf By < inf By, then (A, f) is a mean
4-fuzzy UP-subalgebra of A.

Proof. If x € S, then f(z) = By and so

~ B fsup(zr) + fint() _sup f(x) + inf f(x) _ sup By + inf By
fm(7) = B = 5 = 5 .

If 2 ¢ S, then f(z) = By and so

me(x) _ fsup(x) ;‘ ]Finf(CU) _ sup f(ﬁ) ;-inf f($) _ sup B, ;—inf By ‘

Assume that sup By > sup B and inf By > inf B;. Then

2

sup By + inf B
5 .

sup By + inf By N
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= By +inf B P
Case 1: Let z,y € S. Then fn,(z) = Sup 2;111 2 and fm(y) =

sup By + inf By sup By + inf By

. Thus min{ fiu (), fm(y)} = . Since §
is a UP-subalgebra of A, we have x -y € S and so
~ sup By + inf B
Thus
~ sup By + inf B R ~
fula-y) = =2 = (2) min{ fun (), fu(9)}-
~ By +inf B ~
Case 2: Let x,y ¢ S. Then fi,(z) = sup B + Int 5 and fi,(y) =
By +inf B ~ ~ By +inf B
WP BL I BL ) min fan(2), ()} = SR PV DL gy

2 2

sup B + inf By

~ sup By + inf By
m . >
fm(z - y) = 5

Case 3: Let x ¢ S and y € S. Then fm(ac) =

~ sup By + inf B L~ ~
and fm(y) = 2 9 27 S0 mln{fm(x)a fm(y)} =
Thus

2
sup By + inf By
5 )

~ sup By + inf By

fm(z-y) > 9 = min{fm(m)a fm(y)}

7 By +inf B
Case 4: Let z € S and y € S. Then fun(z) = sup b2 + int Bo

~ sup B; + inf B Lo ~
and fu(y) = 5 so min{fu(®), fu(y)} =
Thus

2
sup By + inf By
5 :
~ sup By + inf B L ~
fanl - y) 2 == = min{fu(2), fua(v)}.
Hence, fm is a 1-fuzzy UP-subalgebra of A and so (A, f) is a mean
1-fuzzy UP-subalgebra of A.

Assume that sup By < sup By and inf By < inf By. Then

sup By + inf By <

5 <
sup By + inf B;
5 )
~ Bs +inf B ~
Case 1: Let x,y € S. Then fy,(z) = Sup Bz + Int 22 and fi,(y) =

sup By + inf By sup By + inf By

. Since S is a

, SO max{fm(x)afm(y)} =
UP-subalgebra of A, we have z -y € S and so
~ sup By + inf By
fm(w : y) = 5 .
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Thus

~ sup By + inf By

fu(z-y) = 5 = (<) max{ fuu(2), fm(y)}

- By +inf B ~
Case 2: Let x,y ¢ S. Then fu,(z) = Supb 1;-111 L and fu(y) =

sup By +inf B ~ ~ sup By + inf B
PRI so max{ fun(e), fun(y)} = TR

2 2
_ inf _ _
fm($ : y) < sup 5, ;—ln B = max{fm(-r)’fm(y)}

x B; +inf B
Case 3: Let x ¢ S and y € S. Then fy(z) = sup 1;1n g

~ sup By 4+ inf B ~ ~ sup B; +inf B
fuly) = =52 so max{fu(2), fu(y)} = =5
Thus

Thus

~ sup By + inf By

Fula - y) < FPELEE — max( fu o), funly):

sup By + inf Bo

Case 4: Let z € S and y ¢ S. Then fi(z) = 5
_ sup By +inf By _ sup By +inf By

and fu(y) = “PEEII o el o), Fnl1)} .
Thus
~ sup B; +inf B ~ ~
funla - y) < = = max{fu(2), fu(v)}.
Hence, fy, is a 4-fuzzy UP-subalgebra of A and so (A, f) is a mean
4-fuzzy UP-subalgebra of A. (]

Example 4.10. Consider a UP-algebra A = {0,1,2,3,4} with the bi-
nary operation - which is given as follows:

101 2 3 4
0(o0 1 2 3 4
110 0 2 0 O
210 1 0 3 4
310 1 2 0 4
410 3 2 3 0

Then S = {0,1,2} is a UP-subalgebra of A. Let (A4, f) be a hyper
structure over A in which f is given as follows:

e 0 1 2 3 4
~ \ [0.04,0.18) [0.04,0.18) [0.04,0.18) (0.03,0.11] (0.03,0.11] /-

Then the mean of f is given as follows:

jo_(0 1 o2 3 4
m =\ 011 011 011 0.07 0.07 )
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By Theorem 4.9, we have (A, f) is a mean 1-fuzzy UP-subalgebra of A.
We see that

fm(2-3) = 0.07 # 0.11 = max{0.11,0.07} = max{ fm(2), f(3)}.
Thus (A, fum) is not a 3-fuzzy UP-subalgebra of A, that is, (A, f) is not a

mean 3-fuzzy UP-subalgebra of A. Give a UP-subalgebra S = {0, 1,2, 3}
of A, let (A, f) be a hyper structure over A given by

- 0 1 2 3 4
F= < (0.4,0.7) (0.4,0.7) (0.4,0.7) (0.4,0.7) [0.5,0.9) >

Then the mean of f is given as follows:

jo_(0 1 2 3 4
m =\ 055 055 055 055 0.7 )°

By Theorem 4.9, we have (A, f) is a mean 4-fuzzy UP-subalgebra of A.
We see that

fm(2-4) = fi(4) = 0.7 £ 0.55 = max{0.11,0.07} = min{ f(2), fu(4)}.

Thus (A, fu) is not a 2-fuzzy UP-subalgebra of A, that is, (A, f) is not
a mean 2-fuzzy UP-subalgebra of A.

Theorem 4.11. A hyper structure (A, f)~0ver A is a mean 1-fuzzy UP-
subalgebra of A if and oply if the set U(fm;t) is a UP-subalgebra of A
for all t € [0,1] with U(fm;t) # 0.

Proof. Assume that (A, f) is a mean 1-fuzzy UP-subalgebra of A. Let
t € [0,1] be such that U(fm;t) # 0 and let 2,y € U(fm;t). Then
fm(z) >t and fu,(y) > t. Since (A, f) is a mean 1-fuzzy UP-subalgebra
of A, we have

fu(z - y) > min{ fu(2), fu(y)} > t.
Thus z -y € U(f;n; t). Hence, U(f;n; t) is a UP-subalgebra of A.

Conversely, assume that for all ¢ € [0,1], the set U( fm;t) is a UP-
subalgebra of Aif U(fu;t) # 0. Let 2,5y € A. Then fu,(2), fm(y) € [0,1].
Choose t = min{ fi(z), fm(y)}. Thus fu(z) >t and fu(y) > t and so
x,y € U(fm;t) # 0. By assumption, we have U(fm; t) is a UP-subalgebra

of Aand so z-y € U(fm;t). Thus

fm(x y) >t= min{fm(x), ng(y)}

Hence, (A, fu) is a 1-fuzzy UP-subalgebra of A, that is, (A4, f) is a mean
1-fuzzy UP-subalgebra of A. O

Corollary 4.12. If (A,f) is a mean 3-fuzzy UP-subalgebra of A, then
U(fm;t) is a UP-subalgebra of A for all t € [0,1] with U(fm;t) # 0.
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Proof. 1t is straightforward by Theorems 4.6 and 4.11. (]

The following example show that the converse of Corollary 4.12 is not
true.

Example 4.13. Consider a UP-algebra A = {0,1,2,3,4} with the bi-
nary operation - which is given as follows:
0 2

W N = O -
SO OO
—_ = O | =
N O NN
WO O WWwWw
S OO

410 1 2
Let (A, f ) be a hyper structure over A in which f is given as follows:

- 0 1 2 3 4
F= ( (0.6,0.9) (0.5,0.7] [0.2,0.4]U(0.5,0.9] (0.3,0.5] [0.1,0.7] )

Then the mean of f is given as follows:

(0 12 3 4
m=\ 075 06 055 04 04 )

We have
0 if t € (0.75,1],
{0} if t € (0.6,0.75],
U(fm;t) =< {0,1}  ift € (0.55,0.6],
{0,1,2} if t € (0.4,0.55],
A if t € [0,0.4]

and so U(fm;t) is a UP-subalgebra of A for all t € [0,1] with U(fu;t) #
(. We see that

fm(0-2) = fum(2) = 0.55 # 0.75 = max{ f(0), fm(4)}.
Thus (A, fu) is not a 3-fuzzy UP-subalgebra of A, that is, (A, f) is not
a mean 3-fuzzy UP-subalgebra of A.

Theorem 4.14. A hyper structure (A, f) over A is a mean 4-fuzzy UP-
subalgebra of A if and only if the set L(fm;t) is a UP-subalgebra of A
for all t € [0,1] with L(fm;t) # 0.

Proof. Assume that (A, f) is a mean 4-fuzzy UP-subalgebra of A. Let
t € [0,1] be such that L(fy;t) # 0 and let z,y € L(fm;t). Then
fm(z) <tand fi(y) <t. Since (A, f) is a mean 4-fuzzy UP-subalgebra
of A, we have

fm($ : y) < max{fm(:l:),fm(y)} <t.
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Thus z -y € L(fm;t). Hence, L(fm;t) is a UP-subalgebra of A.

Conversely, assume that for all ¢ € [0,1], the set L(fm;t) is a UP-
subalgebra of A if L(fm;t) # 0. Let 2,3 € A. Then fiu(z), fm(y) € [0, 1].
Choose t = max{ fu(z), fm(y)}. Thus f(z) <t and fi(y) < t, and so
x,y € L(fm;t) # 0. By assumption, we have L(fu; ) is a UP-subalgebra

of A and so z-y € L(fm;t). Thus
]Fm(x y) <t= max{fm(x)ﬁfm(y)}‘

Hence, (A4, fm) is a 4-fuzzy UP-subalgebra of A, that is, (A, f) is a mean
4-fuzzy UP-subalgebra of A. O

Corollary 4.15. If (A, f) is a mean 2-fuzzy UP-subalgebra of A, then
L(fm;t) is a UP-subalgebra of A for all t € [0,1] with L(fm;t) # 0.

Proof. 1t is straightforward by Theorems 4.7 and 4.14. (]

The following example show that the converse of Corollary 4.15 is not
true.

Example 4.16. Consider a UP-algebra A = {0,1,2,3,4} with the bi-
nary operation - which is given as follows:

-0 1 2 3 4
0j0 1 2 3 4
110 0 2 3 4
210 0 0 3 4
310 1 1 0 4
410 1 2 3 0

Let (A, f ) be a hyper structure over A in which f is given as follows:

;. 0 1 2 3 4
F= ( (0.3,0.5) [0.3,0.4] U (0.5,0.7] [0.1,0.9] [0.5,0.6] U (0.8,0.9] [0.7,0.8] )

Then the mean of f is given as follows:

i _( 0 1 2 3 4 >
m=104 05 05 07 075 )"
We have
A if t € [0.75, 1],
{0,1,2,3} if t €[0.7,0.75),
L(fmit) =4 {0,1,2}  ifte[0.5,0.7),
{0} if t €[0.4,0.5),
0 if t €10,0.4)

\
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and so L(fm; ) is a UP-subalgebra of A for all t € [0, 1] with L(fu;t) # 0.
We see that

fm(0-2) = 0.5 £ 0.4 = min{ fin(0), fn(2)}.

Thus (A, fu) is not a 2-fuzzy UP-subalgebra of A, that is, (A, f) is not
a mean 2-fuzzy UP-subalgebra of A.

Theorem 4.17. A hyper structure (A, f) over A is a mean 2(3 )-fuzzy
UP-subalgebra of A if and only if the set E(fum; fm(0)) = A.

Proof. Assume that (A, f ) is a mean 2-fuzzy UP-subalgebra of A. Then
fm is a 2-fuzzy UP-subalgebra of A. By Theorem 2.17, we have is
constant and so fi,(z) = fm( 0) for all z € A. Thus z € E(fu; fum(0))
for all x € A. Therefore, E(fm, fm( ) = A.

Conversely, assume that E(fn; fm(0)) = A. Then fu(x) = fu(0) for
all z € A. Thus fu is constant. By Theorem 2.17, we have fp, is a 2-fuzzy
UP-subalgebraA. Therefore, (A, f ) is a mean 2-fuzzy UP-subalgebra of
A. O

Theorem 4.18. If (4, f) is a hyper structure over A in which (A, fmf)
is constant and (A, fsup) is a 1-fuzzy UP-subalgebra of A, then (A, f) is
a mean 1-fuzzy UP-subalgebra of A.

Proof. Assume that (A4, f) is a hyper structure over A in which (A, fiy)
is constant and (A, fsup) is a 1-fuzzy UP-subalgebra of A. Let z,y €
A. Since (A fmf) is constant, we have fmf( ) = fmf( ) for all x € A.
Since (A fsup) is a 1-fuzzy UP-subalgebra of A, we have fsup(:zt y) >

mln{fsup( )7fsup( )}. Thus
fsup(w y)+f1nf(x y)

(- y) = 5
B fsu (z-y) finf(o)
= 2 T
> min{fsm;( ) fbup( )} + finf2(0)
_ mll’l{ fSuI;(x) + fian( )7 fsu];(y) + flnf2(0)}
_ min{ fsup(x) + finf(x) fsup(y) + flnf(y)}
- 2 ’ 2

= min{fm(l‘), fm(y)}

Hence (A, fm) is a 1-fuzzy UP-subalgebra of A, that is, (A, f) is a mean
1-fuzzy UP-subalgebra of A. O
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Corollary 4.19. If (A, f) be a hyper structure over A in which (A, finf)

is constant and (A, fsup) is a 3-fuzzy UP-subalgebra of A, then (A, f) is
a mean 1-fuzzy UP-subalgebra of A.

Proof. 1t is straightforward by Theorems 2.13 and 4.18. U

Corollary 4.20. Forj € {1,3}, every (2(3), j)-hyperfuzzy UP-subalgebra
is a mean 1-fuzzy UP-subalgebra.

Proof. Tt is straightforward by Theorems 4.18 and 4.19. (]

The following example show that the converse of Corollary 4.20 is not
true.

Example 4.21. Consider a UP-algebra A = {0,1,2,3,4} with the bi-
nary operation - which is given as follows:

<101 2 3 4
0/0 1 2 3 4
110 0 2 3 4
2/0 2 0 3 4
310 2 2 0 4
410 2 2 3 0

Let (A, f ) be a hyper structure over A in which f is given as follows:

- 0 1 2 3 4
f= < 0.6,0.9) (0.5,0.8] [0.1,0.9] [0.3,0.6) [0.3,0.6) >

Then the mean of f is given as follows:

j_(0 1 2 3 4
m=\ 075 065 05 045 045 )

Thus (A, f) is a mean 1-fuzzy UP-subalgebra of A. Since

. 0 1 2 3 4
nf =106 05 01 03 03 )’

we have finf is not constant. By Theorems 2.17 angi 2.18, we have finf
is not 2(3)-fuzzy UP-subalgebra of A. Hence, (A4, f) is not a (2(3),7)-
hyperfuzzy UP-subalgebra of A for j € {1, 3}.

Theorem 4.22. If (~A, f) is a hyper structure over A in which (A, fjnf)
is constant and (A, fsup) is a 4-fuzzy UP-subalgebra of A, then (A, f) is
a mean 4-fuzzy UP-subalgebra of A.

Proof. Assume that (A, f) is a hyper structure over A in which (A, finf)

is constant and (A, feup) is a 4-fuzzy UP-subalgebra of A. Let z,y €
A. Since (A, fint) is constant, we have finr(x) = fine(0) for all x € A.
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Since (A, fsup) is a 4-fuzzy UP-subalgebra of A, we have fsup(a: cy) <

maxc{ foup (%), foup ()} Thus

f~rn(x . y) _ .]Esup(x : y) + .]Einf@: : y)

2
_ fsup(x : y) + .]Elnf(o)
2
- fsu (CC y) fsu (0)
B p2 * g
fsu (x) fsu (y) fsu (O)
< max{ g , ; 4 ;
_ fap(@)  foup(0) foup(y) | Ffoup(0)
—max{~; —|—~I2) ,~g +~ g }
_ max{ fsup(w) ;‘ finf(x)’ fsup(y) ;_ finf(y)}

= max{fm(fﬂ), fm(y)}

Hence, (A, fu) is a 4-fuzzy UP-subalgebra of A, that is, (A, f) is a mean
4-fuzzy UP-subalgebra of A. O

Corollary 4.23. If (A, f) be a hyper structure over A in which (A, finf)
is constant and (A, fsup) is a 2-fuzzy UP-subalgebra of A, then (A, f) is
a mean 4-fuzzy UP-subalgebra of A.

Proof. Tt is straightforward by Theorems 2.15 and 4.22. (]

Corollary 4.24. Forj € {2,4}, every (2(3), j)-hyperfuzzy UP-subalgebra
is a mean 4-fuzzy UP-subalgebra of A.

Proof. 1t is straightforward by Theorems 4.22 and 4.23. (]

The following example show that the converse of Corollary 4.32 is not
true.

Example 4.25. Consider a UP-algebra A = {0,1,2, 3,4}~in Example
4.21. Let (A, f) be a hyper structure over A in which f is given as
follows:

. 0 1 2 3 4
f= < 0.3,0.6) (0.3,0.6] [0.1,0.9] [0.5,0.8) [0.6,0.9) )

Then the mean of f is given as follows:

j_(0 1 2 3 4
m =1 045 045 05 065 0.75 )
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Thus (A4, f ) is a mean 4-fuzzy UP-subalgebra of A. Since

. 0 1 2 3 4
nf =103 03 01 05 06 )’

we have finf is not constant. By Theorems 2.17 angi 2.18, we have finf
is not 2(3)-fuzzy UP-subalgebra of A. Hence, (A, f) is not a (2(3), j)-
hyperfuzzy UP-subalgebra of A for j € {2,4}.

Theorem 4.26. If (A, f) is a hyper structure over A in which (A, fsup)

is constant and (A, fing) is a 4-fuzzy UP-subalgebra of A, then (A, f) is
a mean 4-fuzzy UP-subalgebra of A.

Proof. Assume that (A, f) is a hyper structure over A in which (A, fsup)
is constant and (A4, fmf) is a 4-fuzzy UP-subalgebra of A. Let x,y € A.
Since (A, foup) is constant, we have foup(z) = foup(0) for some z € A.
Since (4, ﬁnfl is a 4-fuzzy UP-subalgebra of A, we have fiy(z - y) <
max{finf(x>7 finf(y)}' Thus

. ~ fow(@y) + funt(z )

fu(z-y) = 5
_ Joup(0) + fine( - )
_ fsug(O) +2ﬁnf(;5'y)
- fsu;(o) + max] fm;(@j fm;(y)}
~ max fsug(o) N ﬁn;(x)’ fsu;(o) N finfz(y)}
—— Foup () —2F St (@) Foup(9) —2F fint(y) ,

= max{fm(J?),fm(y)}-

Hence, (A, fm) is a 4-fuzzy UP-subalgebra of A, that is, (A, f) is a mean
4-fuzzy UP-subalgebra of A. O

Corollary 4.27. If (A, f) be a hyper structure over A in which (A, fsup)
is constant and (A, fint) is a 2-fuzzy UP-subalgebra of A, then (A, f) is
a mean 4-fuzzy UP-subalgebra of A.

Proof. 1t is straightforward by Theorems 2.15 and 4.26. O

Corollary 4.28. Fori € {2,4}, every (i,2(3))-hyperfuzzy UP-subalgebra
is a mean 4-fuzzy UP-subalgebra of A.

Proof. 1t is straightforward by Theorems 4.26 and Corollary 4.27. I
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The following example show that the converse of Corollary 4.28 is not

true.

Example 4.29. Consider a UP-algebra A = {0,1,2,3 4} in Example
4.21. Let (A, f) be a hyper structure over A in which f is given as
follows:

- 0 1 2 3 4
f= < 0.6,0.9) (0.5,0.8] [0.4,0.9] [0.3,0.6) [0.3,0.6) >

Then the mean of f is given as follows:

jo_(0 1 2 3 4
m =\ 075 065 0.65 045 045 )

Thus (A, f ) is a mean 4-fuzzy UP-subalgebra of A. Since

fo_(0 1 2 3 4
s =\ 06 05 04 06 0.6 )°

we have fsup is not constant. By Theorems 2.17 and 2.18, we have fsup
is not 2(3)-fuzzy UP-subalgebra of A. Hence, (A, f) is not a (j,2(3))-
hyperfuzzy UP-subalgebra of A for j € {2,4}.

Theorem 4.30. If (4, f) is a hyper structure over A in which (A, fsup)

is constant and (A, fing) is a 1-fuzzy UP-subalgebra of A, then (A, f) is
a mean 1-fuzzy UP-subalgebra of A.

Proof. Assume that (A, f) is a hyper structure over A in which (A, fsup)
is constant and (A4, fmf) is a 1-fuzzy UP-subalgebra of A. Let x,y € A.
Since (A, foup) is constant, we have fop(z) = foup(0) for allz € A.
Since (A, fin) is a 1-fuzzy UP-subalgebra of A, we obtain fiu¢(z - y) >
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min{finf(x), finf(y)}. Thus
o fsup(l' : y) + f.inf(x : y)

fnl(x y) = 5
— fsup(o) + .]Einf(x ' y)
2
_ fsu (0) finf(x ’ y)
o g L
fsu (O) . finf ('7;) .finf(y)
> g + min{ 5 g }
. fSu (0) .]ginf(x) fsu (0) .]Zinf(y)
_mm{Ng +~2 ’~r2) +~2 !
— min{ Jsup(®) + fint(2)  foup(y) + finf(y)}
N 2 ’ 2

= min{ fu(z), fin(¥)}-

Hence, (A, fu) is a 1-fuzzy UP-subalgebra of A, that is, (A4, f) is a mean
1-fuzzy UP-subalgebra of A. O

Corollary 4.31. If (A, f) is a hyper structure over A in which (A, fsup)
is constant and (A, fint) i a 3-fuzzy UP-subalgebra of A, then (A, f) is
a mean 1-fuzzy UP-subalgebra of A.

Proof. 1t is straightforward by Theorems 2.13 and 4.22. (]

Corollary 4.32. Fori € {1, 3}, every (i,2(3))-hyperfuzzy UP-subalgebra
is a mean 1-fuzzy UP-subalgebra of A.

Proof. 1t is straightforward by Theorems 4.30 and Corollary 4.31.  [J

The following example show that the converse of Corollary 4.32 is not
true.

Example 4.33. Consider a UP-algebra A = {0,1,2,3,4} in Example
4.21. Let (A, f) be a hyper structure over A in which f is given as
follows:

. 0 1 2 3 4
F= < (0.3,0.6) (0.3,0.] [0.4,0.9] [0.5,0.8) [0.6,0.9) )

Then the mean of f is given as follows:

jo_(0 1 2 3 4
W\ 045 045 0.65 0.65 0.75 )
Thus (A, f) is a mean 1-fuzzy UP-subalgebra of A. Since

fo_(0 1 2 3 4
s> =\ 06 0.6 09 08 09 /°
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we have fsup is not constant. By Theorems 2.17 and 2.18, we have fsup
is not 2(3)-fuzzy UP-subalgebra of A. Hence, (A, f) is not a (7,2(3))-
hyperfuzzy UP-subalgebra of A for j € {1, 3}.

Theorem 4.34. If (A, f) is a mean 1-fuzzy UP-subalgebra of A in which
fint is constant, then (A, f) is a (k,1)-hyperfuzzy UP-subalgebra of A for
ke{1,2,3,4}.

Proof. Assume that (A, f) is a mean 1-fuzzy UP-subalgebra of A in
which fmf is constant. By Theorems 2.13, 2.15, 2.17, and 2.18, we have
fmf is a k-fuzzy UP- subalgebra of A for k € {1 2,3,4}. Since fmf is
constant, we have fmf( ) = fmf( ) for all x € A. Let z,y € A. Then

.]Em(x y) = fsup(x : y) ;_ finf(x . y)

Thus

fap(z - y) =2fm(z - y) — fint(z - y)
= 2fum(z - y) — fins (0)
> 2min{fun(2), fun(y)} = finr (0)
= min{2/un(2), 2/ (®)} — fins (0)
= min{2fm(z) = fin(0),2fm(y) — fine(0)}
= min{2fm(2) = finr(®), 2fm(¥) — finc(y)}
= min{ foup (), foup(¥)}-

Hence, (A, fsup) is a 1-fuzzy UP-subalgebra of A. Therefore, (4, f) is a
(k,1)-hyperfuzzy UP-subalgebra of A. O

Corollary 4.35. If (A, f) is a mean 3-fuzzy subalgebra of A in which
fint is constant, then (A, f) is a (k,1)-hyperfuzzy UP-subalgebra of A for
ke {1,2,3,4}.

Proof. 1t is straightforward by Theorems 2.13 and 4.34. (]

Theorem 4.36. If (A, f) 1s a mean 4-fuzzy UP-subalgebra of A in which
fint is constant, then (A, f) is a (k,4)-hyperfuzzy UP-subalgebra of A for
ke {1,2,3,4}.

Proof. Assume that (A, f) is a mean 4-fuzzy UP-subalgebra of A in
which fmf is constant. By Theorems 2.13, 2.15, 2.17, and 2.18, we have
fing is a k-fuzzy UP- subalgebra of A for k € {1 2,3,4}. Since fing 1S
constant, we have fmf( ) = fmf( ) for all z € A. Let 2,y € A. Then

fsup(x y)""flnf(x y)
2

fulz - y) =
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Thus
fsup(x y) = 2fm(az y) — finf(gf ¥
= 2fm(z - y) = fint (0)
< 2max{fu(2), fu(y)} = fiut (0)

= max{2fin (), 2fm(¥)} — fint (0)

= max{2fu(z) = fint(0), 2fm(y) — fint (0)}
= max{2fu(x) = fint(2), 2/ (y) = fine(v)}
= max{ foup (2), faup(¥)}-

Hence, (A, faup) is a 4-fuzzy UP-subalgebra of A. Therefore, (A, f) is a
(k, 4)-hyperfuzzy UP-subalgebra of A. O

Corollary 4.37. If (A, f) is a mean 2-fuzzy UP-subalgebra of A in
which fing is constant, then (A, f) is a (k,4)-hyperfuzzy UP-subalgebra
of A fork € {1,2,3,4}.

Proof. 1t is straightforward by Theorems 2.15 and 4.36. O

Theorem 4.38. If (A, f) is a mean 4-fuzzy UP-subalgebra of A in which
fsup is constant, then (A, f) is a (4, k)-hyperfuzzy UP-subalgebra of A
fork e€{1,2,3,4}.

Proof. Assume that (A, f) is a mean 4-fuzzy UP-subalgebra of A in
which fsup is constant. By Theorems 2.13, 2.15, 2.17, and 2.18, we have
fsup is a k-fuzzy UP-subalgebra of A for k € {1,2,3,4}. Since fsup is
constant, we have foup(2) = foup(0) for all z € A. Let ,y € A. Then

fsup(x y)""flnf(m y)

funlz - y) = 5
Thus
fint (- y) = 2fm(x - y) = foup(z - y)
=2fm(z-y) = foup(0)
> 2max{ fu(2), fu(¥)} — faup(0)

= max{?fm(:n), fm(y)} - fsup(o)

= max{2fn(z) = foup(0) 2fm(y) = faup(0)}
= max{2fu (@) — foup (), 2fm(y) — foup (1)}
= max{ fint (z), fine(v)}-

Hence, (A, finf) is a 4-fuzzy UP-subalgebra of A. Therefore, (A, f) is a
(4, k)-hyperfuzzy UP-subalgebra of A. O
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Corollary 4.39. If (A, f) is a mean 2-fuzzy UP-subalgebra of A in which
fsup is constant, then (A, f) is a (4, k)-hyperfuzzy UP-subalgebra of A
fork e€{1,2,3,4}.

Proof. 1t is straightforward by Theorems 2.15 and 4.38. O

Theorem 4.40. If (A, f) is a mean 1-fuzzy UP-subalgebra of A in which
fsup is constant, then (A, f) is a (1, k)-hyperfuzzy UP-subalgebra of A
fork e€{1,2,3,4}.

Proof. Assume that (A, f) is a mean 4-fuzzy UP-subalgebra of A in
which fsup is constant. By Theorems 2.13, 2.15, 2.17, and 2.18, we have
fSup is a k-fuzzy UP-subalgebra of A for k € {1,2,3,4}. Since fsup is
constant, we have fsup( T) = fsup( ) for all z € A. Let z,y € A. Then

fsup(w y)+f1nf($ y)

fulz-y) = 5
Thus
fnt (@ y) = 2fm(z - y) = foup(z - y)
=2fm(z ) = foup(0)
(

> 2min{ fu(z), f (y)} — .]gsup(o)

= min{2fm(x), 2fm(y)} — Jgsup(o)

= min{2/fn(z) — sup(o)a 2fm(y) — faup(0)}
= min{2fm () — foup(), 2fm(¥) — foup(¥)}
= mln{finf(aﬁ), finf(y)}'

Hence, (A, fin) is a 1-fuzzy UP-subalgebra of A Therefore, (4, f) is a
(1, k)-hyperfuzzy UP-subalgebra of A. O

Corollary 4.41. If (A, f) is a mean 3-fuzzy UP-subalgebra of A in which
fsup is constant, then (A, f) is a (1, k)-hyperfuzzy UP-subalgebra of A
for ke {1,2,3,4}.

Proof. Tt is straightforward by Theorems 2.13 and 4.40. O

5. CONCLUSIONS

In this paper, we have introduced notions of length fuzzy UP-subalgebras
and mean fuzzy UP-subalgebras of UP-algebras and investigated some of
their important properties. Relations between length fuzzy UP-subalgebras
(resp., mean fuzzy UP-subalgebras) and hyperfuzzy UP-subalgebras are
established. Then we have the table of some relations between length
fuzzy UP-subalgebras and hyperfuzzy UP-subalgebras (see Figure 1),
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and mean fuzzy UP-subalgebras and hyperfuzzy UP-subalgebras (see
Figure 2) below.

FiGure 1. length fuzzy UP-subalgebras and hyperfuzzy
UP-subalgebras
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FIGURE 2. mean fuzzy UP-subalgebras and hyperfuzzy
UP-subalgebras

REFERENCES

[1] M. A. Ansari, A. Haidar, and A. N. A. Koam, On a graph associated to UP-
algebras, Math. Comput. Appl. 23 (2018), no. 4, 61.

[2] N. Dokkhamdang, A. Kesorn, and A. lampan, Generalized fuzzy sets in UP-
algebras, Ann. Fuzzy Math. Inform. 16 (2018), no. 2, 171-190.

[3] J. Ghosh and T. K. Samanta, Hyperfuzzy sets and hyperfuzzy group, Int. J.
Adv. Sci. Technol. 41 (2012), 27-37.

[4] A. Iampan, A new branch of the logical algebra: UP-algebras, J. Algebra Relat.
Top. 5 (2017), no. 1, 35-54.

[5] A.Iampan, Introducing fully UP-semigroups, Discuss. Math., Gen. Algebra Appl.
38 (2018), no. 2, 297-306.



[6]

7]

(16]
(17]

(18]

(19]

20]

Length and Mean Fuzzy UP-Subalgebras of UP-Algebras 303

Y. B. Jun, S.-Z. Song, and S. J. Kim, Length-fuzzy subalgebras in BCK/BCI-
algebras, Mathematics 6 (2018), no. 1, 11.

Y. B. Jun, K. Hur, and K. J. Lee, Hyperfuzzy subalgebras of BCK/BCl-algebras,
Ann. Fuzzy Math. Inform. 15 (2018), no. 1, 17-28.

W. Kaijae, P. Poungsumpao, S. Arayarangsi, and A. lampan, UP-algebras char-
acterized by their anti-fuzzy UP-ideals and anti-fuzzy UP-subalgebras, Ital. J.
Pure Appl. Math. 36 (2016), 667-692.

B. Kesorn, K. Maimun, W. Ratbandan, and A. lampan, Intuitionistic fuzzy sets
in UP-algebras, Ital. J. Pure Appl. Math. 34 (2015), 339-36.

C. Prabpayak and U. Leerawat, On ideals and congruences in KU-algebras, Sci.
Magna 5 (2009), no. 1, 54-57.

D. A. Romano, Proper UP-filters of UP-algebra, Univ. J. Math. Appl. 1 (2018),
no. 2, 98-100.

A. Satirad, P. Mosrijai, and A. ITampan, Formulas for finding UP-algebras, Int.
J. Math. Comput. Sci. 14 (2019), no. 2, 403—409.

A. Satirad, P. Mosrijai, and A. Iampan, Generalized power UP-algebras, Int. J.
Math. Comput. Sci. 14 (2019), no. 1, 17-25.

T. Senapati, Y. B. Jun, and K. P. Shum, Cubic set structure applied in UP-
algebras, Discrete Math. Algorithms Appl. 10 (2018), no. 4, 1850049.

T. Senapati, G. Muhiuddin, and K. P. Shum, Representation of UP-algebras
in interval-valued intuitionistic fuzzy environment, Ital. J. Pure Appl. Math. 38
(2017), 497-517.

J. Somjanta, N. Thuekaew, P. Kumpeangkeaw, and A. lampan, Fuzzy sets in
UP-algebras, Ann. Fuzzy Math. Inform. 12 (2016), no. 6, 739-756.

M. Songsaeng and A. lampan, N-fuzzy UP-algebras and its level subsets, J.
Algebra Relat. Top. 6 (2018), no. 1, 1-24.

S. Sripaeng, K. Tanamoon, and A. lampan, On anti Q-fuzzy UP-ideals and anti
Q-fuzzy UP-subalgebras of UP-algebras, J. Inf. Optim. Sci. 39 (2018), no. 5,
1095-1127.

K. Tanamoon, S. Sripaeng, and A. lampan, Q-fuzzy sets in UP-algebras, Songk-
lanakarin J. Sci. Technol. 40 (2018), no. 1, 9-29.

L. A. Zadeh, Fuzzy sets, Inf. Cont. 8 (1965), 338-353.



