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1. Introduction

We study the existence of positive solutions to the singular infinite semi-
positone system

−M1

( ∫
Ω |∇u|pdx

)
div(|x|−αp|∇u|p−2∇u)

= |x|−(α+1)p+c1(a1u
p−1 − f1(v)−

b1
uγ1

), x ∈ Ω,

−M2

( ∫
Ω |∇v|qdx

)
div(|x|−βq|∇v|q−2∇v)

= |x|−(β+1)q+c2(a2v
q−1 − f2(u)−

b2
vγ2

), x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

(1.1)
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where Ω is a bounded smooth domain of RN , N ≥ 3 with 0 ∈ Ω,

1 < p, q < N , 0 ≤ α <
N − p

p
, 0 ≤ β <

N − q

q
, γ1, γ2 ∈ (0, 1), and

a1, a2, b1, b2, c1, c2 are positive constants and
fi : [0,∞) → R, i = 1, 2, are continuous functions andMi : [0,∞] → R+,
i = 1, 2, aside from being continuous and nondecreasing functions and
0 < Mi,0 ≤Mi(t) ≤Mi,∞ for all t ∈ [0,∞), verify:

(H) There exist t2 > t1 > 0 such that
Mi(t2)

t
2

N−2

2

>
Mi(t1)

t
2

N−2

1

, see ([10]).

A typical example of a function satisfying this condition is Mi(t) =
Mi,0 + at,i = 1, 2 with a ≥ 0 and for all t ≥ 0. We make the following
assumptions:
(A1) There exist L > 0 and b > 1 such that fi(u) < Lub, for all u ≥ 0
and i = 1, 2.
(A2) There exists a constant S∗ > 0 such that max{a1up−1−f1(v), a2vq−1−
f2(u)} < S∗, for all u, v ≥ 0.
A simple example of fi satisfying these assumptions is fi(u) = ub,i = 1, 2
for any b > 1 .

System (1.1) is related to the stationary problem of a model intro-
duced by Kirchhoff [12]. More precisely, Kirchhoff proposed a model
given by the equation

ρ
∂2u

∂t2
−

(P0

h
+
E

2L

∫ L

0

∣∣∣∂u
∂x

∣∣∣2dx)∂2u
∂x2

= 0, (1.2)

where ρ, P0, h, E are all constants. This equation extends the classical
D’Alembert wave equation. A distinguishing feature of equation (1.2) is

that the equation has a nonlocal coefficient
P0

h
+
E

2L

∫ L

0

∣∣∣∂u
∂x

∣∣∣2dx which

depends on the average
1

2L

∫ L

0

∣∣∣∂u
∂x

∣∣∣2dx; hence the equation is no longer

a pointwise identity. we refer to [19] for additional result on kirchhoff
equations.In recent years ,there has been considerable progress on the
study of nonlocal problems,(see [15, 17, 18]). Nonlocal problems can
be used for modeling, for example, physical and biological systems for
which u describes a process which depends on the average of itself, such
as the population density. On the other hand, elliptic problems involving
more general operator, such as the degenerate quasilinear elliptic oper-
ator given by −div(|x|−αp|∇u|p−2∇u), were motivated by the following
Caffarelli, Kohn and Nirenberg’s inequality (see [4, 16, 21]).
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The study of this type of problem is motivated by its various appli-
cations, for example, in fluid mechanics, in newtonian fluids, in flow
through porous media and in glaciology (see [3], [7]). So, the study of
positive solutions of singular elliptic problems has more practical mean-
ings. Let F (h, k) = a1h

p−1−f1(k)− b1
hγ1 , and G(h, k) = a2k

q−1−f2(h)−
b2
kγ2 . Then lim

(h,k)→(0,0)
F (h, k) = lim

(h,k)→(0,0)
G(h, k) = −∞, and hence we

refer to (1.1) as an infinite semipositone system. In [13] the authors
discussed the single problem (1.1) when M1(t) ≡ 1, α = 0, p = c1 = 2,
and see [20] for the single equation case when M1(t) ≡ 1. Here we fo-
cus on further extending the study in [20, 13] for infinities semipositone
Kirchhoff type systems involving singularity. Our approach is based on
the method of sub-supersolutions, see [5, 8].

2. Main result

In this paper, we denote byW 1,p
0 (Ω, |x|−αp), the completion of C∞

0 (Ω),

with respect to the norm ‖u‖ =

(∫
Ω
|x|−αp|∇u|pdx

) 1
p

. To precisely

state our existence result we consider the eigenvalue problem{
−div(|x|−sr|∇ϕ|r−2∇ϕ) = λ|x|−(s+1)r+t|ϕ|r−2ϕ, x ∈ Ω,
ϕ = 0, x ∈ ∂Ω.

(2.1)

For r = p, s = α and t = c1, let ϕ1,p be the eigenfunction correspond-
ing to the first eigenvalue λ1,p of (2.1) such that ϕ1,p(x) > 0 in Ω and
‖ϕ1,p‖∞ = 1 and for r = q, s = β and t = c2, let ϕ1,q be the eigenfunction
corresponding to the first eigenvalue λ1,q of (2.1) such that ϕ1,q(x) > 0

in Ω, and ‖ϕ1,q‖∞ = 1 (see [14, 22]). It can be shown that
∂ϕ1,r
∂n

< 0

on ∂Ω for r = p, q. Here n is the outward normal. We will also consider
the unique solution (ζp(x), ζq(x)) ∈ W0(Ω, |x|−αp) × W0(Ω, |x|−βq) for
the system −div(|x|−αp|∇ζp|p−2∇ζp) = |x|−(α+1)p+c1 , x ∈ Ω,

−div(|x|−βq|∇ζq|q−2∇ζq) = |x|−(β+1)q+c2 , x ∈ Ω,
ζp = ζq = 0, x ∈ ∂Ω,

to discuss our existence result. It is well known that ζr(x) > 0 in Ω and
∂ζr(x)

∂n
< 0 on ∂Ω, for r = p, q (see [14]).

A pair of nonnegative functions (ψ1, ψ2), (z1, z2) is called a sub-
solution and super-solution of (1.1) if they satisfy (ψ1, ψ2) = (0, 0) =
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(z1, z2) on ∂Ω and

M1

(∫
Ω
|∇ψ1|pdx

)∫
Ω
|x|−αp|∇ψ1|p−2∇ψ1 · ∇wdx

≤
∫
Ω
|x|−(α+1)p+c1(a1ψ

p−1
1 − f1(ψ2)−

b1
ψγ1
1

)wdx,

M2

(∫
Ω
|∇ψ2|qdx

)∫
Ω
|x|−βq|∇ψ2|q−2∇ψ2 · ∇wdx

≤
∫
Ω
|x|−(β+1)q+c2(a2ψ

q−1
2 − f2(ψ1)−

b2
ψγ2
2

)wdx,

M1

(∫
Ω
|∇z1|pdx

)∫
Ω
|x|−αp|∇z1|p−2∇z1 · ∇wdx

≥
∫
Ω
|x|−(α+1)p+c1(a1z

p−1
1 − f1(z2)−

b1
zγ11

)wdx,

M2

(∫
Ω
|∇z2|qdx

)∫
Ω
|x|−βq|∇z2|q−2∇z2 · ∇wdx

≥
∫
Ω
|x|−(β+1)q+c2(a2z

q−1
2 − f2(z1)−

b2
zγ22

)wdx,

for all w ∈W = {w ∈ C∞
0 (Ω) | w ≥ 0, x ∈ Ω}.

A key role in our arguments will be played by the following auxiliary
result. Its proof is similar to that presented in [6], the reader can consult
further the papers [1, 2, 11].

Lemma 2.1. Assume that M : R+
0 → R+ is continuous and increasing,

and there exists m0 > 0 such that M(t) ≥ m0 for all t ∈ R+
0 . If the

functions u, v ∈W 1,p
0 (Ω, |x|−αp) satisfy

M
(∫

Ω
|x|−αp|∇u|pdx

)∫
Ω
|x|−αp|∇u|p−2∇u · ∇φdx

≤M
(∫

Ω
|x|−αp|∇v|pdx

)∫
Ω
|x|−αp|∇v|p−2∇v · ∇φdx

for all φ ∈W 1,p
0 (Ω, |x|−αp), φ ≥ 0, then u ≤ v in Ω.
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From Lemma 2.1 we can establish the basic principle of the sub-and
supersolution method for nonlocal systems. Indeed, we consider the fol-
lowing nonlocal system

−M1

( ∫
Ω |∇u|pdx

)
div(|x|−αp|∇u|p−2∇u) = |x|−(α+1)p+c1h(x, u, v), x ∈ Ω,

−M2

( ∫
Ω |∇v|qdx

)
div(|x|−βq|∇v|q−2∇v) = |x|−(β+1)q+c2k(x, u, v), x ∈ Ω,

u = v = 0, x ∈ ∂Ω,
(2.2)

where Ω is a bounded smooth domain of RN and h, k : Ω̄ × R × R → R
satisfy the following conditions:
(HK1) h(x, s, t) and k(x, s, t) are caratheodory functions and they are
bounded if s, t belong to bounded sets.
(HK2) There exists a function g : R → R being continuous, nondecreas-

ing, with g(0) = 0, 0 ≤ g(s) ≤ c(1 + |s|min{p,q}) for some c > 0, and
applications s 7→ h(x, s, t) + g(s) and t 7→ k(x, s, t) + g(t) are nonde-
creasing, for a.e x ∈ Ω.
If u, v ∈ L∞(Ω), with u(x) ≤ v(x) for a.e x ∈ Ω, we denote by [u, v]
the set {w ∈ L∞(Ω) : u(x) ≤ w(x) ≤ v(x) for a.e x ∈ Ω}. Using
Lemma 2.1 and the method as in the Proof of Theorem 2.4 of [14] (see
also section 4 of [5]), we can establish a version of the abstract lower
and upper-solution method for our class of the operators as follows.

Proposition 2.2. Let Mi : R+
0 → R+, i = 1, 2, are two continuous

and increasing functions 0 < Mi ≤ Mi(t) ≤ Mi,∞ for all t ∈ R+.
Assume that the functions h, k satisfy the conditions (HK1) and (HK2).
Assume that (u, v), (u, v) are respectively, a weak subsolution and a weak
supersolution of system (2.2) with u(x) ≤ u(x) and v(x) ≤ v(x) for
a.e x ∈ Ω. Then there exist a minimal (u∗, v∗) (and, respectively, a
maximal (u∗, v∗)) weak solution for system (2.2) in the set [u, u]× [v, v].
In particular, every weak solution (u, v) ∈ [u, u] × [v, v] of system (2.2)
satisfies u∗(x) ≤ u(x) ≤ u∗(x) and v∗(x) ≤ v(x) ≤ v∗(x) for a.e x ∈ Ω.

Theorem 2.3. Assume if a1 > M1,∞

( p

p− 1 + γ1

)p−1
λ1,p,

a2 > M2,∞

( q

q − 1 + γ2

)q−1
λ1,q, then there exists c > 0 such that if

max{b1, b2} ≤ c, then the system (1.1) admits a positive solution.

Proof. We start with the construction of a positive subsolution for (1.1).
To get a positive subsolution, we can apply an anti-maximum principle
(see [9]), from which we know that there exist a δ1 > 0 and a solution
zλ of{

−div(|x|−sr|∇z|r−2∇z) = |x|−(s+1)r+t(λzr−1 − 1), x ∈ Ω,
z = 0 x ∈ ∂Ω,

(2.3)
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for λ ∈ (λ1,r, λ1,r + δ1), for r = p, q, s = α, β and t = c1, c2.

Fix λ̂1 ∈
(
λ1,p,min

{
(
p− 1 + γ1

p
)p−1a1, λ1,p + δ1

})
and

λ̂2 ∈
(
λ1,q,min

{
(
q − 1 + γ2

q
)q−1a2, λ1,q + δ1

})
.

Let θi = ‖zλ̂i
‖ for i = 1, 2. It is well known that zλ̂1

, zλ̂2
> 0 in Ω and

∂zλ̂1

∂n
,
∂zλ̂2

∂n
< 0 on ∂Ω, where n is the outer unit normal to Ω. Hence

there exist positive constants ϵ, δ, σp, σq such that

|x|−sr|∇zλ̂i
|r ≥ ϵ, x ∈ Ωδ, (2.4)

zλ̂i
≥ σr, x ∈ Ω0 = Ω\Ωδ, (2.5)

with r = p, q; s = α, β; i = 1, 2 and Ωδ = {x ∈ Ω | d(x, ∂Ω) ≤
δ}. Choose η1, η2 > 0 such that η1 ≤ min |x|−(s+1)r+t, and η2 ≥
max |x|−(s+1)r+t, in Ωδ, for r = p, q, s = α, β and t = c1, c2. We con-
struct a subsolution (ψ1, ψ2) of (1.1) using zλ̂1

, zλ̂2
. Define (ψ1, ψ2) =(

M(
p− 1 + γ1

p
)z

p
p−1+γ1

λ̂1
,M(

q − 1 + γ2
q

)z
q

q−1+γ2

λ̂2

)
, where

M = min

{M1,∞

(
q

q−1+γ2

)b
θ

(1−γ1)(p−1)
p−1+γ1

1

Lθ
qb

q−1+γ2
2


1

b−p+1

,

M2,∞

(
p

p−1+γ1

)b
θ

(1−γ2)(q−1)
q−1+γ2

2

Lθ
pb

p−1+γ1
1


1

b−q+1

,


(
p−1
Lp

)
θ

p(p−1)
p−1+γ1
1

[(
p−1+γ1

p

)p−1
a1 −M1,∞λ̂1

]
(
q−1+γ2

q

)b
θ

qb
q−1+γ2
2


1

b−p+1

,


(
q−1
Lq

)
θ

q(q−1)
q−1+γ2
2

[(
q−1+γ2

q

)q−1
a2 −M2,∞λ̂2

]
(
p−1+γ1

p

)b
θ

pb
p−1+γ1
1


1

b−q+1 }
.

Let w ∈W . Then a calculation shows that

∇ψ1 =Mz
1−γ1

p−1+γ1

λ̂1
∇zλ̂1

,
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M1

(∫
Ω
|∇ψ1|pdx

)∫
Ω
|x|−αp|∇ψ1|p−2∇ψ1 · ∇wdx

≤M1,∞M
p−1

∫
Ω
|x|−αpz

(1−γ1)(p−1)
p−1+λ1

λ̂1
|∇zλ̂1

|p−2∇zλ̂1
∇wdx

=M1,∞M
p−1

∫
Ω
|x|−αp|∇zλ̂1

|p−2∇zλ̂1

[
∇
(
z

(1−γ1)(p−1)
p−1+γ1

λ̂1
w
)
−
(
∇z

(1−γ1)(p−1)
p−1+γ1

λ̂1

)
w

]
dx

=M1,∞M
p−1

∫
Ω

[
|x|−(α+1)p+c1z

(1−γ1)(p−1)
p−1+γ1

λ̂1
(λ̂1z

p−1

λ̂1
− 1)

− |x|−αp (1− γ1)(p− 1)

p− 1 + γ1

|∇zλ̂1
|p

z
γ1p

p−1+γ1

λ̂1

]
wdx

=M1,∞

∫
Ω

[
|x|−(α+1)p+c1Mp−1λ̂1z

p(p−1)
p−1+γ1

λ̂1
− |x|−(α+1)p+c1Mp−1z

(1−γ1)(p−1)
p−1+γ1

λ̂1

−|x|−αpMp−1 (1−γ1)(p−1)
p−1+γ1

|∇zλ̂1
|p

z

γ1p
p−1+γ1
λ̂1

]
wdx,

(2.6)
and ∫

Ω
|x|−(α+1)p+c1

[
a1ψ

p−1
1 − f1(ψ2)−

b1
ψγ1
1

]
wdx =

∫
Ω

[
|x|−(α+1)p+c1a1M

p−1
(p− 1 + γ1

p

)p−1
z

p(p−1)
p−1+γ1

λ̂1

− |x|−(α+1)p+c1f1

(
M(

q − 1 + γ2
q

)z
q

q−1+γ2

λ̂2

)

−|x|−(α+1)p+c1 b1

Mγ1

(
p−1+γ1

p

)γ1
z

γ1p
p−1+γ1

λ̂1

]
wdx. (2.7)

Similarly

M2

(∫
Ω
|∇ψ2|qdx

)∫
Ω
|x|−βq|∇ψ2|q−2∇ψ2∇wdx

≤M2,∞
∫
Ω

[
|x|−(β+1)q+c2M q−1λ̂2z

q(q−1)
q−1+γ2

λ̂2
−

|x|−(β+1)q+c2M q−1z
(1−γ2)(q−1)

q−1+γ2

λ̂2
− |x|−βqM q−1 (1− γ2)(q − 1)

q − 1 + γ2

|∇zλ̂2
|q

z
γ2q

q−1+γ2

λ̂2

]
wdx,

(2.8)
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and ∫
Ω
|x|−(β+1)q+c2

[
a2ψ

q−1
2 − f2(ψ1)−

b2
ψγ2
2

]
wdx

=
∫
Ω

[
|x|−(β+1)q+c2a2M

q−1
(
q−1+γ2

q

)q−1
z

q(q−1)
q−1+γ2

λ̂2

−|x|−(β+1)q+c2f2

(
M

(p− 1 + γ

p

)
z

p
p−1+γ1

λ̂1

)
−|x|−(β+1)q+c2 b2

Mγ2

(
q−1+γ2

q

)γ2

z

γ2q
q−1+γ2
λ̂2

]
wdx

(2.9)

Let c = min

{
M1,∞M

p−1+γ1 (1− γ1)(p− 1)

p− 1 + γ1

(p− 1 + γ1
p

)γ1 ϵ

η2
,

M2,∞M
q−1+γ2 (1−γ2)(q−1)

q−1+γ2

(
q−1+γ2

q

)γ2
ϵ
η2
,

Mp−1+γ1

p

(p− 1 + γ1
p

)γ1
σpp

[(p− 1 + γ1
p

)p−1
a1 −M1,∞λ̂1

]
,

Mq−1+γ2

q

(
q−1+γ2

q

)γ2
σqq

[(
q−1+γ2

q

)q−1
a2 −M2,∞λ̂2

]}
.

First we consider the case when x ∈ Ωδ. We have |x|−αp|∇ϕ1,p| ≥ ϵ

on Ωδ. Since M1,∞

( p

p− 1 + γ1

)p−1
λ̂1 ≤ a1, we have

|x|−(α+1)p+c1M1,∞M
p−1λ̂1z

p(p−1)
p−1+γ1

λ̂1

≤ |x|−(α+1)p+c1a1M
p−1

(p− 1 + γ1
p

)p−1
z

p(p−1)
p−1+γ1

λ̂1
, (2.10)

and from the choice of M , we know that

LM b−p+1θ
qb

q−1+γ2
2 ≤M1,∞

( q

q − 1 + γ2

)b
θ

(1−γ1)(p−1)
p−1+γ1

1 . (2.11)

By (2.11) and (A1) we have −|x|−(α+1)p+c1M1,∞M
p−1z

(1−γ1)(p−1)
p−1+γ1

λ̂1

≤ −|x|−(α+1)p+c1LM b
(
q−1+γ2

q

)b
z

qb
q−1+γ2

λ̂2

≤ −|x|−(α+1)p+c1f1

(
M(

q − 1 + γ2
q

)z
q

q−1+γ2

λ̂2

)
. (2.12)

Next, from (2.4) and definition of c, we have

|x|−αpM1,∞M
p−1 (1− γ1)(p− 1)

p− 1 + γ1
|∇zλ̂1

|p ≥ |x|−(α+1)p+c1 b1

Mγ1(p−1+γ1
p )γ1

,
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and

− |x|−αpM1,∞M
p−1 (1− γ1)(p− 1)

p− 1 + γ1

|∇zλ̂1
|p

z
γ1p

p−1+γ1

λ̂1

≤ −|x|−(α+1)p+c1 b1

Mγ1

(
p−1+γ1

p

)γ1
z

γ1p
p−1+γ1

λ̂1

. (2.13)

Hence by using (2.10) , (2.12) and (2.13) for b1 ≤ c, we have

M1

(∫
Ω̄
|∇ψ1|pdx

)∫
Ωδ

|x|−αp|∇ψ1|p−2∇ψ1 · ∇wdx

≤
∫
Ωδ

[
|x|−(α+1)p+c1a1M

p−1
(p− 1 + γ1

p

)p−1
z

p(p−1)
p−1+γ1

λ̂1

−|x|−(α+1)p+c1f1

(
M

(q − 1 + γ2
q

)
z

q
q−1+γ2

λ̂2

)
−

|x|−(α+1)p+c1 b1

Mγ1

(
p−1+γ1

p

)γ1
z

γ1p
p−1+γ1

λ̂1

]
wdx

=

∫
Ωδ

|x|−(α+1)p+c1
[
a1ψ

p−1
1 − f1(ψ2)−

b1
ψγ1
1

]
wdx. (2.14)

Similarly

M2

(∫
Ωδ

|∇ψ2|qdx
)∫

Ωδ

|x|−βq|∇ψ2|q−2∇ψ2 · ∇wdx

≤
∫
Ωδ

[
|x|−(β+1)q+c2a2M

q−1
(
q−1+γ2

q

)q−1
z

q(q−1)
q−1+γ2

λ̂2

−|x|−(β+1)q+c2f2

(
M

(p− 1 + γ1
p

)
z

p
p−1+γ1

λ̂1

)
−

|x|−(β+1)q+c2 b2

Mγ2

(
q−1+γ2

q

)γ2
z

γ2q
q−1+γ2

λ̂2

]
wdx

=

∫
Ωδ

|x|−(β+1)q+c2
[
a2ψ

q−1
2 − f2(ψ1)−

b2
ψγ2
2

]
wdx. (2.15)

On the other hand, on Ω0 = Ω\Ωδ, we have zλ̂1
≥ σp and zλ̂2

≥ σq,
for some 0 < σp, σq < 1, and from the definition of c, for b1 ≤ c we have

b1

Mγ1

(
p−1+γ1

p

)γ1 ≤ 1

p
Mp−1σpp

[(p− 1 + γ1
p

)p−1
a1 −M1,∞λ̂1

]
≤ 1

p
Mp−1zp

λ̂1

[(p− 1 + γ1
p

)p−1
a1 −M1,∞λ̂1

]
.

(2.16)



On a class of Kirchhoff type systems 37

Also from the choice of M , we have

LM b−p+1
(q − 1 + γ2

q

)b
z

qb
q−1+γ2

λ̂2
≤ z

p(p−1)
p−1+γ1

λ̂1

p− 1

p

[(p− 1 + γ1
p

)p−1
a1−M1,∞λ̂1

]
.

(2.17)
Hence from (2.16) and (2.17) we have

M1

(∫
Ω0

|∇ψ1|pdx
)∫

Ω0

|x|−αp|∇ψ1|p−2∇ψ1∇wdx

≤M1,∞
∫
Ω0

[
|x|−(α+1)p+c1Mp−1λ̂1z

p(p−1)
p−1+γ1

λ̂1
−|x|−(α+1)p+c1Mp−1z

(1−γ1)(p−1)
p−1+γ1

λ̂1

−|x|−αpMp−1 (1− γ1)(p− 1)

p− 1 + γ1

|∇zλ̂1
|p

z
γ1p

p−1+γ1

λ̂1

]
wdx

≤M1,∞

∫
Ω0

|x|−(α+1)p+c1Mp−1λ̂1z
p(p−1)
p−1+γ1

λ̂1
wdx

=M1,∞
∫
Ω0

|x|−(α+1)p+c1 1

z

γ1p
p−1+γ1
λ̂1

[
1
p λ̂1M

p−1zp
λ̂1

+ p−1
p λ̂1M

p−1zp
λ̂1

]
wdx

≤
∫
Ω0

|x|−(α+1)p+c1 1

z
γ1p

p−1+γ1

λ̂1

[(1
p
Mp−1

(p− 1 + γ1
p

)p−1
a1z

p

λ̂1
− b1

Mγ1

(
p−1+γ1

p

)γ1

)
+

Mp−1zp
λ̂1

(p− 1 + γ1
p

)p−1((p− 1)a1
p

−LM b−p+1
(
q−1+γ2

q

)b(
p−1+γ1

p

)1−p z

qb
q−1+γ2
λ̂2

z

p(p−1)
p−1+γ1
λ̂1

)]
wdx

=

∫
Ω0

|x|−(α+1)p+c1
[
a1M

p−1
(p− 1 + γ1

p

)p−1
z

p(p−1)
p−1+γ1

λ̂1
−LM b

(q − 1 + γ2
q

)b
z

qb
q−1+γ2

λ̂2
−

b1z
−γ1p

p−1+γ1

λ̂1

Mγ1

(
p−1+γ1

p

)γ1

]
wdx

≤
∫
Ω0

|x|−(α+1)p+c1
[
a1M

p−1
(p− 1 + γ1

p

)p−1
z

p(p−1)
p−1+γ1

λ̂1
−f1

(
M

(q − 1 + γ2
q

)
z

q
q−1+γ2

λ̂2

)

− b1

Mγ1

(
p−1+γ1

p

)γ1
z

γ1p
p−1+γ1

λ̂1

]
wdx =

∫
Ω0

|x|−(α+1)p+c1
[
a1ψ

p−1
1 −f1(ψ2)−

b1
ψγ1
1

]
wdx.

(2.18)
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Similarly

M2

(∫
Ω0

|∇ψ2|qdx
)∫

Ω0

|x|−βq|∇ψ2|q−2∇ψ2∇wdx

≤
∫
Ω0

|x|−(β+1)q+c2
[
a2ψ

q−1
2 − f2(ψ1)−

b2
ψγ2
2

]
wdx. (2.19)

By using (2.14), (2.15), (2.18) and (2.19) we see that (ψ1, ψ2) is a
sub-solution of (1.1).
Next, we construct a super-solution (z1, z2) of (1.1) such that (z1, z2) ≥

(ψ1, ψ2). Let (z1, z2) =
[(

S∗

M1

) 1
p−1

ζp(x),
(

S∗

M2

) 1
q−1

ζq(x)]. By (A2) and

choose a large constant S∗, we shall verify that (z1, z2) is a super-solution
of (1.1). To this end, let w ∈W . Then we have

M1

(∫
Ω
|∇z1|pdx

)∫
Ω
|x|−αp|∇z1|p−2∇z1∇wdx ≥ S∗

∫
Ω
|x|−(α+1)p+c1wdx

≥
∫
Ω
|x|−(α+1)p+c1

[
a1z

p−1
1 − f1(z2)−

b1
zγ11

]
wdx. (2.20)

Similarly,

M2

(∫
Ω
|∇z2|qdx

)∫
Ω
|x|−βq|∇z2|q−2∇z2∇wdx

≥
∫
Ω
|x|−(β+1)q+c2

[
a2z

q−1
2 − f2(z1)−

b2
zγ22

]
wdx. (2.21)

Thus (z1, z2) is a super-solution of (1.1). Finally, we can choose S∗ �
1 such that (ψ1, ψ2) ≥ (z1, z2) in Ω. Hence, if max{b1, b2} ≤ c, by Lemma
2.1 there exists a positive solution (u, v) of (1.1) such that (ψ1, ψ2) ≤
(u, v) ≤ (z1, z2). This completes the proof of Theorem 2.3. �
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