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ABSTRACT. This study is concerned with exploiting the spectral
method to solve the fourth-order boundary value problem (BVP).
Such equations frequently arise in the study and modeling of large
amplitude transverse buckling in an elastic beam. To this end, the
properties of shifted Legendre polynomial together with its opera-
tional matrix of the derivative and the spectral method is utilized to
reduce BVP to a system of algebraic equations. Numerical results
turn out the efficiency and accuracy of the propounded technique.
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1. INTRODUCTION

This paper has been devoted to finding a solution of the following
nonlinear BVP for fourth-order differential equations:

y<4><m>ey”(z>2< / w(y/)%> J —p@), 0<z<m  (L1)

™

where ¢ is a constant, p(x) is a continuous, nonpositive or nonnegative
function on the interval [0,7]. For definiteness, we will assume that
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p(z) < 0 for all z € [0,7]. The equation (1.1) arises in the study of
transverse vibrations of an elastic beam, where the significant difficulty
lies in a nonlinear term under the integral sign. For a detailed overview
of this applied subject, one may refer to [10]. The boundary conditions
that are often imposed are

y(0) = y(m) =y (0) =y (v) =0, (1.2)
which correspond to both ends being clamped, and
y(0) = y(m) =y (0) =y () =0, (1.3)

that correspond to hinged ends when there is no bending moment at
the ends. In the present paper, we consider the boundary conditions in
equation (1.3).

In recent years, several authors considered finite approximations of
the problem and proposed iterative schemes for solving the system of
nonlinear equations obtained. A finite-element approximation based on
the space of piecewise linear polynomials on a uniform grid is represented
in [11]. An error estimate for the approximation is also given without
any numerical results. In [6], Dang and Luan according to the proposed
method by Shin in [11] reduce the fourth-order boundary value problem
to two second-order boundary value problems and applied the Newton-
type iterative method to obtain an approximate solution.

In this vein, we propounded two efficient spectral approaches to obtain
a rough solution of BVP. Among numerical methods, spectral methods
are very powerful tools to approximate the solutions of many kinds of
equations which are raised in various fields of science and engineering
[4, 2] and spectral methods such as Galerkin, tau and pseudo-spectral
methods [5, 3] are based on the solution of differential equation as a sum
of certain basis functions. In what follows, first, the unknown function
y is expanded in terms of shifted Legendre polynomials with unknown
coefficients. Afterward, by applying collocation and Galerkin methods
and properties of shifted Legendre polynomials together with utilizing
the operational matrix of derivative, we reach a system of algebraic
equations. In the end, computations can be handled simply way and the
unknown coefficients will be obtained by solving algebraic equations.

The rest of the paper is organized as follows. In section 2, we describe
the basic formulation of shifted Legendre polynomial and its operational
matrix of derivative for our subsequent development. Section 3 is de-
voted to spectral methods based on shifted Legendre polynomials to
obtain a approximate solution of the BVP. In section 4, we report our
numerical findings and demonstrate the accuracy of the proposed scheme
by considering a numerical example. Finally, Section 5 ends this paper
with a brief conclusion.
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2. REVIEWING SOME ATTRIBUTES OF SHIFTED LEGENDRE
POLYNOMIALS

In this section, we recall some properties and concepts for our subse-
quent development. The Legendre polynomials P;(z) are the eigenfunc-
tions of the singular Sturm-Liouville problem [5]

(1—a2)Li(x)) +i(i+ 1)Li(x) =0. i=0,1,2,--. (2.1)
These polynomials on the interval [—1,1] are defined by the following
recursive formula [1]

2m +1 m
t Lip(t) — ——Lp—1(1), =1,2,3,---, (2.2
T L)~ L), m= 123,00, (22)
Lg(t) =1, Ll(t) =1,

also, they are orthogonal with respect to L? inner product on the interval
[—1, 1] with the weight function w(xz) =1

Ly (t) =

1
2
/1 Lz(a?)L](:c)dx = mézj, (23)

where ¢;; is the Kronecker delta. To operate the Legendre polynomials
on an arbitrary interval [a,b], we define the so-called shifted Legendre
polynomials by using the following change of variable

2(x —a)—h
-5
where h = b—a. The shifted Legendre polynomials in z are then defined
by

t= <z <b, (2.4)

bole) =1, o) =220

and form=1,2,3,---,

(2.5)

2m+1 m
Pm+1(z) = m(z(l’ —a) —h)pm(z) — m¢m—1($)- (2.6)
Let us assume that ; = %gf)l Straightforward computations show
that
“epylede = { L o 10 2.1
u i) PGRE)aT = 0 for i#j. ‘

The analytical form of shifted Legendre polynomials in the interval [a, b]
is [§]

%+ 1= (—1) 56+ B)(x —a)k
muﬂzxfh§j( lif@K&;M:), i=0,--,M. (2.8)

k=0
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The unknown function y(x) can be estimated by shifted Legendre poly-
nomials as a form of

M
y(@) =Y yiti(z) = YT(a), (2.9)
=0
where
Y = [yo,v1, - »ym)’, ¥ = (o, b1, )T (2.10)

Theorem 2.1. [9] Let y(t) € H*(—1,1) (Sobolev space) and Zi]\io yii(x)
be the best approximation polynomial of y(t) in La-norm. Then

M
ly() = > yii(@)ll o1,y < CoM ™ |ly(@) |l e (<1,1),
i=0

where Cy is a positive constant, which depends on the selected norm and
is independent of y(x) and M.

Remark 1. The computational interval can be transformed from [—1, 1]
to [a,b] via an affine transformation.

2.1. The operational matrix of the derivative. Recently, opera-
tional matrix approaches have received considerable attention due to
their advantageous properties. Several authors have elaborated them for
solving various kinds of differential or integral equations (see for example
[12] and the references therein). Among them, operational matrices of
integration and derivative are the most prominent matrices. The main
strategies is that the integral or derivative operator will be replaced by
the related matrix, so the main problem is converted to a system of alge-
braic equations. Especially in numerical solution of nonlinear equations,
as there is no need to use any approximation to eliminate the differential
part, one prefer to use the operational matrix of the derivative. For the
vector 1 in equation (2.10), the operational matrix of the derivative is
defined by

dip

i D, (2.11)
where D € RIMAD)x(M+1),
For Legendre polynomials, straightforward computations on (2.8) re-
garding (2.11) show that each element of D, d;; for i,j =1,...,M +1,
is given by

7

(=)™ G+ k)G + DY
< (i — k)N (G — DI (k+1)

]~

1
dij = (V2 +1/2j +1
k=01
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This matrix for M = 5 is obtained as follows

[0 0 0 0 0 0]
29 0 0 0 0
0 25 o o0 0 0 (21
L9 B g o 0 '
0 63 0 6V7 0 0
| 2@ 0 2/55 0 Ny

3. SOLUTION OF BVP

This section, demonstrated how shifted Legendre polynomials can be
employed to reduce BVP to a system of algebraic equations. In this
regards, we approximate the unknown functions y, v/, ¥” and 3 in
equation (1.1) with shifted Legendre polynomials. So, we obtain

M
y(@) =YT(x) =) yi(e), () =Y Dy(x), y'(z) = Y D*(),
=0

y@ = YT DYy(z), (3.1)
where the unknown vectors Y and ¢ are defined in equation (2.10), M
is the order of the Legendre polynomial and D is the operational matrix
of derivative defined in equation (2.11). To evaluate a rough solution for
y(z), we exploited the spectral method,

3.1. Method I. By substituting equations (3.1) in (1.1),

YIDh(a) Y i) - 2 ([T Dut)?) YD) = plo)
’ (3.2)
Also from the boundary conditions,
y(0) =YT4(0) =0, y(m) =YTy(x) =0,
(3.3)

y"(0) =YTD*p(0) =0, y"(m)=YT"D*p(r)=0.

To evaluate an approximate solution for y(x) in (3.2), by collocating this
equation at M —3, Chebyshev-Gauss-Lobatto nodes on the interval [0, 7].
These M — 3 nodes that we utilize as collocation nodes are specified as

t; = g (cos(j\}r)—%—l), 1=3,...,M —1,
which are in the interval [0,7]. These equations together with (3.3)
generate (M + 1) nonlinear equations which can be solved by Newton’s
iterative method.
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3.2. Method II. Here we applied an analogous strategy, assume that
p(z) approximated by Legendre polynomials as

p(z) = PTy(z). (3-4)
Substituting equation (3.1) and (3.4) in (1.1) yields

2 ™
YD () -ev D)~ ([T Dute)?) YT D) = PPuca).
T \Jo
(3.5)
By multiplying equation (3.5) in ¢ (z), integrating from 0 and 7 and
using the orthogonality properties of the Legendre polynomials given in
equation (2.7), equation (3.5) is simplified as

M=N, (3.6)

which is a system of nonlinear equations in terms of y; for : = 0,..., M.
The parameters M and N in equation (3.6) are defined as

M=YTD'—eyTD? - 2(YTDDTY)YTD?,
(3.7)
N =P,

We omit the last 4 rows of the vectors M and N in equations (3.7) to
have M — 3 equations. These M — 3 equations are added up together
with (3.3) to have the outcome of a nonlinear system of equations with
M+1 equations and unknowns which can be solved by Newton’s iterative
method.

4. NUMERICAL RESULTS

In this section, we demonstrate the applicability, efficiency, and ac-
curacy of our proposed schemes by considering an example. This illus-
trative example is implemented in Mathematica 7. As in [6] and [7], we
take e = 2.

Example 1. In this example, we assume that p(x) = —4sin(z). It can
be verified that the exact solution of this example is y(z) = —sin(z).
Table 1 and Figures 1 and 2 exhibit numerical results of this example
by using different values of M. In table 1, our proposed methods are
also compared with the method of [11] on the uniform grid with the
number of nodes N = 80. This method is an iterative method of second-
order approximation. In table 1, y; shows the approximate solution in
iteration k. Also, we define

EY = Yexact — Yapprox-

Now, we state what we have seen from numerical results as follows:
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M 8 10 12

14

Method I||EY||s | 9.63542 x 107% 8.7486 x 10~  5.0395 x 10~ 1°

2.0508 x 10~ 12

Method IT|EY||s | 9.68287 x 107% 1.2102 x 1079 1.7820 x 10~

6.0713 x 10~ 12

k[11] 12 23 29

ly — Ykl oo 1.5200 x 107%% 1.2852 x 10797 1.285177 x 104

TABLE 1. Numerical results of example 1

P

Log,, E(x)
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FIGURE 1. Numerical results for Method I (M =
8 M =10,M =12).

¢ As seen in numerical findings, the proposed approaches with a
little amount of M have good and accuracy results.

¢ One of the significant advantages of utilizing the derivative op-
erational matrix is that the matrix has large numbers of zero
elements. Hence, the presented method is very attractive and
reduces the CPU time and computer memory at the same time
keeping the accuracy of the solution.

¢ The propounded approaches lead to rapid convergence as the
order of Legendre polynomials increases.




b \
‘ | N
o ~lor /! -
z H atne Lt N il S "Ll bl FUNPY PN 5
>Li.| I “__~ I‘f \‘ '- u‘, "- ‘." - \‘ .’_~.
g / H 1 i f I |
- K ! Runnlng Title 1 I 1 " 75
_15f L 1
I = M=12
M=10
I - M=8
-20 L L L L L ‘ L L
0.0 05 1.0 15 20 25 30
X
FIiGURE 2. Numerical results for Method II

(M =8,M=10,M =12).

5. CONCLUSIONS

The main aim of the current paper is to represent two spectral schemes
for solving the nonlinear fourth order BVP. This equation arises in the
study of transverse vibrations of a hinged beam. Our propounded ap-
proaches are based upon parameterizing the unknown function y, then
by utilizing the spectral methods, the considered BVP can be converted
into a system of algebraic equations which can be solved by Newton’s
iterative method. In the presented numerical simulation, the sparse
operational matrix of the derivative has been made quick and efficient
methods. The numerical results indicate that the current approaches
are very effective, accurate, and easy to implement for obtaining the
numerical solution of considered BVP.
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