Caspian Journal of Mathematical Sciences (CJMS) University of Mazandaran, Iran http://cjms.journals.umz.ac.ir ISSN: 2676-7260 CJMS. **10**(1)(2021), 51-56

Some fixed point results for weakly $b - (\varphi, G)$ contraction in *b*-metric space endowed with a graph

Hamid Faraji¹

* Department of Mathematics, College of Technical and Engineering, Saveh Branch, Islamic Azad University, Saveh, Iran.

ABSTRACT. In this paper, we introduce the concept of weakly $b - (\varphi, G)$ contraction mapping in *b*-metric spaces endowed with a graph and give some fixed point results for such contractions.

Keywords: Fixed point, b-Metric spaces, Weakly $b-(\varphi,G)$ contraction.

2000 Mathematics subject classification: 47H10, 54H25, 55M20.

1. INTRODUCTION

The concept of *b*-metric spaces were firstly obtained in 1989 by Bakhtin [1]. In 2010, Khamsi and Hussain [7] reintroduced the notion of a *b*-metric under the name metric-type. After that, many authors have carried out further studies on *b*-metric space. For further works and results in *b*-metric spaces, see, e.g., [4, 9]. Espinola et al. [3] proved some results on combining graph theory and fixed point theory. Later, Jachymski [6] proved the contraction principal for mappings on a metric space endowed with a graph. In this direction several authors obtained further results in metric spaces endowed with graph(see e.g. [2, 5]). We recall some of the basic definitions and results in the sequel. Let G = (V(G), E(G)) be a directed graph such that V(G) is the set of vertices and E(G) is edges of G. Let $\Delta \subset E(G)$, where $\Delta = \{(x, x) :$

¹Corresponding author: faraji@iau-saveh.ac.ir Received: 18 May 2020 Revised: 13 February 2021 Accepted: 15 February 2021

 $x \in X$ }. Also, suppose that G has no parallel edges. We denote the conversion of a graph G by G^{-1} . Let \tilde{G} denotes the undirected graph obtained from G by ignoring the direction of edges, that is, we get $E(\tilde{G}) = E(G) \bigcup E(G^{-1})$. Let x and y are vertices in a graph G. A path in G from x to y of length m is a sequence $\{x_n\}_{n=0}^m$ of m+1 vertices such that $x_0 = x$ and $x_m = y$ and $(x_{i-1}, x_i) \in E(G)$ for i = 1, ..., m. The graph G is called connected if there is a path between any two vertices of G and graph G is weakly connected if \tilde{G} is connected. For $x \in X$ we set $[x]_{\tilde{G}}$ which is the equivalence class of the following relation R defined on V(G) by the rule: yRz if there is a path in G from y to z.

Definition 1.1. [9] We say that sequences $\{x_n\}, \{y_n\}$ in X are equivalent if $\lim_{n\to\infty} d(x_n, y_n) = 0$.

Definition 1.2. [9] Let $f : X \to X$ and the sequence $\{f^n(x)\}$ in X be such that $f^n(x) \to x^*$ with $(f^{n+1}(x), f^n(x)) \in E(G)$ for $n \in \mathbb{N}$ and $x, x^* \in X$.

- (1) The graph G is called (C_f) -graph if there exists a subsequence $\{f^{n_k}(x)\}$ of $\{f^n(x)\}$ and $k_0 \in \mathbb{N}$ such that $(f^{n_k}(x), x^*) \in E(G)$ for all $k \geq k_0$.
- (2) The graph G is called (H_f) -graph if $f^n(x) \in [x^*]_{\tilde{G}}$ for $n \in \mathbb{N}$, then $r(f^n(x), x^*) \to 0$ as $n \to \infty$, where $r(f^n(x), x^*) = \sum_{i=1}^{M_n} s^i d(z_{i-1}, z_i)$ and $\{z_i\}_{i=0}^{M_n}$ is a path from $f^n(x)$ to x^* in \tilde{G} .

Definition 1.3. [8]. (Altering Distance Function) A function $\varphi : [0, \infty) \rightarrow [0, \infty)$ is called an altering distance function if the following properties are satisfied:

- (1) φ is continuous and strictly increasing,
- (2) $\varphi(t) = 0$ if and only if t = 0.

2. Main result

Now, we introduce one new type of contractive mappings in the context of *b*-metric spaces endowed with a graph and prove the corresponding new result. Throughout this section we assume that (X, d) is a *b*-metric space endowed with directed graph *G*, which V(G) = X and $\Delta \subset E(G)$.

Definition 2.1. Let (X, d) be *b*-metric space and *f* be a self-mapping on *X*. We say that *f* is a weakly *b*- (φ, G) contraction if for every $x, y \in X$, we have

$$(f(x), f(y)) \in E(G) \text{ whenever } (x, y) \in E(G), \tag{2.1}$$

$$d(fx, fy) \le \frac{d(x, y)}{s^2} - \varphi(d(x, y)) \text{ whenever } (x, y) \in E(G), \qquad (2.2)$$

where φ is an altering distance function.

Example 2.2. Let $G = (X, \Delta)$ and f be a self-mapping on X. Then f is a weakly b- (φ, G) contraction.

Example 2.3. Let $f : X \to X$ be a constant mapping. Then f is a weakly $b - (\varphi, G)$ contraction for any graph G with V(G) = X.

Proposition 2.4. Let (X, d) be a b-metric space with parameter $s \ge 1$ and $f: X \to X$ be a weakly b- (φ, G) contraction. Then

- (1) f is a weakly b- (φ, \tilde{G}) contraction and also a b- (φ, G^{-1}) contraction.
- (2) $f([x_0]_{\tilde{G}}) \subseteq [x_0]_{\tilde{G}}$ and $f|_{[x_0]_{\tilde{G}}}$ is a weakly b- $(\varphi, \tilde{G}_{x_0})$ contraction provided $x_0 \in X$ is such that $f(x_0) \in [x_0]_{\tilde{G}}$.

Proof. The proof is similar to Proposition 12.1.[9], therefore we omit it. \Box

Lemma 2.5. Let X be a b-metric space with $s \ge 1$ and $f: X \to X$ be a weakly b- (φ, G) contraction. Then for any $x \in X$ and $y \in [x]_{\tilde{G}}$, the sequences $\{f^n(x)\}$ and $\{f^n(y)\}$ are equivalent.

Proof. Let $x \in X$ and $y \in [x]_{\tilde{G}}$. Then by definition of equivalence class, there exists a path $\{z_i\}_{i=0}^k$ from x to y in \tilde{G} such that $x = z_0, ..., y = z_k$ and $(z_{i-1}, z_i) \in E(\tilde{G})$. By proposition 2.4, f is weakly $b \cdot (\varphi, \tilde{G})$ contraction. Then, for all $n \in \mathbb{N}$, we have $(f^n(z_{i-1}), f^n(z_i)) \in E(\tilde{G})$. From (2.2), we get

$$d(f^{n}(z_{i-1}), f^{n}(z_{i})) \leq \frac{d(f^{n-1}(z_{i-1}), f^{n-1}(z_{i}))}{s^{2}} - \varphi(d(f^{n-1}(z_{i-1}), f^{n-1}(z_{i}))), \quad (2.3)$$

where $n \in \mathbb{N}$ and i = 1, ..., k. Then, we get

$$d(f^n(z_{i-1}), f^n(z_i)) \le d(f^{n-1}(z_{i-1}), f^{n-1}(z_i)),$$

for all $n \in \mathbb{N}$ and i = 1, ..., k. Thus $d(f^n(z_{i-1}), f^n(z_i))$ is a nonincreasing sequence and hence it is convergent. Let $d(f^n(z_{i-1}), f^n(z_i)) \to r$, where $r \ge 0$. Letting $n \to \infty$ in (2.3) and using the continuity of φ , we have

$$r \le \frac{r}{s^2} - \varphi(r) \le r.$$

Since φ is altering distance function, we obtain r = 0, that is,

$$\lim_{n \to \infty} d(f^n(z_{i-1}), f^n(z_i)) = 0.$$
(2.4)

By *b*-triangular inequality, we have

$$d(f^{n}(x), f^{n}(y)) \leq \sum_{i=1}^{k} s^{i} d(f^{n}(z_{i-1}), f^{n}(z_{i}))$$
(2.5)

for all $n \in \mathbb{N}$. Using (2.4), (2.5) and passing to the limit as $n \to \infty$, we obtain

$$\lim_{n \to \infty} d(f^n(x), f^n(y)) = 0$$

Proposition 2.6. Let (X, d) be a b-metric space with parameter s > 1and $f: X \to X$ be a weakly $b \cdot (\varphi, G)$ contraction. Suppose $x_0 \in X$ and $f(x_0) \in [x_0]_{\tilde{G}}$. Then $\{f^n(x_0)\}$ is a Cauchy sequence in X.

Proof. Since $f(x_0) \in [x_0]_{\tilde{G}}$, then there exists path $\{z_i\}_{i=0}^k$ from x_0 to $f(x_0)$ in \tilde{G} such that $x_0 = z_0, ..., f(x_0) = z_k$ and $(z_{i-1}, z_i) \in E(\tilde{G})$. Then by a similar argument to that of the previous one can show that

$$d(f^{n}(x_{0}), f^{n+1}(x_{0})) \leq \sum_{i=1}^{k} s^{i} d(f^{n}(z_{i-1}), f^{n}(z_{i}))$$
$$\leq \sum_{i=1}^{k} s^{i} \frac{d(z_{i-1}, z_{i})}{s^{2n}}$$
(2.6)

for all $n \in \mathbb{N}$. Let $m > n \ge 1$ and $p \ge 1$. Then by *b*-triangular inequality and (2.6), we have

$$d(f^{n}(x_{0}), f^{n+p}(x_{0})) \leq sd(f^{n}(x_{0}), f^{n+1}(x_{0})) + s^{2}d(f^{n+1}(x_{0}), f^{n+2}(x_{0}))$$

+ ... + $s^{p}d(f^{n+p-1}(x_{0}), f^{n+p}(x_{0}))$
$$\leq \frac{1}{s^{n-1}} \Big[\sum_{j=n}^{n+p-1} s^{j}d(f^{j}(x_{0}), f^{j-1}(x_{0}))\Big]$$

$$\leq \frac{1}{s^{n-1}} \Big[\sum_{i=1}^{k} s^{i} \sum_{j=n}^{n+p-1} s^{j} \frac{d(z_{i-1}, z_{i})}{s^{2j}}\Big]$$

$$\leq \frac{1}{s^{n-1}} \Big[\sum_{i=1}^{k} s^{i}d(z_{i-1}, z_{i}) \sum_{j=n}^{n+p-1} \frac{1}{s^{j}}\Big].$$

Since $\sum_{j=0}^{\infty} \frac{1}{s^j} = \frac{s}{s-1}$, we get $\lim_{n\to\infty} d(f^n(x_0), f^{n+p}(x_0)) = 0$. This is $\{f^n(x_0)\}$ is a Cauchy sequence.

Theorem 2.7. Let (X, d) be a complete b-metric space with parameter s > 1 and f be a weakly b- (φ, G) contraction. Assume G is a (C_f) -graph

and there is $z_0 \in X$ for which $(z_0, f(z_0)) \in E(\tilde{G})$. Then f has a unique fixed point $x^* \in [z_0]_{\tilde{G}}$ and $f^n(y) \to x^*$ for any $y \in [z_0]_{\tilde{G}}$. Also if G is a weakly connected, then f is Picard operator.

Proof. From Proposition 2.6, $\{f^n(z_0)\}$ is a Cauchy sequence in X. Since X is complete there exists $x^* \in X$ such that $\lim_{n\to\infty} f^n(z_0) = x^*$. Since G is a (C_f) graph and $(f^n(z_0), f^{n+1}(z_0)) \in E(G)$ for all $n \in \mathbb{N}$, there exists a subsequence $\{f^{n_k}(z_0)\}$ of $\{f^n(z_0)\}$ and $p \in \mathbb{N}$ such that $(f^{n_j}(z_0), x^*) \in E(G)$ for all $j \geq p$. Therefore

$$(z_0, f(z_0), f^2(z_0), ..., f^{n_1}(z_0), ..., f^{n_p}(z_0), x^*)$$

is a path in \tilde{G} . This implies that $x^* \in [z_0]_{\tilde{G}}$. Using (2.2) we have

$$d(f^{n_j+1}(z_0), f(x^*)) \leq \frac{d(f^{n_j}(z_0), x^*)}{s^2} - \varphi(d(f^{n_j}(z_0), x^*))$$

$$\leq d(f^{n_j}(z_0), x^*).$$

Passing to limit when $j \to \infty$, we obtain $f^{n_j+1}(z_0) \to f(x^*)$. Since $\lim_{n\to\infty} f^n(z_0) = x^*$ and $\{f^{n_j}(z_0)\}$ is a subsequence of $\{f^n(z_0)\}$, Thus $f(x^*) = x^*$. Now let $y \in [z_0]_{\tilde{G}}$. Then by Lemma 2.5, we have

$$\lim_{n \to \infty} d\left(f^n(y), f^n(z_0)\right) = 0.$$
(2.7)

By *b*-triangular inequality, we have

$$d(f^{n}(y), x^{*}) \leq s \left(d(f^{n}(y), f^{n}(z_{0})) + d(f^{n}(z_{0}), x^{*}) \right).$$

From (2.7) and passing to limit when $n \to \infty$, we obtain $\lim_{n\to\infty} f^n(y) = x^*$. To prove the uniqueness of the fixed point, suppose that y^* is another fixed point of f. By *b*-triangular inequality, we obtain

$$d(x^*, y^*) = d(f^n(x^*), f^n(y^*)) \le s \big(d(f^n(x^*), f^n(z_0)) + d(f^n(y^*), f^n(z_0)) \big),$$

for all $n \in \mathbb{N}$. Letting $n \to \infty$ in the above inequality, we have $x^* = y^*$. Then f has a unique fixed point.

Theorem 2.8. Let (X, d) be a complete b-metric space with parameter s > 1 and f be a weakly b- (φ, G) contraction. Suppose G is a connected weakly (H_f) -graph and also there is $z_0 \in X$ such that $(z_0, f(z_0)) \in E(\tilde{G})$. Then f has a unique fixed point $x^* \in X$ and $f^n(y) \to x^*$ for $y \in X$.

Proof. By Proposition 2.6, the sequence $\{f^n(z_0)\}$ is Cauchy in X and since X is complete, there exists $z^* \in X$ such that $\lim_{n\to\infty} f^n(z_0) = z^*$. Since G is (H_f) -graph, we have

$$\lim_{n \to \infty} r(f^n(z_0), z^*) = 0.$$

Let $\{x_i^n\}$ be a path from $f^n(z_0)$ to z^* in \tilde{G} for all $n \in \mathbb{N}$ and $i = 0, 1, ..., K_n$. Now, we prove that z^* is a fixed point of f. Using (2.2) and b-triangular inequality, we have

$$\begin{aligned} d(z^*, f(z^*)) &\leq s\left(d(z^*, f^{n+1}(z_0)) + d(f^{n+1}(z_0), f(z^*))\right) \\ &\leq s\left(d(z^*, f^{n+1}(z_0)) + \sum_{i=1}^{K_n} s^i d\left(f(x_{i-1}^n), f(x_i^n)\right)\right) \\ &\leq s\left(d(z^*, f^{n+1}(z_0)) + \sum_{i=1}^{K_n} s^i \left(\frac{d(x_{i-1}^n, x_i^n)}{s^2} - \varphi(d(x_{i-1}^n, x_i^n))\right) \right) \\ &\leq s\left(d(z^*, f^{n+1}(z_0)) + \sum_{i=1}^{K_n} s^i d(x_{i-1}^n, x_i^n)\right) \\ &= s\left(d(z^*, f^{n+1}(z_0)) + r(f^n(z_0), z^*)\right). \end{aligned}$$

Letting $n \to \infty$ in the above inequality, we obtain $f(z^*) = z^*$. Now, let $y \in [z_0]_{\tilde{G}} = X$ be arbitrary. Using lemma 2.5 and *b*-triangular inequality, we have $f^n(y) \to x^*$.

References

- I. A. Bakhtin, The contraction mapping principle in almost metric space, Functional analysis [Ulyanovsk. Gos. Ped. Inst., Ulyanovsk], 30(1989), 26-37.
- [2] B. S. Choudhury and D. Khatua and N. Metiya and P. Saha, End point results of generalized setvalued almost contractions in metric spaces endowed with a graph, *Bol. Soc. Mat. Mex.* 26(1) (2020), 211-222.
- [3] R. Espinola and W.A. Kirk, Fixed point theorems in R-trees with applications to graph theory, *Topology Appl*, 153 (2006), 1046-1055.
- [4] H. Faraji and K. Nourouzi and D. O'Regan, A fixed point theorem in uniform spaces generated by a family of b-pseudometrics, *Fixed Point Theory*, 20(1)(2019), 177-183.
- [5] G. Gwozdz-Lukawska and J. Jachymski, IFS on a metric space with a graph structure and extensions of the Kelisky-Rivlin theorem, J. Math. Anal. Appl, 356(2)(2009), 453-463.
- [6] J. Jachymski, The Contraction Principal for mappings on a metric space with a graph, Proc. Amer. Math. Soc, 36(4)(2008), 1359-1373.
- [7] M. A. Khamsi and N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal, 73(9)(2010), 3123-3129.
- [8] M.S. Khan and M. Swaleh and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Austral. Math. Soc, 30(1)(1984), 1-9.
- [9] W. Kirk and N. Shahzad, Fixed point theory in distance spaces, Springer, New York, 2014.