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Abstract. Let L be a lattice with the greatest element 1. Follow-
ing the concept of strongly hollow elements of commutative rings,
we define strongly hollow elements of lattices and we will make an
intensive investigate the basic properties and possible structures of
these elements.
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1. Introduction

Let M be a module over a commutative ring R. An R-submodule N of
M is said to be irreducible if N is not the intersection of two submodules
of M that properly contain it. An ideal I of R which is irreducible if
it is irreducible as a submodule of the R-module R. Heinzer et al. in
[7], generalized the concept of irreducible ideals as follows: a proper
ideal I of R is said to be strongly irreducible if for ideals J and K of
R J ∩ K ⊆ I implies that J ⊆ I or K ⊆ I. The notion of strongly
irreducible submodules was introduced and studied in [4]. A submodule
N of an R-module M is said to be strongly irreducible if for submodules
N1 and N2 of M , the inclusion N1∩N2 ⊆ N implies that either N1 ⊆ N
or N2 ⊆ N . A non-zero submodule N of M is strongly hollow in M
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if for any submodules N1 and N2 of M , if N ⊆ N1 + N2, then either
N ⊆ N1 or N ⊆ N2, also a non-zero submodule N of M is completely
hollow in M if for any non-empty family {Ni}i∈J of submodules of M ,
if N =

∑
i∈J Ni, then there is j ∈ J such that N = Nj . A non-zero

ideal I of R is strongly hollow (resp. completely hollow) whenever I is a
strongly hollow (resp. completely hollow) submodule of the R-module R.
The notion of strongly hollow submodules was introduced and studied
in [1] as a dual notion of strongly irreducible submodules. The notion of
strongly hollow ideals (resp. strongly hollow elements) was introduced
and studied in [8].

Let L be a distributive lattice with 1. In the present paper, we are
interested in investigating strongly hollow elements of L to use other
notions of strongly hollow, and associate which exist in the literature as
laid forth in [8]. Here, we extend several concepts from module theory
to lattice theory. With a careful generalization, we can cover some ba-
sic corresponding results in the former setting. The main difficulty is
figuring out what additional hypotheses the lattice or filter must satisfy
to get similar results. Nevertheless, growing interest in developing the
algebraic theory of lattices can be found in several papers and books
(see for example [2, 3, 5, 6]). We shortly summarize the content of the
paper. In Section 2, the notion of completely strongly hollow filters (
as a generalization of strongly hollow filters) and strongly hollow ele-
ments is introduced and some related properties are investigated. Also,
we characterize completely strongly hollow filters and strongly hollow
elements of distributive lattices.

Let us recall some notions and notations [2]. By a lattice we mean a
poset (L,≤) in which every couple elements x, y has a g.l.b. (called the
meet of x and y, and written x∧y) and a l.u.b. (called the join of x and
y, and written x∨y). A lattice L is complete when each of its subsets X
has a l.u.b. and a g.l.b. in L. Setting X = L, we see that any nonvoid
complete lattice contains a least element 0 and greatest element 1 (in
this case, we say that L is a lattice with 0 and 1). A lattice L is called
a distributive lattice if (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c) for all a, b, c in L
(equivalently, L is distributive if (a∧ b)∨ c = (a∨ c)∧ (b∨ c) for all a, b, c
in L). A non-empty subset F of a lattice L is called a filter, if for a ∈ F ,
b ∈ L, a ≤ b implies b ∈ F , and x ∧ y ∈ F for all x, y ∈ F (so if L is a
lattice with 1, then 1 ∈ F and {1} is a filter of L). A proper filter F of L
is called prime if x∨ y ∈ F , then x ∈ F or y ∈ F . A proper filter F of L
is said to be maximal if G is a filter in L with F $ G, then G = L. If F
is a filter of a lattice L, then the radical of F , denoted by rad(F ), is the
intersection of all maximal subfilters of F . If A is a subset of a lattice
L, then the filter generated by A, denoted by T (A), is the intersection
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of all filters that is containing A. A filter F is called finitely generated
if there is a finite subset A of F such that F = T (A).

Lemma 1.1. [5] Let L be a lattice.
(1) A non-empty subset F of L is a filter of L if and only if x∨z ∈ F

and x ∧ y ∈ F for all x, y ∈ F , z ∈ L. Moreover, since x = x ∨ (x ∧ y),
y = y∨ (x∧y) and F is a filter, x∧y ∈ F gives x, y ∈ F for all x, y ∈ L.

(2) If F1, · · · , Fn are filters of L and a ∈ L, then ∨n
i=1Fi = {∨n

i=1ai :
ai ∈ Fi} and a ∨ Fi = {a ∨ ai : ai ∈ Fi} are filters of L and ∨n

i=1Fi =∩n
i=1 Fi.
(3) If L is distributive, F,G are filters of L, and x ∈ L, then (G :L

F ) = {x ∈ L : x∨F ⊆ G}, (F :L T (x)) = (F :L x) = {a ∈ L : a∨x ∈ F}
and (1 :L F ) = {x ∈ L : x ∨ F = 1} are filters of L.

(4) If {Fi}i∈∆ is a chain of filters of L, then ∪i∈∆Fi is a filter of L.

Lemma 1.2. [6] Let A be an arbitrary non-empty subset of L. Then
T (A) = {x ∈ L : a1 ∧ a2 ∧ · · · ∧ an ≤ x for some ai ∈ A (1 ≤ i ≤ n)}.
Moreover, if F is a filter and A is a subset of L with A ⊆ F , then
T (A) ⊆ F , T (F ) = F and T (T (A)) = T (A).

2. Basic properties of strongly hollow elements

Throughout this paper, we shall assume unless otherwise stated, that
L is a distributive lattice with 1. In this section, we collect some basic
properties concerning strongly hollow elements of lattices. We begin
with the key definitions of this paper.

Definition 2.1. Let F ̸= {1} be a filter of L.
(1) F is called strongly hollow in L if for any filters F1 and F2 of L,

if F ⊆ T (F1 ∪ F2), then either F ⊆ F1 or F ⊆ F2.
(2) F is called completely hollow in L if for any non-empty family

{Fi}i∈Λ of filters of L, if F = T (∪i∈ΛFi), then there is j ∈ Λ such that
F = Fj .

(3) F is called completely strongly hollow in L if for any non-empty
family {Fi}i∈Λ of filters of L, if F ⊆ T (∪i∈ΛFi), then there is j ∈ Λ such
that F ⊆ Fj .

Lemma 2.2. Let F ̸= {1} be a filter of L.
(1) If F is a completely strongly hollow, then there is a ∈ F such that

F = T ({a}).
(2) Let F be a finitely generated filter. Then F is completely strongly

hollow if and only if it is strongly hollow.

Proof. (1) An inspection will show that F = T (∪x∈FT ({x})). By as-
sumption, there is a ∈ F such that F ⊆ T ({a}); hence F = T ({a}).
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(2) By definition, if F is completely strongly hollow, then it is strongly
hollow. Conversely, assume that F is a strongly hollow filter and let
F ⊆ T (∪i∈ΛFi). By assumption, there are elements a1, · · · , an ∈ F
such that F = T ({a1, · · · , an}). As a1, · · · , an ∈ T (∪i∈ΛFi), there exist
i1, · · · , in ∈ Λ such that F ⊆ T (Fi1 ∪ · · · ∪ Fin); hence F ⊆ Fij for some
j, as required.

�

Definition 2.3. An element 1 ̸= a of a lattice L is said to be strongly
hollow in L if the filter T ({a}) of L is a (completely) strongly hollow
filter of L.

Remark 2.4. (1) Let F be a filter of a lattice L with F ̸= L. Since the
filter F is proper,

∑
= {G : G is a filter of L with F ⊆ G,G ̸= L} ̸= ∅.

Moreover, (
∑

,⊆) is a partial order. Clearly,
∑

is closed under taking
unions of chains and so F contained in a maximal filter of L by Zorn’s
Lemma.

(2) A lattice L is called a chain lattice if all its filters form a chain
under inclusion. Assume that F is a finitely generated filter of a chain
lattice L with F ̸= {1} and let F ⊆ T (G∪H) for some filters G,H of L.
Then either F ⊆ T (G) = G or F ⊆ T (H) = H; hence F is completely
strongly hollow by Lemma 2.2. Moreover, every element a ̸= 1 of a chain
lattice L is strongly hollow.

Proposition 2.5. Let L be a lattice. The following hold:
(1) If F is a finitely generated (completely) strongly hollow filter of L,

then the set
∑

= {G : G is a filter of L such that G $ F} has exactly
one maximal element with respect to the inclusion.

(2) Let L be a lattice with 0. L is a completely strongly hollow filter
if and only if L has exactly one maximal filter.

Proof. (1) Since {1} ∈
∑

,
∑

̸= ∅. Of course, the relation of inclusion
is a partial order on

∑
. Now sum easily seen to be inductive under

inclusion, so by Zorn’s lemma
∑

has a maximal element H with H $ F .
Let H and H ′ be maximal elements of

∑
with H ̸= H ′ which implies

that there exists x ∈ H \ H ′. Then H ′ $ T (H ′ ∪ T ({x})) ⊆ F ; so
F = (H ′ ∪ T ({x})). By assumption, F ⊆ H ′ or F ⊆ T ({x}) ⊆ H which
is impossible. Thus H = H ′.

(2) Let L be a completely strongly hollow filter of L and set∑
= {G : G is a filter of L such that G $ L}.

Then by (1), L has exactly one maximal filter. Conversely, assume that
P is the unique maximal filter of L and let {Fi}i∈Λ be a non-empty
family of filters of L such that L ⊆ T (∪i∈ΛFi). Now suppose that for
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each i ∈ Λ, L * Fi. As L = T ({0}), there exist Fi1 , · · · , Fin such that
L ⊆ T (Fi1 ∪ · · · ∪ Fin) ⊆ P which is impossible, as required. �

A simple (minimal) filter is a filter that has no filters besides the {1}
and itself.

Proposition 2.6. Let L be a lattice. The following hold:
(1) Let G and H be two completely (strongly) hollow filters of L. Then

T (G∪H) is completely (strongly) hollow if and only if either G ⊆ H or
H ⊆ G.

(2) If F is a minimal filter of L, then F is a (completely) strongly
hollow filter. In this case, every element a ̸= 1 of F is strongly hollow.

Proof. (1) Let T (G ∪H) be completely (strongly) hollow. Then T (H ∪
G) ⊆ T (G∪H) gives either G ⊆ T (G∪H) ⊆ H or H ⊆ T (G∪H) ⊆ G.
The other implication is clear.

(2) Let F ⊆ T (G ∪H) for some filters G and H of L. We show that
either F ⊆ G or F ⊆ H. Assume to the contrary, F * G and F * H.
Since F∨G = F∩G ⊆ F , F * G and F is minimal, we have F∨G = {1};
hence G ⊆ (1 :L F ). Similarly, H ⊆ (1 :L F ). Let x ∈ T (G ∪H). Then
x = (x ∨ g) ∧ (x ∨ h) for some g ∈ G and h ∈ H. Since x ∨ g ∈ G and
x ∨ h ∈ H, we get that x ∈ (1 :L F ); hence F ⊆ T (G ∪H) ⊆ (1 :L F )
which implies that F ∨ F = F = {1}, a contradiction. Thus F is a
(completely) strongly hollow filter.

�
We next give two other characterizations of strongly hollow elements.

Theorem 2.7. Let 1 ̸= a be an element of a lattice L. Then the follow-
ing are equivalent:

(1) a is strongly hollow;
(2) If a = b ∧ c for some b, c ∈ L, then either T ({a}) ⊆ T ({b}) or

T ({a}) ⊆ T ({c});
(3) If a = b ∧ c for some b, c ∈ L, then either T ({b}) ⊆ T ({c}) or

T ({c}) ⊆ T ({b}).

Proof. (1) ⇒ (2) If a = b ∧ c for some b, c ∈ L, then a ∈ T (T ({b}) ∪
T ({c})) which implies that T ({a}) ⊆ T (T ({b})∪T ({c})); hence T ({a}) ⊆
T ({b}) or T ({a}) ⊆ T ({c}) by (1).

(2) ⇒ (3) Suppose that a = b ∧ c for some b, c ∈ L. Then either
T ({a}) ⊆ T ({b}) or T ({a}) ⊆ T ({c}). If T ({a}) ⊆ T ({b}), then a ∈
T ({b}); so a = b ∨ t for some t ∈ L. It follows that c = c ∨ (b ∧ c) =
c ∨ (b ∨ t) = b ∨ (c ∨ t) ∈ T ({b}); hence T ({c}) ⊆ T ({b}). A similar
argument works for the case T ({b}) ⊆ T ({c}).

(3) ⇒ (1) Assume that T ({a}) ⊆ T (G∪H) for some filters G andH of
L. There exist g ∈ G and h ∈ H such that a = a∨(g∧h) = (a∨g)∧(a∨h).
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By (3), either T ({a ∨ g}) ⊆ T ({a ∨ h}) or T ({a ∨ h}) ⊆ T ({a ∨ g}).
Suppose that T ({a ∨ g}) ⊆ T ({a ∨ h}). Then a ∨ h, a ∨ g ∈ T ({a ∨ h})
gives a ∈ T ({a ∨ h}); hence T ({a}) ⊆ T ({a ∨ h}) ⊆ H. A similar
argument works for the case T ({a ∨ h}) ⊆ T ({a ∨ g}). Thus a is a
strongly hollow element. �

Proposition 2.8. Let a be an element of L with a ̸= 1. If a is a strongly
hollow element of L, then either a ∈ rad(L) or there exists exactly one
maximal filter of L not containing a.

Proof. If a ∈ rad(L), we are done. Suppose that a /∈ rad(L). Then there
exists a maximal filter P of L such that a /∈ P . Let P ′ be a maximal
filter of L such that P ̸= P ′ and a /∈ P ′. Then T (P ∪ P ′) = L gives
a = a∨(p∧p′) = (a∨p)∧(a∨p′) for some p ∈ P and p′ ∈ P ′. By Theorem
2.7, either T ({a}) ⊆ T ({a∨p}) ⊆ P or T ({a}) ⊆ T ({a∨p′}) ⊆ P ′ which
is impossible. �

Remark 2.9. Let F be a filter of L. Set

SF = {G : G is a filter of L such that F * G}

and ΓF = T (∪G∈SF
G). It is easy to see that Γa = ΓT ({a}), where

Γa = Γ{a}.

Theorem 2.10. Let F be a finitely generated filter of L with F ̸= {1}.
Then F is completely strongly hollow if and only if there exists the great-
est filter of L with respect to not containing F , namely ΓF .

Proof. Let F be a completely strongly hollow filter of L. Then F =
T ({a}) for some a ∈ F by Lemma 2.2. If F ⊆ ΓF , then by definition of
ΓF , there exist F $ Fi1 , · · · , F $ Fim such that F ⊆ T (Fi1 ∪ · · · ∪ Fim).
By assumption, F ⊆ Fij for some j which is impossible. Thus F * ΓF .
Hence by the definition of ΓF , ΓF is the greatest filter of L with respect to
not containing F . Conversely, assume that there exists the greatest filter
of L with respect to not containing F , say H and let F ⊆ T (∪i∈ΛFi),
where {Fi}i∈Λ is a non-empty family of filters of L. Now Assume that
for each i ∈ Λ, F * Fi. Let i ∈ Λ be fixed. We put

Si = {G : G is a filter of L such that Fi ⊆ G and F * G}.

Since F is finitely generated, every non-empty chain of the poset (Si,⊆)
has an upper bound in Si; hence Si has a maximal element by Zorn’s
lemma, say Hi. Since every filter containing Hi contains Fi, Hi is a filter
of L maximal with respect to not containing F ; so H = Hi. It follows
that for each i ∈ Λ, Fi ⊆ H, and so F ⊆ H which is a contradiction.
Thus F is a completely strongly hollow filter of L. �
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Definition 2.11. A filter F of L is called completely strongly irreducible
if {Fi}i∈Λ is a non-empty family of filters of L such that ∩i∈ΛFi ⊆ F ,
then there exists j ∈ Λ such that Fj ⊆ F .

Proposition 2.12. Let a ∈ L with a ̸= 1. Then a is a strongly hollow
element if and only if a /∈ Γa. In this case, Γa = {x ∈ L : a /∈ T ({x})}.

Proof. Let a be a strongly hollow element of L. Then by Theorem 2.10
and Remark 2.9, Γa = ΓT ({a}) is the greatest filter of L with respect to
not containing T ({a}); so a /∈ Γa. Conversely, assume that a /∈ Γa and
a = b ∧ c for some b, c ∈ L. If T ({a}) * T ({b}) and T ({a}) * T ({c}),
then a /∈ T ({b}) and a /∈ T ({c}); hence b, c ∈ Γa which implies that a ∈
Γa, a contradiction. Thus either T ({a}) ⊆ T ({b}) or T ({a}) ⊆ T ({c});
hence a is a strongly hollow element of L by Theorem 2.7. �
Lemma 2.13. Let a, b ∈ L with a ̸= 1 and b ̸= 1. Then the following
hold:

(1) If a is a strongly hollow element of L, then Γa is a completely
strongly irreducible filter of L.

(2) If a, b are strongly hollow elements, then T ({a}) ⊆ T ({b}) if and
only if Γa ⊆ Γb.

Proof. (1) Let {Fi}i∈Λ be a non-empty family of filters of L such that
∩i∈ΛFi ⊆ Γa. Therefore, a /∈ ∩i∈ΛFi by Proposition 2.12; hence there is
an element j ∈ Λ such that a /∈ Fj and so Fj ⊆ Γa.

(2) Assume that T ({a}) ⊆ T ({b}) and let x ∈ Γa. Then a /∈ T ({x})
by Proposition 2.12. If x /∈ Γb, then b ∈ T ({x}); hence a ∈ T ({a}) ⊆
T ({b}) ⊆ T ({x}) which is impossible. Thus x ∈ Γb, and so Γa ⊆ Γb.
The other implication is similar. �
Proposition 2.14. Let a and b be two strongly hollow elements of L.
Then the following are equivalent:

(1) The filter T ({a, b}) is a completely strongly hollow filter of L;
(2) Either Γa ⊆ Γb or Γb ⊆ Γa;
(3) Either T ({a}) ⊆ T ({b}) or T ({b}) ⊆ T ({a}).

Proof. (1) ⇒ (2) Let T ({a, b}) be a completely strongly hollow filter of
L. Assume to the contrary, Γa * Γb and Γb * Γa. Then there exist
x ∈ Γa \ Γb (so by Proposition 2.12, a /∈ T ({x}) and b ∈ T ({x})) and
y ∈ Γb \ Γa (so b /∈ T ({y}) and a ∈ T ({y})). Then a ∈ T ({y}) \ T ({x})
and b ∈ T ({x}) \ T ({y}). Let z ∈ T ({a, b}). Then z = z ∨ (a∧ b) = (z ∨
a)∧(z∨b) ∈ T (T ({x})∪T ({y})); hence T ({a, b}) ⊆ T (T ({x})∪T ({y})),
but T ({a, b}) * T ({x}) and T ({a, b}) * T ({y}), a contradiction.

(2) ⇒ (3) It follows by Lemma 2.13 (2).
(3) ⇒ (1) Let either T ({a}) ⊆ T ({b}) or T ({b}) ⊆ T ({a}). Without

loss of generality, we can assume that T ({a}) ⊆ T ({b}). Let T ({a, b}) ⊆
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T (∪i∈ΛFi), where {Fi}i∈Λ is a non-empty family of filters of L. By
assumption, T ({b}) ⊆ T ({a, b}) gives T ({b}) ⊆ Fj for some j ∈ Λ which
implies that T ({a, b}) ⊆ Fj , as required.

�

Let a be an element of L. Set Ua = (Γa : a) = {x ∈ L : x ∨ a ∈ Γa}.
Now we consider the behavior of strongly hollow elements under quo-
tient lattice.

Quotient lattices are determined by equivalence relations rather than
by ideals as in the ring case. If F is a filter of a lattice (L,≤), we
define a relation on L, given by x ∼ y if and only if there exist a, b ∈ F
satisfying x ∧ a = y ∧ b. Then ∼ is an equivalence relation on L, and
we denote the equivalence class of a by a ∧ F and these collection of all
equivalence classes by L

F . We set up a partial order ≤Q on L
F as follows:

for each a ∧ F, b ∧ F ∈ L
F , we write a ∧ F ≤Q b ∧ F if and only if a ≤ b.

It is straightforward to check that (LF ,≤Q) is a poset. The following

notation below will be kept in this section: Let a∧F, b∧F ∈ L
F and set

X = {a ∧ F, b ∧ F}. By definition of ≤Q, (a ∨ b) ∧ F is an upper bound
for the set X. If c ∧ F is any upper bound of X, then we can easily
show that (a ∨ b) ∧ F ≤Q c ∧ F . Thus (a ∧ F ) ∨Q (b ∧ F ) = (a ∨ b) ∧ F .

Similarly, (a ∧ F ) ∧Q (b ∧ F ) = (a ∧ b) ∧ F . Thus (LF ,≤Q) is a lattice.

Remark 2.15. Let G be a a subfilter of a filter F of L.
(1) If a ∈ F , then a ∧ F = F . By the definition of ≤Q, it is easy to

see that 1 ∧ F = F is the greatest element of L
F .

(2) If a ∈ F , then a∧F = b∧F (for every b ∈ L) if and only if b ∈ F .
In particular, c ∧ F = F if and only if c ∈ F . Moreover, if a ∈ F , then
a ∧ F = F = 1 ∧ F .

(3) By the definition ≤Q, we can easily show that if L is distributive,

then L
F is distributive.

(4) F
G = {a ∧G : a ∈ F} is a filter of L

G .

(5) If K is a filter of L
G , then K = F

G for some filter F of L.

(6) If H is a filter of L such that G ⊆ H and F
G = H

G , then F = H.

(7) If H and V are filters of L containing G, then F
G ∩ H

G = V
G if and

only if V = H ∩ F .

(8) If H is a filter of L containing G, then T (F∪H)
G = T (HG ∪ F

G).
(9) Let H be a subfilter of F with G ⊆ H. H is a maximal subfilter

of F if and only if H
G is a maximal subfilter of F

G .

Proposition 2.16. Assume that a is a strongly hollow element of L and
let F be a filter of L such that a /∈ F . Then the following hold:

(1) a ∧ F is a strongly hollow element of the lattice L
F .
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(2) Γa∧F = Γa
F .

(3) T (Ua∪F )
F = Ua∧F .

Proof. (1) Since a /∈ F , a∧F ̸= F . Let x ∈ F . If a ∈ T ({x}), then there
exists c ∈ L such that a = a∨ c ∈ F , a contradiction. Thus a /∈ T ({x});
hence F ⊆ Γa. Let a ∧ F = (b ∧ F ) ∧Q (c ∧ F ) = (b ∧ c) ∧ F for some
b, c ∈ L. Since a = a ∧ 1 ∈ (b ∧ c) ∧ F , a = (b ∧ c) ∧ f = b ∧ (c ∧ f)
for some f ∈ F . By Theorem 2.7, we have either T ({a}) ⊆ T ({b}) or
T ({a}) ⊆ T ({c∧f}) which implies that either a = a∨b or a = a∨(c∧f).
Thus either a ∧ F = (a ∨ b) ∧ F = (a ∧ F ) ∨Q (b ∧ F ) ∈ T ({b ∧ F}) (so
T ({a∧F}) ⊆ T ({b∧F})) or a∧F = (a∨ (c∧ f))∧F = (a∧F )∨Q (c∧
f)∧F = (a∧F )∨Q (c∧F ) ∈ T ({c∧F}) (so T ({a∧F}) ⊆ T ({c∧F}))
in the lattice L

F . Thus a ∧ F is a strongly hollow element of the lattice
L
F .
(2) Let x∧F ∈ Γa∧F . If x /∈ Γa, then a ∈ T ({x}) by Proposition 2.12;

so a = a∨x. Then a∧F = (a∨x)∧F = (a∧F )∨Q (x∧F ) ∈ T ({x∧F})
which contradicts Proposition 2.12. Thus x ∈ Γa and so Γa∧F ⊆ Γa

F .

For the reverse inclusion, assume that t ∧ F ∈ Γa
F . Since a /∈ Γa, we

have a ∧ F /∈ Γa
F . If t ∧ F /∈ Γa∧F , then a ∧ F ∈ T ({t ∧ F}); so

a∧F = (a∧F )∨Q (t∧F ) ∈ Γa
F , a contradiction. Hence Γa

F ⊆ Γa∧F , and
so we have equality.

(3) By (2), we have Ua∧F = {x ∧ F : (a ∧ F ) ∨Q (x ∧ F ) ∈ Γa∧F } =

{x ∧ F : (a ∨ x) ∧ F ∈ Γa∧F =
Γa

F
} =

{x ∧ F : a ∨ x ∈ Γa} = {x ∧ F : x ∈ Ua} = T (Ua∪F )
F . �

A filter F of L will be called a L-second filter provided F ̸= 1 and
(1 :L F ) = (G :L F ) for every proper subfilter G of F [5]. We need the
following proposition proved in [5 Proposition 2.1].

Proposition 2.17. Let F ̸= 1 be a filter of L. Then the following hold:
(1) F is L-second if and only if for each a in L, either a ∨ F = {1}

or a ∨ F = F .
(2) F is L- second if and only if it is a minimal filter.

Corollary 2.18. If F is a L- second filter of L, then F is a strongly
hollow filter.

Proof. Let F be a L- second filter of L. Then F is minimal, by Propo-
sition 2.17. Therefore it is strongly hollow by Proposition 2.6. �
Theorem 2.19. Let a be a strongly hollow element of L. Then the
following hold:

(1) T ({a ∧ Γa}) is a minimal filter of the lattice L
Γa

.
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(2) a ∧ Γa is a co-atom in the lattice L
Γa

.

Proof. (1) Let a be a strongly hollow element of L. Then a /∈ Γa by
Proposition 2.12. Therefore, a ∧ Γa is a strongly hollow element of the
lattice L

Γa
by Proposition 2.16. Let x ∧ Γa be an element of the lattice

L
Γa

such that T ({x ∧ Γa}) $ T ({a ∧ Γa}). Then a /∈ T ({x}), and hence

x ∈ Γa, and so T ({x∧Γa}) = {Γa} = {1 L
Γa

}. It means that T ({a∧Γa})
is a minimal filter of the lattice L

Γa
.

(2) Let a ∧ Γa ≤Q b ∧ Γa for some b ∈ L \ Γa. Then b ∧ Γa ∈
T ({a ∧ Γa}). By (1), T ({a ∧ Γa}) is a minimal filter of the lattice L

Γa
.

Hence T ({a ∧ Γa}) = T ({b ∧ Γa}). Therefore a ∧ Γa ∈ T ({b ∧ Γa}), and
so b ∧ Γa ≤Q a ∧ Γa. Therefore a ∧ Γa = b ∧ Γa. �
Theorem 2.20. Let a be a strongly hollow element of a lattice L with
0. Then Γa = Ua is a prime filter of L.

Proof. We will show that Γa is a prime filter. Let x ∨ y ∈ Γa and
x, y ̸∈ Γa, for some x, y ∈ Γa. By Proposition 2.12, a ∈ T ({x}) and
a ∈ T ({y}). Hence x ≤ a and y ≤ a. Therefore x ∨ y ≤ a and so
a ∈ T ({x ∨ y}), a contradiction with x ∨ y ∈ Γa. Therefore Γ is prime.
Now, we will show Γa = Ua. Since Ua = (Γa : a) = {x ∈ L : x∨ a ∈ Γa},
and Γa is a filter by Proposition 2.12, c ∨ a ∈ Γa, for each c ∈ Γa. Thus
Γa ⊆ Ua. Let b ∈ Ua. Then b ∨ a ∈ Γa. By Proposition 2.12, a /∈ Γa.
Since Γa is prime, we have b ∈ Γa. Therefore Ua ⊆ Γa, and so Ua = Γa.

�
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