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ABSTRACT. The power graph P(G) of a finite group G is a graph
whose vertex set is the group G and distinct elements z,y € G are
adjacent if one is a power of the other, that is, z and y are adjacent
ifz € (y) ory € (x). Suppose that G = P x @, where P (resp. Q) is
a finite p-group (resp. g-group) of exponent p (resp. ¢) for distinct
prime numbers p < ¢g. In this paper, we determine necessary and
sufficient conditions for existence of Hamiltonian cycles in P(G).
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1. INTRODUCTION

The power graph P(G) of a group G is a graph with elements of G
as its vertices such that two distinct elements xz and y are adjacent if
y = 2™ or x = y™ for some positive integer m. Clearly, two distinct
elements = and y are adjacent if and only if z € (y) or y € (x) when G
is a finite group.

Power graphs of groups are introduced by Kelarev and Quinn [8], [9].
In [3], Cameron shows that two finite groups with isomorphic power
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graphs must have the same number of elements of equal orders. Fur-
thermore, Cameron and Gosh [4] show that two finite abelian groups
with isomorphic power graphs are isomorphic.

For a finite group G, all nonidentity elements are adjacent to the
identity element, hence P(G) is always connected. In [6], we introduced
proper power graph P*(G) to be the induced subgraph of P(G) whose el-
ements are nontrivial elements of G and investigated whether the proper
power graph of a finite group is connected? Also, we computated the
number of connected components of the graph P*(G) for some classes
of finite groups, say nilpotent groups and symmetric groups. The num-
ber of connected components of a graph I' is denoted by ¢(I"). In this
paper, we fix prime numbers p < ¢, and a p-group P and a ¢-group @ of
orders p" and ¢" with exponents p, g, respectively. Let ¢, and ¢, denote
the number of connected components of P*(P) and P*(Q), respectively.
If z,y € P(G) are adjacent, then we write x ~ y. For a subset X of
the group G, P(X) indicates the induced subgraph of P(G) with vertex
set X. Chakrabarty, Ghosh, and Sen [5] studied power graphs that are
complete or Eulerian or Hamiltonian. In this paper, we will give neces-
sary and sufficient conditions for existence of Hamiltonian cycles in the
power graph P(P x Q) of directe product the groups P and Q.

2. MAIN RESULT

The following simple condition is necessary for deciding whether a
given graph is Hamiltonian (see[2]).

Theorem 2.1. Let S be a set of vertices of a Hamiltonian graph I'. Then

(' = S) < |S|, where ¢(I' — S) is the number of connected components
of ' = §S.
Lemma 2.2. Suppose that G = H x K, and ¢(P*(H)) = m and
c¢(P*(K)) =n. If the graph P(G) is Hamiltonian, then

(1) mn < |H|+ |K|—1;

(2) n < |H| and m < |K]|.

Proof. Let Hy,...,H,, and K,..., K, of the connected components of
the graphs P*(H) and P*(K). For every 1 <i<m and 1 < j <mn, let

Gij=HixK;, Gixk=HxK, Gpu;=HXKj.
Now, for every ¢’ € G, one can show that
(1) if g€ G5 and g ~ ¢, then ¢’ € G; ;U (H x {e} U ({e} x K));

(2) if g€ Gy and g ~ ¢/, then ¢’ € G; x U ({e} x K);
(3) if g€ G, and g ~ ¢, then ¢’ € G ; U (H x {e}).
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By (1), (2), and (3), we can show that the connected components of the
graphs P(G) \ (H x {e} U ({e} x K)), P(G)\ ({e} x K), and P(G) \
(H x {e}) are G; j, G; i, and Gpj, respectively. By theorem the
results follows. O

In the following theorem [6], the number of connected components of
a finite p-group is computed.

Theorem 2.3. Let G be a finite p-group. Then there exists a one-to-
one correspondence between the connected components of P*(G) and the
minimal cyclic subgroups of G.

Example 2.4. If P is a finite p-group of exponent p, then P*(P) is
a union of complete graphs of order p — 1. Moreover, the number of
connected components of P*(P) is equal to (p™ —1)/(p — 1), where p™
is the order of P.

Theorem 2.5. Let G = P x Q and m,n > 2. If ¢, < p™ and ¢, < q,
then P(G) is Hamiltonian.

Proof. Let Hy,...,H,, and K1, ..., K, be connected components of the
graphs P*(H) and P*(K), respectively. For every 1 < r < ¢, and
1 < s < ¢y, we know that

Hy = () \{e}, |zl =p, Ks=(ys) \{e}, |vsl=¢

Put
Xes={mpl |1<i<p-1,1<j<q-1}
and
p+1
}@:UXTSU{yg‘lﬁqu_l}-
r=1

Note that the subgraph P(X,s) is complete and has a Hamiltonian path

Lys  &pys ~ a0ys ~ apyd o - oo alhydh
We claim that for every 1 < s < ¢4, the graph P(Y;) has a Hamiltonian
path, denoted by Lg, which begins from a vertex of X,s and ends at a
vertex of X,g, where r # 1.

For simplicity, let r = 1 and 7’ = ¢,. Since ¢, < ¢, we can write the
following Hamiltonian path:

* L 2 cp—1 c -1
Ls-LlsNysNLQSNysN"'NchflsNysp Nysp'\‘"'Nyg Nchs

To prove the claim, it is enough to substitute Lis and L¢,s with L5 and
L,/ in the path L*, respectively.
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Now, since ¢, < p™ we can extend the paths Ly to a cycle in the
graph P(G) as

Cie~Li~xy~Ly~mwg~ oo ~we, ~ Leyt
Nx%NLCP_,’_QN-"Nx;NLSin/N--'ng;lNchNe’

where L is a Hamiltonian path of Y7 that ends at a vertex of X711 and
Lo is a Hamiltonian path of Y5 that begins from a vertex of Xi5 and
ends at a vertex of Xoo. Actually, for s > 2, if L, is the above cycle
between z,' and x, for r # r’, then we L is a Hamiltonian path of Y
with beginning from a vertex of X, s and ending at a vertex of X,.,.
Suppose that = € G is an element of order p. We know that = € (x,)
for some 1 < r < ¢,. If x is not in the cycle C, then since ¢, < g < ¢4, we
can join x to z, in C, hence the cycle C will be made into a Hamiltonian
cycle of P(G) by continuing this process. O

Corollary 2.6. Let G = (Zy X Zy) X (Zg x Zq). Then the graph P(G)
is Hamltonian if and only if ¢ < p* — 1.

Proof. Put m = n =2 in Theorm O
Example 2.7. The graph P(Zg x Zg) is Hamiltonian.

The following paths in the P(Zg x Zg) contain all elements of order 6
and 3:

(1) Li: O.1) ~ (0,5) ~ (0,2) ~ 3.2) ~ G.4) ~ 0,1) ~ 3,1) ~
D L () ~ G.3) ~ E.0) ~ @3 ~ @3 ~ @) ~ (L) ~
B L G ~ (L) ~ @.F) ~ (L5 ~ B, ~ @) ~ @) ~
) L G5 ~ A1) ~ B.3) ~ LI ~ 6.2 ~ @) ~ 5.5 ~

Hence, we obtain the Hamiltonian cycle
(0,0) ~ Ly ~ (3,3) ~ Ly ~ (3,0) ~ Ly ~ (0,3) ~ Ly ~ (0,0).
of P(Ze x Zg).
Lemma 2.8. Let G = P x Q. Suppose that m > 3 and n > 2. If
(i) cp < q",
(ii) cqg < p™, and
(ili) cpeqg <p™ 44" —1,
then
(a) p™ <q".
Also, if n = 2, then
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b1) ¢p <2q -2,
by) P <4,
b3) ¢ —p<q—2, and
(bg) the graph P(G) is Hamiltonian.
Proof. (a) First suppose that n = 2. Assume on the contrary that
¢®> < p™, but it is clear that ¢> # p™, then ¢ < p™. From (iii), we
conclude that
L+p+-+p" Na—p+2) < ¢

and this results (¢ —p+2) < p — 1, since otherwise

A+p+-+p" Ng—p+2)>p™—1 or p"—1<g@<p™
which is a contradiction. Hence ¢ < 2p — 3.

Put ¢ =p+t with 0 < ¢t < p— 3. Using (iii), we get ether

Qdpt-Ap" Ho+t+1) <pm+p>+2pt+12 -1
or
0 < (Lbpt - A+p™ )+ (ptp* ™) =p? < (p=-3)[(p—3)+2p—(L+p+- - +p™ 1)),
Hence
[(p=3)+2p—(1+p+---+p" ") >0

when m > 3. Then 2p — p? —4 > 0 or p < 2, which is a contradiction.

Now, suppose that n > 3. Again, we assume on the contrary that
q" < p™. By (iii) and the fact that ¢" < p"™ — 1, we obtain

" —1<2(q-1)(p—1)
or equivalently
l+g+-+¢" " <2(p-1).
Since n > 3,
<@ <lt+qgt+-—+q"<2p-1)<2p

which implies that p < 2, a contradiction. Therefore p™ < ¢".

In what follows, we assume that n = 2.

(b1) According to (iii) and p™ < ¢?, we have

cp(g+1) <pPr4+¢?—-1<2¢2—-1 or cp <2¢—2.
(b2) From (a) and p™ < ¢2, we get
(*) If m > 4, then ¢ > p? and by (iii),

m m

p p
cpS(q—1)+m<(q—1)—|—?.

Thus, cp—pm_2<q—1<q0r
Pt < (L tptpt A p 2 pm ) — R < g
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Hence p™~! < q.
(**) Suppose that m = 3. By (iii), we conclude that

@ — (P +p+1)g—(—p*+p*+p+2)>0.

Hence either ¢ < q1 or ¢ > g2, where q1,q2 = 3(p* +p+ 1 FVA)
with A = p* — 2p3 + 7p? +6p + 9 > 0.
If ¢ < @1, then ¢, = p? + p+ 1 > 2¢, which is a contradiction
by (a). Therefore, ¢ > g2. On the other hand, the function
g(p) = g2 — p? has minimum 2 in [0, 00). Hence, for ¢ > o, we
have g > p?
(bs) By (iii), we have

(1+q)ep <p"+¢—1<pg+¢*—1=(q+1)(p+qg—1)—p

or equivalently
p<(p+qg—-1)— q—pk;l
Therefore ¢, —p < q — 2.
(bs) If ¢, < c¢q, then by Theorem [2.5] P(G) is Hamiltonian. Hence
assume that ¢, < ¢;. Let Hy, Ha, ..., Hc, and K1, Ko, ..., K., be con-
nected components of P*(P) and P*(Q), respectively. Actually, for

every 1 <r <¢pand 1 < s < ¢

Hy = (zr)\{e}, |zx[=p and Ks=(ys)\{e}, |ys| =10
Put
Xps={alyl :1<i<p-1,1<j<q-1}
and
B={1,2,...,¢4}.

If 1 < r < ¢4 we define the subset B, = {r —1,7,...,r +p—2} of B
where 7 denotes the remainder of v indivision by ¢, i.e. u =% (mod ¢),
and B, = @ for every ¢, +1 <1 < ¢p.

Note that the subgraph induced by X, is complete and has a Hamil-
tonian path

Lys s &pys ~ xys ~ apyd o~ -~ alhydh
Now, for each 1 <1 < ¢4, we define the path A, as follows
A,,:erwxerrmwx%Nerwx;’N---Nxf_lNLﬁ.
The paths A, can be joined to obtain a longer path
L:A~yr~NAy~ya~ A3~ Ay ~ e,
Next, for every 1 < s < ¢4, we define the subsets 2, and A, of the set
G\ L., where L. is the set of elements used in the path L as

Q, = {y?,yf,...,yg_l} and Ay = UXTS7
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where union is on 1 < r < ¢, such that s € B,.. It is clear that G \ L is
partitioned by the subsets Q5, As, and {e}.
On the other hand, for every 1 < s < ¢4, w ehave

My={1<r<c¢,:seB}={s—p+2,s—p+1,...,5,s+1}.
Hence
{er ° 8 gB'f‘}‘ =Cp—DP-
Since ¢, —p < ¢ — 2, we have a path I'y containing elements of G\ L, as

q—1

cp—p+1
spp ~Ys

cp—p+2 ..

. 2 3
Fs‘Lrls'\’ysNLrgsNysN"'Nchp_psNy ~Ys

where r; € M, for 1 <i < ¢, —p.
Again, by attaching the paths A,, I's, L, and identity element e we
obtain the Hamiltonian cycle

Cie~mAi~yp~Ti~Ap~yg~ Ty~ ~v Ay ~ye, ~ T, ~ e,

as required.
O

Theorem 2.9. Let G = PxQ, where P and Q are groups of order p™, q"
and with exponents p, q, respectively. The graph P(G) is Hamiltonian if
and only if
(i) ¢g <p™;
(i) ¢p < ¢"; and
(ili) cpeg <p™+4q¢" —1.

Proof. Assume that the graph P(G) is Hamiltonian. Then, by Lemma
the results hold. For the converse, we discuss on the numbers n,m
and show that P(G) is Hamiltonian.

(1) Ifn=1o0orm =1, then G = Z, x Q or Zy x P and P(G) is
Hamiltonian by Corollary 2.15 [7].

(2) If n = m = 2, then by Theorem the graph P(G) is Hamilton-
ian.

(3) If n = 2 and m > 3, then the graph P(G) is Hamiltonian by
Lemma 2.8

(4) If n > 3 and m € N, then the assumptions yields that n = 3. First

m
s

observe that by Lemma and the fact that p < ¢, we get

hence p™ —1 < 2(p —1)(¢ — 1) by part (iii).

On the other hand, when ¢, < p™, we get ¢(1+q+--- + " ?) <
2(p—1)(qg — 1). Since p < q, we have 1 + ¢+ ---+ ¢ 2 < 2¢ — 2 and
we conclude that n —2 < 1 or n < 3. Thus, n = 3 and the proof is
complete.
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Now, we show that P(G) is Hamiltonian. By part (iii), we have

q3 2

—q>0
T+p+pi+-+pt ¢

or equivalently (1 +p+p? +---+p™ ') < ¢q. Therefore, by Theorem
the graph P(G) is Hamiltonian. O

Example 2.10. Suppose that G = P x @, where P and @ are groups
of orders 5% and 292, respectively. Then the graph P(G) is Hamiltonian.
We have

(1) ¢p =31 <292 =841
(2) ¢ =30,< 125 =53
(3) 31 x 30 =930 < 53 +29%2 — 1 = 965

Then by Lemma 2.8, 5% = 125 < 292 = 841 and the graph P(G) is
Hamiltonian.

Additional Details: Using the symbols introduced in the proof of
Lemma put B =1{1,2,3,...,30} and choose the subsets B, of B for
every 1 <r <31 as

By ={0,1,2,3,4} = {30,1,2,3,4}, B, =1{1,2,3,4,5}, Bs={2,3,4,5,6},...,
Bos = {27,28,29,30,1}, Bag = {28,29,30,1,2}, Bsy={29,30,1,2,3}, B = 0.

For every 1 <r <31l and 1 < s < 30,
Hy = (z;)\{e}, |z:.|=5 and K= (ys)\{e}, |ys|=29.

Also,
Xps={zlyl |1 <i<4,1<j<28}

Corresponding to the subsets B,., we write the sets X, in a table

L | Xi30 Xi2 X13 X4 X1
2 Xo1 Xo3 Xoy Xos X929

3 X32 X34 X35 X36 X33
28 | X(2gy21) X(28)29) X(28)(30) X(28)1 X(28)(28)

29 | X(29)28) X(29)30) X0yt X292 X(29)(29)
30 | Xz0y29)  X@oyr  X@oz  X@E0)3 X(30)(30)
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The table of paths

2 3 4
A1 L1(30) ~ Tl L12 ~ Ty~ L13 ~ Ty~ L14 ~ Ty~ L11

2 g\
Aoy | Loy ~ a9~ Log~ a3 ~ Loy ~ a3 ~ Los ~ a5 ~ Lo

A3 | Lsg ~ a3~ L3y ~a% ~ Las ~ a3 ~ Lag ~ x5 ~ Lag

Agg | Liag)(ar) ~ 28 ~ Las)(20) ~ %55 ~ L(as)(30) ~ T35 ~ L(agy1 ~ L5 ~ L(2s)(28)

)(
Agg | Lagy(as) ~ @29 ~ L29)(30) ~ T39 ~ L(29)1 ~ T9 ~ L(29)2 ~ 39 ~ L(29)(29)
L30)(20) ~ 230 ~ Lzoy1 ~ 235 ~ L(z0)2 ~ 239 ~ L(30)3 ~ 30 ~ L(30)(30)
The paths A, can be joined to make a longer path

L:A~y1~Ay~ys~Ag~---~ Az~ y30.

On the other hand, the X;1’s and X;o’s used above are X11, Xa1, X(28)1, X(20)1, X(30)1

and Xi2, X22, X32, X(29)2, X(30)2, respectively.

Uy | Lt~y ~Lan~yi ~ Lyt ~yi ~ -~ Lo ~y7° ~ Loy ~ui' ~y

28
1

Ty | Lug ~y5 ~ Lsy ~y5 ~ Lea ~ Yy ~ -+~ ~ Lapyo ~ 45° ~ Liag)a ~ y3° ~ L(z0)2 ~ 3"

T3 | Lsz ~y5~ Loz ~y3 ~ Lyg ~y3 ~ -+~ ~ Liagys ~ 45° ~ Liogys ~ 43° ~ Lznys ~ 3"

Tos | Lias) ~ Y28 ~ -~~~ Liagyas) ~ U8 ~ Lzo)(2s) ~ ¥28™° ~ Ls1y(28) ~ Y2s>" ~ yas™

Lo | Li(ag) ~ y20” ~ Lo(ag) ~ y20° ~ - -~ ~ La5)(29) ~ Y29°° ~ L(31)(20) ~ Y20

78
~ Y29

T30 | Logso) ~ y30” ~ Lso) ~ y30” ~ -+ ~ Lagy30) ~ ¥30 ~ Lz1)30) ~ Y30
Therefore, we have a Hamiltonian cycle as in the following

Cie~Ai~yr~Ti~Ay~yp~To~eoo v Agg~y3o ~ T30 ~ e
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