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Abstract. In this article, we will shed the light on the following
nonlinear neutral dynamic equation with infinite delay

x(t)∆ = G(t, x (t) , x (t− τ (t))) +Q(t, x(t− τ(t)))∆

+

∫ t

−∞

(
p∑

i=1

Di (t, s)

)
f (x (s))∆s,

where T is a periodic time scale. Using the fixed-point method by
Krasnoselskii, we will show that equation has a periodic solution.
In addition, we will prove this solution is unique by using the con-
traction mapping principle.
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1. Introduction

Over the past years, Researchers have used different methods to show
the existence of solutions of numerous types for nonlinear differential
equations one of these methods is fixed-point theory. Accordingly, many
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articles has been published in this field, and we refer readers to [11,14,15].
On the other hand, Fixed point has been revealed as a very strong and
important method for the study of nonlinear neutral dynamic equation.
Recently, in [17] by Yankson, the existence and uniqueness of solutions
for the neutral periodic integro- differential equation with infinite delay
given by

d

dt
x (t)= G(t, x (t) , x (t− τ (t)))+

d

dt
Q(t, x (t− τ (t))) (1.1)

+

∫ t

−∞

(
p∑
i=1

Di (t, s)

)
f (x (s))ds.

was established by using the fixed-point method by Krasnoselskiiand
and the contraction mapping principle respectively.

In this paper, we will present the following neutral periodic integro-
differential equations with infinite delay

x(t)∆ = G(t, x (t) , x (t− g (t))) +Q(t, x(t− g (t)))∆ (1.2)

+

∫ t

−∞

(
p∑
i=1

Di (t, s)

)
f (x (s))∆s,

by assuming that G : R × R × R → R is a continuous real-valued func-
tion, taking into consideration Q : R × R → R, Di : R × R → R and
f : R → R are continuous functions, and to ensure periodicity the follow-
ing assumption has been made g (t) , Di (t, x) and Q (t, x) are periodic
functions.

We are interested to study the existence of periodic solutions of Eq
(1.2) on the Time scale space T. Time scale is a relatively new subject it
has been presented by the following definition a time scale T is a closed
non-empty subset of R. The main point of this space is unifying the
theory of difference with differential equations.
Let 0 ∈ T, g : T → R and id − g : T → T is strictly increasing, this
leads that x (t− g (t)) is well-defined over T. The work is inspired and
motivated by the works done by Ardjouni and Djoudi [2], and for more
details on this subject, we refer the reader to [3]- [9] and [12]. To achieve
the intended result we have to follow the requirements of Krasnoselskii’s
fixed point where the theory asks for z = Az +Bz yields z ∈M , where
M is a convex set, Az is continuous and compact, Bz is a contrac-
tion. The methodology used in this paper is transformed Eq(1.2) into
an integral equation that allows us to create two mappings and it is the
condition of the fixed point theorem of Krasnoselskii and this done in
Lemma 3.5. Afterwards, we proved that Az is continuous and compact,
Bz is a contraction. It helped us to implement Krasnoselskii’s theorem
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and to grant us to prove the existence of periodic solutions. In the end,
we show the uniqueness of the periodic solution by the use of the con-
traction mapping principle.

This paper is structured as follows. In Section 2, we present outlines
some preliminary background material to be used in the upcoming sec-
tions. Also, some facts will provide about the exponential function on a
time scale well. The main result has been presented in Section 3.

2. Preliminaries

This section focus to provide the significant notations which related
to concepts concerning the calculus on time scales for dynamic equations
mostly all definitions, lemmas and theorems can be found in Bohner and
Peterson books [8, 9].

A time scale T is a closed nonempty subset of R. For t ∈ T the forward
jump operator σ and the backward jump operator ρ, respectively, are
defined as

σ (t) = inf {s ∈ T : s > t} and ρ (t) = sup {s ∈ T : s < t} .
These operators allow elements in the time scale to be classified as fol-
lows. We say t is

(1) right scattered if σ (t) > t,
(2) right dense if σ (t) = t,
(3) left scattered if ρ (t) < t,
(4) left dense if ρ (t) = t.

The graininess function µ : T → [0,∞), is defined by µ (t) = σ (t) − t
and gives the distance between an element and its successor. We set
inf ∅ = supT and sup ∅ = inf T.

(1) If T has a left scattered maximum M , we define Tk = T \ {M}.
Otherwise, we define Tk = T.

(2) If T has a right scattered minimum m, we define Tk = T \ {m}.
Otherwise, we define Tk = T.

Let t ∈ Tk and f : T → R. The delta derivative of f (t), denoted by
f∆ (t), is defined to be the number (when it exists), with the property
that, for each ϵ > 0, there is a neighborhood U of t such that∣∣f (σ (t))− f (s)− f∆(t)[σ (t)− s]

∣∣ ≤ ϵ |σ (t)− s| ,
for all s ∈ U . For example,

(1) If T = R then f∆ (t) = f̀ (t) is the usual derivative.
(2) If T = Z then f∆ (t) = ∆f (t) = f (t+ 1) − f (t) is the forward

difference of f at t.
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A function f is right dense continuous (rd-continuous), f ∈ Crd =
Crd (T,R), if it is continuous at every right dense point t ∈ T and its
left-hand limits exist at each left dense point t ∈ T. function f : T → R
is differentiable on Tk provided f∆ (t) exists for all t ∈ Tk.

We are now able to state some properties of the delta-derivative of f .
Note that fσ (t) = f (σ (t)).

Theorem 2.1. [8] Assume that, f, g : T → R are differentiable at
t ∈ Tk and let α be a scalar.

(1) {(f + g)}∆ (t) = f∆ (t) + g∆ (t),

(2) {(αf)}∆ (t) = αf∆ (t),

(3) {(fg)}∆ (t) = f∆ (t) g (t) + fσ (t) g∆ (t),

(4)
{(

f
g

)}∆
(t) = f∆(t)g(t)−f(t)g∆(t)

g(t)gσ(t) , with g(t)gσ(t) ̸= 0.

The next two theorems deal with the composition of two functions.
The first one is the chain rule on time scales [8, Theorem 1.93].

Theorem 2.2. (Chain Rule). Assume, v : T → R is strictly increasing

and T̃ := v (T) is a time scale. Let w : T̃ → R . If v∆ (t) and w∆̀ (v (t))

exist for t ∈ Tk, then {(w ◦ v)}∆ =
(
{w}∆́ ◦ v

)
v∆.

In the sequel, we will need to differentiate and integrate functions of
the form f (t− g (t)) = f (v (t)), where f (v (t)) = t− g (t). The second
theorem is the substitution rule [8, Theorem 1.98].

Theorem 2.3. (Substitution). Assume v : T → R is strictly increasing

and T̃:= v(T) is a time scale. If f : T → R is an rd-continuous function
and v is differentiable with rd-continuous derivative, then for a, b ∈ T,∫ b

a
f (t) v∆ (t)∆t =

∫ v(b)

v(a)
f ◦ v−1 (s)∆̃s.

A function p : T → R is said to be regressive provided 1+µ (t) p (t) ̸= 0
for all t ∈ Tk. The set of all regressive rd-continuous functions f : T → R
is denoted by R while the set R+ is given by

R+ = {f ∈ R : 1 + µ (t) f (t) > 0 for all t ∈ T} .
Let p ∈ R and µ (t) ̸= 0 for all t ∈ T. The exponential function on T is
defined by

ep (t, s) = exp

(∫ t

s

[
1

µ (z)
log (1 + µ (z) p (z))

]
∆z

)
. (2.1)

It is well known that if p ∈ R+, then ep (t, s) > 0 for all t ∈ T. Also, the
exponential function y(t) = ep(t, s) is the solution to the initial value
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problem y∆ = p (t) y, y (s) = 1. Other properties of the exponential
function are given in the following Lemma [8, Theorem 2.36].

Lemma 2.4. Let p, q ∈ R. Then

(1) e0 (t, s) = 1 and ep (t, t) = 1,
(2) ep (σ (t) , s) = (1 + µ (t) p (t))ep (t, s),

(3) 1
ep(t,s)

= e⊖ (t, s) , where ⊖p (t) = − p(t)
1+µ(t)p(t) ,

(4) ep (t, s) =
1

ep(s,t)
= e⊖p (s, t),

(5) ep (t, s) ep (s, r) = ep (t, r),

(6)
{(

1
ep(. ,s)

)}∆
= − p(t)

eσp (.,s)
.

The notion of periodic time scales and the next two definitions are
quoted from [7] and [13].

Definition 2.5. We say that a time scale T is periodic if there exists
p > 0, such that, t ∈ T , then t±p ∈ T. For T ̸= R, the smallest positive
p with this property is called the period of the time scale.

Example 2.6. The following time scales are periodic.

(1) T =
⋃∞
i=−∞ [2 (i− 1)h, 2ih] , h > 0 has period p = 2h,

(2) T = hZ has period p = h,
(3) T =R,
(4) T = {t = k − qm : k ∈ Z, m ∈ N0}, where 0 < q < 1 has period

p = 1.

Remark 2.7. [13] All periodic time scales are unbounded above and be-
low.

Definition 2.8. Let T ̸= R be a periodic time scale with period p. We
say that the function f : T → R is periodic with period T if there exists
a natural number n such that T = npf (t± T ) = f (t) for all t ∈ T and
T is the smallest number such that f (t± T ) = f (t).

Let T = R, we say that f is periodic with period T > 0, if T is the
smallest positive number such that f (t± T ) = f (t) , for all t ∈ T.

Remark 2.9. [13] If T is a periodic time scale with period p, then
σ (t± np) = σ (t) ± np. Consequently, the graininess function µ sat-
isfies

µ (t± np) = σ (t± np)− (t± np) = σ (t)− t = µ (t)

and so, is a periodic function with period p.

3. Existence of periodic solutions

In this section we will present the main result. The following condi-
tions should be assumed. Let C (T,R) be the space of all real valued



98 H. A. Makhzoum, A. S. Elmabrok, R. A. Elmansouri

continuous functions on T. Define

HT = {φ ∈ C (T,R) : φ (t+ T ) = φ (t)} , where T > 0, T ∈ T,
then HT is a Banach space with the supremum norm

∥x∥ = sup |x (t)| , t ∈ [0, t] .

If T ̸= R and T = np for some, n ∈ N. By the notation [a, b] we mean
[a, b] = {t ∈ T : a ≤ t ≤ b}, unless otherwise specified. The intervals
[a, b) , (a, b] , and (a, b) are defined similarly. for all t ∈ T, let a (t) > 0
and a ∈ R+, where a (t) is a continuous, and

a (t + T ) = a (t) , (3.1)

g (t+ T ) = g (t) , (3.2)

Di (t+ T, u+ T ) = Di (t, u) , (3.3)

(id− g) (t+ T ) = (id− g)(t), (3.4)

where, id is the identity function on T. We also assume that Q (t, x)
and f (x) are continuous and periodic in t and Lipschitz continuous in
x. That is,

Q (t+ T, x) = Q (t, x) (3.5)

and there are positive constants E1, E2, E3, E4 and E5 such that
p∑
i=1

|Qi (t, x)−Qi (t, y) | ≤ E1∥x− y∥, (3.6)

|G (t, x, y)−G (t, w, z) | ≤ E2∥x− w∥+ E3∥y − z∥, (3.7)

|f (x)− f (y) | ≤ E4∥x− y∥, (3.8)

and ∫ t

−∞
|D (t, u) |∆u ≤ E5, (3.9)

Lemma 3.1. [13] Let x ∈ HT . Then ∥xσ∥ exists and ∥xσ∥ = ∥x∥.

The following lemma allow to convert Eq(1.2) to an equivalent integral
equation.

Lemma 3.2. Suppose, (3.1) and (3.5) hold, if x ∈ HT , then x is a
solution of Eq (1.2) if and only if

x (t) = Q(t, x (t− g (t)))

+ (1− e⊖a (t, t− T ))−1
∫ t

t−T
[−a (u)Qσ (u, x (u− g (u)))

+ a(u)x(u)σ +

∫ u

−∞

((
p∑
i=1

Di (u, s)

)
f (x (s))

)
∆s

+G (u, x (u) , x (u− τ (u)))]e⊖a(t, u)∆u. (3.10)
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We will introduce the state of Krasnoselskii’s fixed point theorem and
apply this theorem to prove the existence of a periodic solution

Theorem 3.3. (Krasnoselskii) Let M be a closed convex nonempty sub-
set of a Banach space (B, ∥.∥). Suppose that A and B map M into B
such that

(1) x, y ∈ M, implies Ax+By ∈ M,
(2) A is compact and continuous,
(3) B is a contraction mapping.

Then there exists z ∈ M with z = Az +Bz .

For its proof, we refer the reader to [16]. As structures hypothesis of
Theorem 3.3 states there are two mappings, one is a contraction and the
other is compact. Therefore we will define the operator P : HT → HT

by

(Pφ) (x) =Q(t, φ (t− g (t))) + a(u)x(u)σ

+ (1− e⊖a (t, t− T ))−1
∫ t

t−T
[−a (u)Qσ (u, x (u− g (u)))

+

∫ u

−∞

(
p∑
i=1

Di (u, s)f (φ (s))

)
∆s

+G(u, φ (u) , φ (u− τ (u))] e⊖a(t, u)∆u (3.11)

By using the same stpes in [1], we can proof that, (Pφ) (x) is periodic
in t of period T . Now by expressing equation (3.11) as

(Pφ) (t) = (Bφ) (t) + (Aφ) (t) ,

where, A and B are given by

(Bφ) (t) = Q (t, φ (t− g (t))) . (3.12)

And

(Aφ) (t) = (1− e⊖a (t, t− T ))−1
∫ t

t−T
[−a (u)Qσ (u, φ (u− g (u)))

+ a(u)φ (u)σ +

∫ u

−∞

(
p∑
i=1

Di (u, s)f (φ (s))

)
∆s

+G(u, φ (u) , φ (u− τ (u))] e⊖a(t, u)∆u] . (3.13)

We are trying to achieve that (Bφ) (t) is contraction and (Aφ) (t) is com-
pact this can be done by providing these two lemmas. Before introduce
the lemmas we define the following constants

τ = max
t∈[0,T ]

∣∣∣(1− eθa (t, tT ))
−1
∣∣∣ , (3.14)
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ρ = max
t∈[0,T ]

|a (t)| , (3.15)

ν =

∣∣∣∣ max
u∈[t−T,t]

eθa (t, u)

∣∣∣∣ . (3.16)

Lemma 3.4. IfA is defined by Eq(3.13), then A is continuous and the
image of A is contained in a compact set.

Proof. We will start by provingA is continuous we defineA as in Eq(3.13).
Let φ,ψ ∈ HT , for a given ε > 0, take δ = ε

N with

N = τνT [ρE1 + ρ+ E4E5 + E2 + E3] .

Now for ∥φ− ψ∥ < δ, using (3.6) into (3.9) by utilizing the same steps
in [17] , we get

∥Aφ −Aψ∥ ≤ τνT [ρE1 + ρ+ E4E5 + E2 + E3] ∥φ− ψ∥
≤ N ∥φ− ψ∥
≤ Nδ ≤ ε.

This is show that A is continuous. The second step is showing A is a
compact set using Ascoli-Arzela’s theorem [10], which states that for
A ⊂ X, A is compact if and only if A is bounded, and equicontinuous.
Let Ω = {φ ∈ HT : ∥φ∥ ≤ Υ} , where Υ is any fixed positive constant.
From (3.6) and (3.8) we have,

|Q (t, x) | = |Q (t, x)−Q (t, 0) +Q (t, 0) |,
≤ |Q (t, x)−Q (t, 0) |+ |Q (t, 0) |,
≤ E1|x|+ α1,

where, α1 = supt∈[0,T ] |Q (t, 0)|.

In the same way,

|f (x) | = |f (x)− f (0) + f (0) |,
≤ |f (x)− f (0) |+ |f (0) |,
≤ E4∥x∥.

and

|G (t, x, y) | = |G (t, x, y)−G (t, 0, 0) +G (t, 0, 0) |,
≤ |G (t, x, y)−G (t, 0, 0) |+ |G (t, 0, 0) |,
≤ E2∥x∥+ E3∥y∥,

where, α2 = supt∈[0,T ] |G (t, 0, 0)|.
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Taking into consideration, f (0) = 0 and G (t, 0, 0) = 0. Let φn ∈ Ω
where n is a positive integer with

L = τνT [ρ (E1Υ + α1) + ρΥ +ΥE4E5 +ΥE2 +ΥE3 + α2]

, where L > 0. Therefore,

∥Aφn∥ = |(1− e⊖a (t, t− T ))−1
∫ t

t−T
[−a (u)Qσ (u, φn (u− g (t)))

+ a (u)φn (u)
σ +

∫ u

−∞

(
p∑
i=1

Di (u, s)f (φn (s))

)
∆s

+G (u, φn (u) , φn (u− τ (u)))]e⊖a (t, u)∆u|

≤ max
t∈[0,T ]

|(1− e⊖a (t, t− T ))−1
∫ t

t−T
[−a (u)Qσ (u, φn (u− g (t)))

+ a (u)φn (u)
σ +

∫ u

−∞

(
p∑
i=1

Di (u, s)f (φn (s))

)
∆s

+G (u, φn (u) , φn (u− τ (u)))]e⊖a (t, u)∆u

≤ τνT [ρ (E1Υ+ α1) + ρΥ +ΥE4E5 +ΥE2 +ΥE3 + α2]

≤ L. (3.17)

This is showing that A is bounded. To prove A is equicontinuous we need
to find (Aφn)

∆ (t) and prove that it is uniformly bounded. Therefore,
after derivative Eq(3.13) with using (3.6) - (3.9) we get,

(Aφn)
∆ (t) = −a (t)A (φn)

σ (t)− a (t)Qσ (t, φn (t− g (t)))

+a (t)φn (t)
σ +

∫ u

−∞

(
p∑
i=1

Di (u, s) f (φ (s))

)
∆s

+G (u, φ (u) , φ (u− τ (u))) .

The above expression yields |(Aφn)∆| ≤ Z, where Z is some positive
constant. Hence, by Ascoli-Arzela’s Theorem Aφ is compact. �
Lemma 3.5. If B is given by Eq(3.12) with E1 < 1, and (3.6) hold,
then B is a contraction.

Proof. Let B be defined by Eq(3.12). Then for φ,ψ ∈ HT we have

∥ (Bφ) (t)− (Bψ) (t) ∥ = sup
t∈[0,T ]

| (Bφ) (t)− (Bψ) (t) |

= sup
t∈[0,T ]

|Q (t, φ (t− g (t)))−Q (t, ψ (t− g (t))) |.

By using (3.6), then we get

∥ (Bφ) (t)− (Bψ) (t) ∥ ≤ E1 sup
t∈[0,T ]

∥φ (t− g (t))− ψ (t− g (t)) ∥.
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As E1 < 1, therefore B defines a contraction. �

Theorem 3.6. Suppose (3.1)-(3.9) hold. Let

α1 = sup
t∈[0,T ]

|Q (t, 0) | , α2 = sup
t∈[0,T ]

|G (t, 0, 0)|

and there exist that a positive constant K satisfying the inequality

τνT [ρ (E1K + α1) + (ρ+ E4E5 + E2 + E3)K + α2] + E1K + α1 ≤ K.

Let M = {φ ∈ HT : ∥φ∥ ≤ K}. Then Eq (1.2) has a solution in M.

Proof. First, we will define M = {φ ∈ HT : ∥φ∥ ≤ K}. By knowing that
A is continuous and AM is contained in a compact set from Lemma 3.4.
Also, the mapping B is a contraction from Lemma 3.5. It is clear that
A,B : HT → HT . Our goal is to show that, ∥Aφ +Bψ∥ ≤ K. Let
φ,ψ ∈ M, with ∥φ∥ , ∥ψ∥ ≤ K. Then,

∥Aφ +Bψ∥ ≤ ∥Aφ∥+ ∥Bψ∥ .

Lemma 3.4 says that,

∥Aφn∥ ≤ τνT [ρ (E1K + α1) + (ρ+ E4E5 + E2 + E3)K + α2]

Therefore,

∥A∥+ ∥B∥ ≤ τνT [ρ (E1K + α1) + (ρ+ E4E5 + E2 + E3)K + α2] + E1 ∥ψ∥+ α1

≤ τνT [ρ (E1K + α1) + (ρ+ E4E5 + E2 + E3)K + α2] + E1K + α1

≤ K.

Hence, all conditions of Theorem 3.3 are proven. Thus, there exists a
fixed point z in M. By Lemma 3.2, this fixed point is a solution of Eq
(1.2). Therefore, Eq (1.2) has a T -periodic solution. �

Theorem 3.7. Suppose (3.1)-(3.9) hold. If

E1 + τνT [ρE1 + ρ+ E5E4 + E2 + E3] < 1, (3.18)

then Eq (1.2) has a unique T -periodic solution.

Proof. Let φ,ψ ∈ HT . Define P as Eq (3.11), we have,

∥Pφ − Pψ∥ < E1 + τνT [ρE1 + ρ+ E5E4 + E2 + E3] ∥φ− ψ∥ .

This completes the proof of Theorem 3.7. �
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