تعداد نشریات | 30 |
تعداد شمارهها | 467 |
تعداد مقالات | 4,522 |
تعداد مشاهده مقاله | 7,145,263 |
تعداد دریافت فایل اصل مقاله | 5,334,960 |
Mathematical Analysis for Oncolytic Virotherapy, Considering the Role of the Lytic Cycle in the Presence of Immune System Response | ||
Caspian Journal of Mathematical Sciences | ||
دوره 11، شماره 2، 2022، صفحه 550-566 اصل مقاله (368.52 K) | ||
نوع مقاله: Research Articles | ||
شناسه دیجیتال (DOI): 10.22080/cjms.2021.19464.1562 | ||
نویسندگان | ||
Hajimohammad Mohammadinejad* ؛ Saeed Jani؛ Omid RabieiMotlagh | ||
Department of Mathematics, University of Birjand, Iran | ||
تاریخ دریافت: 20 آبان 1399، تاریخ بازنگری: 06 دی 1399، تاریخ پذیرش: 21 دی 1399 | ||
چکیده | ||
The immune system of the cancer patient's body and the viral lytic cycle play important roles in cancer virotherapy. Most mathematical models for virotherapy do not include these two agents simultaneously. In this paper, based on clinical observations we propose a mathematical model including the time of the viral lytic cycle, the viral burst size, and the immune system response. The proposed model is a nonlinear system of delay differential equations in which the period of the viral lytic cycle is modeled as a delay parameter and is used as the bifurcation parameter. We analyze the stability of equilibrium points and the existence of Hopf bifurcation and obtain some conditions for the stability of equilibrium points in terms of the burst size and delay parameter. Finally, we confirm the results with a numerical example and describe them from a biological point of view. | ||
کلیدواژهها | ||
Delay differential equation؛ Hopf bifurcation؛ Stability | ||
آمار تعداد مشاهده مقاله: 426 تعداد دریافت فایل اصل مقاله: 145 |