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ABSTRACT. Singular Spectrum Analysis (SSA) is a non-parametric
and rapidly developing method of time series analysis. Recently,
this technique receives much attention in a wide variety of fields. In
SSA, a special matrix, which is called lag-covariance matrix, plays
a pivotal role in analyzing stationary time series. The objective of
this paper is to examine whether the Empirical Spectral Distribu-
tion (ESD) of lag-covariance matrix converges to Maréenko—Pastur
distribution or not. Such limiting distribution can help us to pro-
vide more reliable statistical inference when encountering with high-
dimensional data. Moreover, a simulation study is performed and
some tools of Random Matrix Theory (RMT) are used.
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1. INTRODUCTION

High-dimensional statistics is one of fields of statistics that studies data
whose dimension (the number of features or variables) is larger than di-
mensions considered in classical multivariate statistics. The continued
growth of large volume of more complex data sources obliges us to incor-
porate different mathematical tools into the statistical analysis. Random
Matrix Theory (RMT) is a such mathematical tool that plays a pivotal
role in modern high dimensional statistical inference [1]. It has many ap-
plications in statistics including hypothesis testing, clustering, regression
analysis, Principal Component Analysis (PCA), Factor Analysis (FA),
and Multivariate Analysis of Variance (MANOVA). A comprehensive
review of RMT focusing on several application areas in statistics can be
found in [2]. Other applications of RMT are in physics, biology, wireless
communications, computer science, economics and finance [2]. One of
important topics in RMT that plays a central role in studying the prop-
erties of the spectrum is the Empirical Spectral Distribution (ESD) of a
random matrix. Describing the asymptotic convergence of the ESD to a
proper probability distribution is of great interest in RMT. Key contri-
butions in this framework are semicircle law and Marcéenko—Pastur law,
which are explained in the next section.

Singular Spectrum Analysis (SSA) is a non-parametric forecasting and
filtering method that has many applications in a variety of fields such
as signal processing, medicine, biology, genetics, engineering, finance,
economics and time series analysis. For such examples of several appli-
cations of SSA see [3], [4 (5 6l [7, 8, 9L 10, 11]. A whole and precise details
on the theory and applications of SSA can be found in [12, 13} [14]. For a
recent comprehensive review of SSA and description of its modifications
and extensions, we refer the interested reader to [15]. In this paper,
we focus on lag-covariance matrix in SSA because this matrix is at the
core of analyzing stationary time series in SSA framework. The aim
of this study is to examine whether the limiting distribution of ESD of
lag-covariance matrix is Maréenko—Pastur distribution or not. In doing
so, a simulation study is performed.

The remainder of this paper is organized as follows. Section [2] briefly
presents a theoretical backgrounds and Section [3]is dedicated towards a
simulation study. The conclusions and summary are presented in Section

2]

2. THEORETICAL BACKGROUNDS

In this section, we present some key definitions and two theorems that
play fundamental role in the RMT.
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Definition 2.1. A random matrix is a random variable that takes its
values in the space of matrices. In other words, it is just a matrix whose
elements are random variables.

Definition 2.2. Suppose that A is an n X n matrix with eigenvalues
ALy ..., Ap € C. The Empirical Spectral Distribution (ESD) or spectral
measure of A, which is denoted by p (A), is the empirical distribution
of its eigenvalues, namely

w(A) =30, (2.1)
=1

where 6, is the Dirac mass at y.

Note that p puts equal mass on each eigenvalue of A. When A is
a random matrix, p (A) is a random measure on (R, %) [16]. If A is
Hermitian, the eigenvalues of A are real and consequently, the empirical
distribution function of A can be defined as follows.

Definition 2.3. The empirical distribution function of A, which is de-
noted by FA (z), is defined as

1
FA (‘T) = n Z 1{)\¢Sz}7 z €R, (22)
i=1

where 1p is the indicator function of set B.

It is noteworthy that many statistics associated with a random matrix
A can be expressed as a linear functional of its ESD, or a linear spectral
statistic, that is, a function of the form [ g(x)dF*(z) for some suitably
regular function g [2]. For example,

log(det(A)) =) "log A = n / log(z)dFA (), (2.3)
i=1
and the kth moment of the ESD of A equals tr(A¥), that is,
1r(AF) = n / FAFA (7). (2.4)

Therefore, knowing the asymptotic behavior of the ESD can help
in studying the behavior of linear spectral statistics. In the seminal
paper [17], Wigner proved that the spectral measure of a wide class of
symmetric random matrices of dimension n converges to the semicircle
law, as n — oo. Wigner matrix is defined as follows.

Definition 2.4. Wigner matrix is a square Hermitian matrix whose
diagonal entries are independent and identically distributed (i.i.d) real
random variables with mean 0 and variance 1, and those above the
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diagonal are i.i.d. complex random variables with mean 0 and variance

1.

There have been numerous further developments that determined in
particular the necessary and sufficient conditions for the convergence of
the ESD of the Wigner matrix. The following theorem states the result
under the weakest moment conditions [2].

Theorem 2.5. Suppose that A is a Wigner matrixz. If n — oo, then the
ESD of A/\/n almost surely converges in distribution to the semicircle
law with probability density function (p.d.f.) given by

F ) = 5o Va— a1 oy (2) (25)

Marcenko and Pastur [18] derived the limiting distribution of the ESD
of a sample covariance matrix, which is defined as S = %XX*, assuming
that the fourth moments of the entries of the data p x n matrix X are
finite. Since then, many researches have contributed to weakening the
conditions on the matrix entries; see, for example [19, 20, 21I]. The
following theorem is under the minimal moment conditions [2].

Theorem 2.6. Suppose that X is a p X n matriz with i.i.d. real-or
complez-valued entries with mean 0 and variance 1. Suppose also that
lim, 500 2 = > 0. Then, as n — oo, the ESD of S = %XX* converges
almost surely in distribution to a nonrandom distribution, known as the
Marcenko-Pastur law and denoted by F,. If v € (0,1], then F, has the

p.d.f.

1
21z

fy (@) V() = 2) (@ = b= (V)L (36, (1) (@), (2.6)

where by (v) = (1 £ \ﬁ)2 If v € (1,00), then F, is a mizture of a point
mass 0 and the p.d.f. f,,, with weights 1 — 1/~ and 1/~, respectively.

Figure [I] shows the density function of the Marcenko—Pastur distribu-
tion for some values of ~.
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FIGURE 1. Marcenko—Pastur density functions for v =
0.1,0.3,0.5,0.7,0.9.
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The basic SSA technique consists of four steps: embedding, Singular
Value Decomposition (SVD), grouping, and diagonal averaging. In the
embedding step, the realization yi, ..., yn of time series {Y; }¢>1 is trans-
formed to the sub-series X1, ..., Xx, where X; = (v, ..., %isrr-1)" € RE
and K = N —L+1. The vectors X; are called L-lagged vectors. The sin-
gle choice of this step is the Window Length L, which is an integer such
that 2 < L < N/2. The output of the embedding step is the trajectory
matrix X, whose columns are the L-lagged vectors,

n Y2 Y3 -o UK

Y2 Y3 Ya e YK+
X=[X;::Xg]=1|¥ W Ys .o YK+2 (2.7)

YL Yr+1 Yr+2 --- YN ) o

The trajectory matrix X is also a Hankel matrix in the sense that all
elements on the anti-diagonals are equal. In SSA literature, the lag-
covariance matrix is defined as S = %XXT. Note that since K =
N — L +1 and it is assumed that L < N/2, we have v = £ € (0,1).
In the next section, we try to check whether the limiting distribution of
ESD of the lag-covariance matrix S is the Maréenko-Pastur distribution

(2.6) or not.

3. SIMULATION RESULTS

In order to perform a simulation study, first, we simulate N normally
distributed random variable with zero mean and unit variance. Then
the trajectory matrix X is constructed using L-lagged vectors. Here,
the p-value of the Kolmogorov-Smirnov test is compared with the sig-
nificance level of test («), which is considered at three levels 1%, 5%
and 10%, to assess fitting the Marcenko-Pastur distribution to the ESD
of lag-covariance matrix S. The simulation was repeated 1000 times
for each of different combinations of (L, K) and finally, the percent of
times that the Marcenko—Pastur distribution fitted was calculated. We
implemented the RMTstat package of free-available R software to use
the Marcéenko—Pastur distribution. More details on this package can be
found in [22].
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TABLE 1. Percent of fitting Maré¢enko—Pastur distribution

_ L (LvK)

T=K | [7(50,500) (100, 1000) (150, 1500) (200, 2000) (300, 3000)
1% 97.8 95.8 95.7 92.5 90.9
0.1 5% 90.1 87.3 85.7 79.8 717
10% 81.8 77.6 73.8 67.2 58.9

(150, 500) (300, 1000) (450, 1500) (600, 2000) (900, 3000)
0.3 1% 95.3 90.9 81.2 72.8 50
' 5% 84.5 73.5 54.9 37.3 17.6
10% 71.2 58 39.3 21.8 7.9

(250, 500) (500, 1000) (750, 1500) (1000, 2000) (1500, 3000)
05 1% 91.9 77.5 54.3 30.6 4.9
' 5% 75 42.8 20.9 5.6 0.2
10% 59.6 24.9 8.6 1.3 0

(350, 500) (700, 1000) (1050, 1500) (1400, 2000) (2100, 3000)
0.7 1% 87.6 52.8 17.2 2.8 0.1
' 5% 61.7 154 1.1 0 0
10% 43.6 6.2 0.3 0 0

(450, 500) (900, 1000) (1350, 1500) (1800, 2000) (2700, 3000)
0.9 1% 84.3 35.6 4.2 0.3 0
' 5% 52.4 5.5 0 0.1 0
10% 29.3 1.3 0 0 0

The percent of fitting Marcenko—Pastur distribution is reported in
Table [I As can be seen from this table, for each v and at each level
of significance («), the percent of fitting decreases as L and K increase.
Therefore, it can be concluded that the limiting distribution of ESD
tends to be far from the Marcenko—Pastur distribution, as L, K — oc.
In addition, for a fixed =, the greatest fitting percent corresponds to the
smallest (L, K). Also, it can be easily seen that at each level of «, the
largest fitting percent, which corresponds to K = 500, falls down as ~
rises up. On the other words, the best fitting percent is achieved when
v =0.1, L =50, and K = 500. In summary, it seems from the results
of Table [1] that the Marcenko—Pastur distribution is not the limiting
distribution of ESD of the lag-covariance matrix S, especially for larger
values of ~.

4. CONCLUSION

In this paper, we have performed a simulation study to check whether
the Marcenko—Pastur distribution can be used as a limiting distribution
of ESD of lag-covariance matrix S or not. The results of the present
study, which is based on the p-values of the Kolmogorov-Smirnov test,
have shown that the Marcenko—Pastur distribution can not be applied
as a limiting distribution of ESD of lag-covariance matrix S in SSA. A
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precise look at the trajectory matrix X in ([2.7)) reveals that the elements
on the anti-diagonals are not independent, because the matrix X is a
Hankel matrix and hence, all elements on the anti-diagonals are equal.
However, it is assumed in Theorem that matrix entries should be
independent. The results of our simulation provides sound evidence that
the Maréenko—Pastur distribution is not a limiting distribution of ESD
of lag-covariance matrix S in SSA and finding such limiting distribution
needs further investigation.
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