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ABSTRACT. In this paper the author used Salagean differential op-
erator to define a certain subclass of spirallike functions and obtain
some convolution results and some upper bounds on the coefficients.
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1. INTRODUCTION

Let A be the class of functions of the form
oo
f(z) = z—i—Zanz". (1.1)
n=2

which are analytic in the open unit disc 4 = {z € C;|z| < 1}. The class
of functions in A, which are also univalent in U, is denoted(as usual)
by S. Authors in [I], 2] investigated the familiar subclass of univalent
functions in D, such as starlike, convex and spirallike functions.

For 0 < 8 < 1, A € R with || < 7/2, by SP()\,3) denote the well
known subclass of A consisting of A-spirallike functions of order 3. As
well known

a2t (2

f(2)

SP()\,B):{fEA:Re{e )}>/5COSA,Vzeu}.
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The function f(z) € A is convex A-spriallike of order § in U if and only
if zf'(z) is A-spriallike of order 8 in U (for more details see [3| [14]).

Lemma 1.1. [3] Let 0 < g <1, A € R with |\ < /2. If
e
f(2)

—1’ — ) cos A\,

then f € SP(X,B).

Let D™ be the Salagean differential operator ([6] ) D" : A — A,
n €N =/{1,2,...}, defined as:

Df(z) = f(2), D'f(z)==2f'(2),  D"f(z)=D(D""f(2)).
If f € Ais given by , then

D"f(z Z k"agz”,

and z(D"f(2)) = D" f(z).
Let I™ be the Salagean integral operator ([6] ) I" : A — A, n € N,
defined as:

194(z) = £(2), I'f(z) = If(z / IO g gy = 1 ().
If f € Ais given by (L.I), then

o0
= Z k"agz"
k=1

For f and g in A, with f(2) = z+> o7 5 apz™ and f(2) = z+> .2, by 2",
the convolution (Hadamard product) of f and g, denoted by f x g, is a
function, also in A, given by

(fxg)(z —Z+Zanbz

The basic reference for this theory is the book by Ruscheweyh [5]
where many of the results area first were published. Silverman et al in
[8] characterized for convex, starlike and spirallike functions in terms of
convolutions.

Theorem 1.2. [8] The function f is convex of order o in |z| < R < 1
if and only if
Tto

zta 2
[f*M]#O(IZKR,IxKl)-
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Theorem 1.3. [§] For |z| < R <1, X real with |\ < 7/2 and |z| =1,

o Re{ak(1+f?zg))}:>o

2z+1—e~ 2N 2

1 z+ —Zin R
ZP* He s ]#&

if and only if

(1-2)

In geometric function theory of function, a verity of sufficient condi-
tions for spirallikeness have been considered. We refer to the monographs
[3], [9], [I1], [12] for details. In the present work we define a subclass
of spirallike functions and we give upper bounds on the coefficients in
the classes. Furthermore using the idea of Silverman et al in [8] and
we give characterizations for subclass of spirallike functions in terms of
convolutions.

Let f(z) and g(z) be analytic in D. Then f(z) is said to be subor-
dinate to g(z), written f(z) < g(z), if there exists an analytic function
w(z) with w(0) = 0 and |w(z)| < 1(z € D) such that f(z) = g(w(2))
for z € D. If g(z) is univalent in D, then f(z) < g¢(z) is equivalent
to f(0) = ¢(0) and f(D(C ¢g(D)). In [4] Miller and Mocanu study of
the concept of subordination in the complex plan. In [I0], [I3] authors
studied subordination for spirallike functions.

Lemma 1.4. [10] The function f(z) € A is A-spirallike of order
(0 < B < 1), | <m/2, if and only if there exists w(z) analytic function
satisfying w(0) = 0, |w(z)| < 1 such that

i)
e

= Bcos A+ (1—ﬂ)cos)\11322 +isin A

2. CONVOLUTION CONDITION

Definition 2.1. For 0 < 8 < 1, A real with |A\| < /2 and n € N, we
define the class SP,(\, §) of (n, \)-spriallike functions of order by

iA D”'Hf(z)
Drf(z)

Note that the class SPy(A, 8) = SP(), ), the class of A-spriallike of
order 3, SPi()\, ), the class of convex A-spriallike functions of order f.
In particular, f € SP, (A, ) if and only if D™ f is A-spriallike of order
B forn =1,2,3,.., and f € SP,()\,p) if and only if D"~ f is convex
M-spriallike of order § for n = 2,3, ...

SPn()\,ﬂ):{fEA:Re{e }>5cos/\, VZGZ/[}.
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Theorem 2.2. For|z| < R<1,n €N, Areal with |\| <7/2,0< 3 <1
and |x| =1 we have

. Dn+1
Re{el/\lﬂfj(:(:,;)} > Bcos A (2.1)
if and only if
1 z+ (% —1)22
~(r+ T ) #0. (2.2)

Proof. The function D" 1 f(z) is convex A- spriallike of order 3 in
|z2| < R <1 from Lemma [1.4] we have

eNDTIE)  Beos A — sin A 1—

Dn f(z) w(z) B ) .
(1_ﬁ)COS)\ 1_|_w(z) _1“‘;])712 . (2.3)

Since DZ;:;{Z()Z ) — 1 at 2= 0, 1} is equivalent to

’)‘Dnﬂf(z —pfcosA—isin A 4 _q

D7f(z y
(1—5)(:08)\ r+1’

where |z| = 1. which simplifies to

(x+1)e? D" f(2) + D”+1f(z)(cos AM1—-28—z)—i(z+1)sin )\) # 0.

(2.4)
Setting f by , we have
DY) = g D) = k() D),
z
D" = D" .
7(2) fe) s
So that the left hand side of (2.4)) may be expressed as
Df(z) /(z+1)e* (1 —-28—x)cosA—i(x+ 1)sin A
z >I<((1—2)2 + 11—z )#O'

Thus the above inequality is equivalent to

2(1—p) cos A

z(an() 1—2)2
Since D™(f % g)(z) = D"f(z) x g(z) = f(2) * D™g(2), we obtain that

1 n z (x+28—-1)cosA+i(z+1)sin\ _, 22
z<f*D ((1_2)2)+ 2(1— ) cos A b ((1—,2)2))7“)‘

2+ (z+2B—1) cos A+i(x+1) sin A
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Since
Dn z _ = kn+l k
(1—2)2 B Z Z
k=1
n ’22 = n+1 _k — n_n
D ((1 )2) - Zk z —Zkz,
—z
k=2 k=2
we get

1 = nt1 k, (x+28—1)cos A +i(x + 1)sin A > ntl k >k
Z<f*(z+kz_:gk ot 2(1 — B)cos A (;k Z_;kz)>>¢0-

which simplifies to

1 (z+1)e =,k —(@+1)cosA+2(1 —B)cosA o=, , &

z(f*(2(15)cos)\;k o 2(1 — B)cos A I;k : 7 0.

Since ZEO:I kn+12k = W and Zzozl knzk = W, we have

1 (z +1)e™ z —(z + 1) z

— 1 0.

z <f*<2(1 —B)cos A (1— z)"+2+(2(1 - B) cosh ) (1 —z)ntl 7
(2.5)

Thus the inequality (2.5) equivalent to (2.2]), and this completes the

proof of the theorem. O

In Theorems [I.2] and charaterized for convex and spirallike func-
tion in terms of convolution. In the following, we give characterizations
for A-spirallike of order 5 and convex A-spirallike of order S in terms of
convolution.

Putting n = 0 in Theorem [2.2] we obtain the following corollary.

Corollary 2.3. For |z| < R<1,n €N, X real with |\| <7/2,0< 5 <
1 and |z| = 1, the function f is A-spriallike functions of order (B if and
only if

z+1)etr
1<f « z+ (2((1—5))cosj - 1)22) 20
z (1—2)2 '

Putting n = 1 in Theorem we obtain the following corollary.

Corollary 2.4. For |z| < R<1,n €N, X real with |A\| < 7/2,0< 8 <
1 and |x| =1, the function f is convex \-spriallike functions of order (3
if and only if
(z+1)e 2
2+ (5r—5—— — 1)z
1 <f N (2(1—5) cos A ) )

(1-2)3 7 0.
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Theorem 2.5. The function f(z) = 2z + > gy axz® is in SP, (N, B) if
and only if

o0 . (1:_'_1)62')\ .
1+k22<k; +1+<m—1>(k_1) +1>ak2’k7§07

for all z € U and |z| = 1.

Proof. By applying definition of convolution and inequality (2.2)), the
proof is complete. O

Remark 2.6. Since

— (i1 (z41)e? ntl k—1
1—1—];:;(1@ + +<—2(1—B)COSA_1>(k_1) * )akz

(x4 1)e

z1- g (o — 1) (k- 1) 1)
- k:Z:Q " <2(1—5)cos)\ )( ) lag| 2"
a sufficient condition for f to be in SP, (A, ) is that
o0 .
+1)etA
k‘n-i-l ('x—_l k,_ln—H <1
2. +(2(1—ﬂ)cos)\ )( )" lak] <

k=2

3. COEFFICIENT RESULT

Theorem 3.1. Let f(2) =z + > o0, apzh. If

SN k—1

Then f € SP,(\, ).
Proof. By Lemma [1.1], it is suffices to show that

lm - 1‘ < (1 —p)cosA.
We have
’D”“ﬂz) - - S K (k — Dagz*
Drf(z) B 24> o, kMagzF

Dy K" (k= 1)lax|[2[*
IR S Dt |
> ko K" (k — 1)|ax|
1=y kMax|

IN
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Thus last expression is bounded above by (1 — ) cos A, if
SR (k= 1)]ag] < (1 - B) cos)\(l = k”|ak|).
k=2 k=2

which is equivalent to (3.1)). O

Theorem 3.2. Let n € {0,1,2,...}, 0 < 8 < 1 and X is real with
AN <7/2. If f(2) = 24+ > peqarz® is in SP,(X, ) and |az| = a, then

1+ 2% szz(j—Q—l—Zcos)\—Q,Bcos)\)
lax| < ’ . J=3,4,..
14 2cos A — 28 cos A (k—1)lkn
Proof. We choose
) Dn—l—lf(z) 2z 4 EOO kntlg, ok
iA . k=2 k
=e i = A A : 3.2
p(z)=e D 7(2) (cos A +isin ) SES S, gk (3.2)
and we denote
z) — e
q(z) = P(z) =qz+ @+ .. (3.3)

cos A — B cos A

We remark that Rep(z) > fcos), z € U, because f € SP,(\,3) and,
consequently, Req(z) > —1, z € U. Hence we have the subordination

q(z) < s(2) =22+ 2224+ ...+ 227 + .. (3.4)
Since s is a convex univalent function, we have
gl <2, k=1,2,3,...
From and , we obtain

Z4 > gy k" Hag2k

iA _ 2 _ ..
e+ (1—=pB)cos A(q1z+gaz”+...) = (cos A+isin \) TS ke k (3.5)
From (3.2) and (3.5) by equating coefficients, we deduce
(cos A + isin )\)knﬂak = (1 —p)cos A(qk,l + 2" aoq_2
+otaqu(k - 1)"%_1) +(cos A +isin Nk"a.  (3.6)

Hence the equation is equivalent to
(cos A +isin \)E" T (k — 1)ay = (1 — ) cos A(qk_l + 2" asqk_o
ot qu(k - 1)”ak_1).
Thus, by using , we finally obtain
KL (k — 1)]ag| < 2(1— B) cos)\<1 + 27|y

bt (k— 1>nya,Hy>,
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for k= 3,4,.... We assume that

x| < 142" H;-ZQ(j—2+2cos)\—2600s)\)
a/ .
K ~ 14+ 2cosA—28cos A (1 —1)lin

for k = 3,4,5,.... Then using the similar method to that of Silverman
and Silva [7] , we have

k=1 770 (.
I[[..5(j —2+42cos XA — 2B cos \)
— k™ < 2(1-— 1497 j=
(k= Dk"|ax] < 2( /B)COSA( + a+;:3 i)
1
1+ 2cosA—28cos A

2(1 — B) cos A(1 + 2"a) <1 +

H?:s(j —2+2cos A —208cos )
( = 2)! —1—2cos)\+2ﬁcos)\)
B 1+ 2% H.fzz(j—2—2cos/\+2ﬁcos)\)
14 2cosA—2BcosA (k—2)! '
and the proof is complete. O

Theorem 3.3. Let n € {0,1,2,...}, 0 < 8 < 1 and X is real with
AN <m/2. If f(2) = z+ > peqgarz® is in SP,(\, ), then

Hk':zz(j —242cos A — 25 cos )

and this result is sharp.

Proof. By Applying Theorem for k = 2, we deduce

2(1—B)cos A
lag| < — (3.8)
Now, by using Theorem and (3.8)), we obtain ([3.7).
This result is sharp for f, g 1. Indeed
[e's) k .
~_o(j —2+2cosA—2Fcos A
(1_Z2(1Z—5)cos)\) :Z+ZH] 2( (k=1 )Zk
k=2 )
and
o) k .
. 2 B [[ioo(j —2+2cosA —2BcosA) |
fn,B,/\ =1 (1 _ 2)2(1—,8)005/\ =zt kZ:z (k _ ]_)lkn ®

O
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