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1. Introduction

Henstock integral of a function (also known as Henstock-Kursweil in-
tegral) introduced in the mid-1950s is a useful generalisation of the
Riemann integral, which can handled nowhere-continuous functions, ex-
treme oscillation functions and gives a simpler and more satisfactory
version of the fundamental theorem of calculus that link the concept
of differentiation of a function with the concept of integration of that
function. While the standard definition of the Henstock integral uses
the ε − δ definition, then the Sequential Henstock integral was intro-
duced, by employing sequences of guage functions. Many authors have
done a lot of work on application of the Henstock integral to functions
taking real values and have published interesting results on a number of
its’ properties, see [1-15]. An interesting area which has not been given
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much attention is the functions taking interval values in real spaces. In-
terval analysis helps to reduce the uncertainty and error bounds yields in
real values computations and measurements as well as find guaranteed
solutions to differential equations and optimization problems.
In 2000, Wu and Gong[14] introduced the notion of the Henstock (H)
integral of interval valued functions and Fuzzy number-valued functions
and obtained a number of properties. In 2016, Yoon[15] introduced
the concept of the Henstock Stieltjes (HS) integral of interval valued
functions on time scale and investigated some of its properties. In the
same year, Hamid and Elmuiz[5] established the concept of the Henstock
Stieltjes (HS) integrals of interval valued functions and Fuzzy number-
valued functions and obtained some number of properties of these inte-
grals.
In this paper, we introduce the Sequential Henstock (SH)integrals of in-
terval valued functions and discuss some of its properties.

2. Preliminaries

Let R denote the set of real numbers, F (X) as an interval valued func-
tion, F−, the left endpoint, F+ as right endpoint, {δn(x)}∞n=1, as set
of gauge functions, Pn, as set of partitions of subintervals of a compact
interval [a, b], X, as non empty interval in R and d(X) = X+ −X−, as
width of the interval X and ≪ as much more smaller.

Definition 2.1[9,11] A gauge on [a, b] is a positive real-valued function
δ : [a, b] → R+. This gauge is δ-fine if [ui−1, ui] ⊂ [ti − δ(ti), ti + δ(ti)].

Definition 2.2[9,11] A sequence of tagged partition Pn of [a,b] is a finite
collection of ordered pairs Pn = {(u(i−1)n uin), tin}

mn
i=1 where [ui−1, ui] ∈

[a, b], u(i−1)n ≤ tin ≤ uin and a = u0 < ui1 <, ..., < umn = b.

Definition 2.3 [11] A function f : [a, b] → R is Henstock inte-
grable to α on [a, b] if there exists a number α ∈ R such that if ε > 0
there exists a function δ(x) > 0 such that for δ(x)-fine tagged partitions
P = {(ui−1 ui), ti}ni=1, we have

|
n∑

i=1

f(ti)[ui − u(i−1)]− α| < ε.

where the number α is the Henstock integral of f on [a, b]. The family
of all Henstock integrals function on [a, b] is denoted by H[a, b] with
α = (H)

∫
[a,b] f(x)dx and f ∈ H[a, b].
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Definition 2.4 [11] A function f : [a, b] → R is Sequential Henstock
integrable to α ∈ R on [a, b] if for any ε > 0 there exists a sequence
of gauge functions δµ(x) = {δn(x)}∞n=1 such that for any δn(x) − fine
tagged partitions Pn = {(u(i−1)n , uin), tin}

mn
i=1, we have

|
mn∈N∑
i=1

f(tin)(uin − u(i−1)n)− α| < ε,

where the sum
∑

is over Pn, we write α = (SH)
∫
[a,b] f(x)dx and

f ∈ SH[a, b].

Lemma 2.5[5] Let f, k be Sequential Henstock (SH)integrable func-
tions on [a, b], if f ≤ k is almost everywhere on [a, b], then∫ b

a
f ≤

∫ b

a
k.

Definition 2.6 [10 and 14]
Let IR = {I = [I−, I+]: I is a closed bounded interval on the real line
R}.
For X,Y ∈ IR, we define
i. X ≤ Y if and only if Y − ≤ X− and X+ ≤ Y +,
ii. X + Y = Z if and only if Z− = X− + Y − and Z+ = X+ + Y +,
iii. X.Y = {x.y : x ∈ X, y ∈ Y }, where

(X.Y )− = min{X−.Y −, X−.Y +, X+.Y −, X+.Y +}

and

(X.Y )+ = max{X−.Y −, X−.Y +, X+.Y −, X+.Y +}.
Define d(X,Y ) = max(|X− − Y −|, |X+ − Y +|) as the distance between
intervals X and Y .

Definition 2.7 [5]
An interval valued function F : [a, b] → IR is Henstock integrable(IH[a, b])
to I0 ∈ IR on [a, b] if for every ε > 0, there exists a positive gauge func-
tion δ(x) > 0 on [a, b] such that for every δ(x)− fine tagged partitions
P = {(ui−1, ui), ti}ni=1, we have

d(

n∈N∑
i=1

F (ti)(ui − ui−1), Io) < ε

We say that α is the Henstock integral of F on [a, b] with (IH)
∫
[a,b] F =

α and F ∈ IH[a, b].
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Now, we will define the Sequential Henstock integral of interval val-
ued function and then discuss some of the properties of the integral.

Definition 2.8
An interval valued function F : [a, b] → IR is Sequential Henstock
integrable(ISH[a, b]) to I0 ∈ IR on [a, b] if for any ε > 0 there exists
a sequence of positive gauge functions {δn(x)}∞n=1 such that for every
δn(x)− fine tagged partitions Pn = {(u(i−1)n , uin), tin}

mn
i=1, we have

d(

mn∈N∑
i=1

F (tin)(uin − u(i−1)n), Io) < ε.

We say that α is the Sequential Henstock integral of F on [a, b] with
(IH)

∫
[a,b] F = α and F ∈ ISH[a, b].

3. Main Results

In this section, we discuss some of the basic properties of the interval
valued Sequential Henstock integrals.

Theorem 3.1
If F ∈ ISH[a, b], then there exists a unique integral value.

Proof. Suppose the integral value are not unique. Let α1 = (ISH)
∫
[a,b] F

and α2 = (ISH)
∫
[a,b] F with αi ̸= α2. Let ε > 0 then there exists a

{δ1n(x)}∞n=1 and {δ2n(x)}∞n=1 such that for each δ1n(x)-fine tagged parti-
tions P 1

n of [a, b] and for each δ2n(x)-fine tagged partitions P 2
n of [a, b],

we have

d(

mn∈N∑
i=1

F (tin)(uin − u(i−1)n), α1) <
ε

2
,

and

d(

mn∈N∑
i=1

F (tin)(uin − u(i−1)n), α2) <
ε

2
.

respectively.
Define a positive function δn(x) on [a, b] by δn(x) = min{δ1n(x), δ2n(x)}.
Let Pn be any δn(x)-fine tagged partition of [a, b]. Then by triangular
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inequality, we have

d(α1, α2) = d(

mn∈N∑
i=1

F (tin)(uin−u(i−1)n , α1)+

mn∈N∑
i=1

F (tin)(uin−u(i−1)n), α2)

≤ d(

mn∈N∑
i=1

F (tin)(uin − u(i−1)n , α1)) + d(

mn∈N∑
i=1

F (tin)(uin − u(i−1)n), α2)

<
ε

2
+

ε

2
= ε.

which is a contradiction. Thus α1 = α2. This completes the proof.

Theorem 3.2
An interval valued function F ∈ ISH[a, b] if and only if F−, F+ ∈
SH[a, b] and

(ISH)

∫
[a,b]

F = [(SH)

∫
[a,b]

F−, (SH)

∫
[a,b]

F+] (1.1)

Proof. Let F ∈ ISH[a, b], from Definition 3.3 there is a unique interval
number Io = [I−0 , I+0 ] in the property, then for any ε > 0, there exists
a {δn(x)}∞n=1, n ≥ µ on [a, b] ∈ R such that for any δn(x)-fine tagged
partition Pn, we have

d(

mn∈N∑
i=1

F (tin)(uin − u(i−1)n), α) < ε.

Observe that

d(

mn∈N∑
i=1

F (tin)(uin − u(i−1)n), I0) = max(|
mn∈N∑
i=1

F−(tin)(uin − u(i−1)n)− I−0 |,

|
mn∈N∑
i=1

F+(tin)(uin − u(i−1)n − I+0 )|).

Since uin − u(i−1)n ≥ 0 for 1 ≤ in ≤ mn, hen it follows that

|
mn∈N∑
i=1

F−(tin)(uin − u(i−1)n)− I−0 | < ε, |
mn∈N∑
i=1

F−(tin)(uin − u(i−1)n − I+0 )| < ε.

for every δn(x)-tagged partition Pn = {(u(i−1)n , uin), tin}
mn
i=1. Thus, by

Definition 2.8, we obtain F+, F− ∈ SH[a, b] and

I−o = (SH)

∫
[a,b]

F−(x)dx
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and

I+o = (SH)

∫
[a,b]

F+(x)dx.

Conversely, Let F− ∈ SH[a,b]. Then there exist a unique β1 ∈ R with

the property, let ε > 0 be given, then there exists a {δ1n(x)}∞n=1, such
that for any δ1n(x)-fine tagged partitions P 1

n we have

|
mn∈N∑
i=1

F−(tin)(uin − u(i−1)n)− β1| < ε.

Similarly,
Let F+ ∈ SH[a, b]. Then there exist a unique β2 ∈ R with the property,
let ε > 0 be given, then there exists a {δ2n(x)}∞n=1, such that for any
δ2n(x)-fine tagged partitions P 2

n we have

|
mn∈N∑
i=1

F+(tin)(uin − u(i−1)n − β2)| < ε.

Let β = [β1, β2]. If F− ≤ F+, then β1 ≤ β2. We define δn(x) =
min(δ1n(x), δ

2
n(x)), then for any δn(x) − fine tagged partitions Pn we

have

d(

mn∈N∑
i=1

F (tin)(uin − u(i−1)n), β) < ε.

Hence, F : [a, b] → IR is Sequential Henstock integrable on [a, b].
This completes the proof.

Theorem 3.3
Let F,K ∈ ISH[a, b] with F = [F−, F+] and H = [K−,K+] and
γ, ξ ∈ R. Then γF, ξK ∈ ISH[a, b] and

(ISH)

∫
[a,b]

(γF + ξK)dx = γ(ISH)

∫
[a,b]

Fdx+ ξ(ISH)

∫
[a,b]

Kdx

Proof. (i) If F,K ∈ ISH[a, b], then [F−, F+],K = [K−,K+] ∈ SH[a, b]
by Theorem 3.2. Hence, γF− + ξK−, γF− + ξK+, γF+ + ξK−, γF+ +
ξK+ ∈ SH[a, b].
1) If γ > 0 and ξ > 0, then

(SH)

∫
[a,b]

(γF + ξK)−dx = (SH)

∫
[a,b]

(γF− + ξK−)dx

= γ(SH)

∫
[a,b]

F−dx+ ξ(SH)

∫
[a,b]

K−dx
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= γ((ISH)

∫
[a,b]

Fdx)− + ξ((ISH)

∫
[a,b]

Kdx)−

= (γ(ISH)

∫
[a,b]

Fdx+ ξ(ISH)

∫
[a,b]

Kdx)−.

2) If γ < 0 and ξ > 0, then

(SH)

∫
[a,b]

(γF + ξK)−dx = (SH)

∫
[a,b]

(γF+ + ξK+)dx

= γ(SH)

∫
[a,b]

F+dx+ ξ(SH)

∫
[a,b]

K+dx

= γ((ISH)

∫
[a,b]

Fdx)+ + ξ((ISH)

∫
[a,b]

Kdx)+

= (γ(ISH)

∫
[a,b]

Fdx+ ξ(ISH)

∫
[a,b]

Kdx)−.

3) If γ > 0 and ξ < 0 (or γ < 0 and ξ > 0), then

(ISH)

∫
[a,b]

(γF + ξK)−dx = (SH)

∫
[a,b]

(γF− + ξK+)dx

= γ(SH)

∫
[a,b]

F−dx+ ξ(SH)

∫
[a,b]

K+dx

= γ((ISH)

∫
[a,b]

Fdx)− + ξ((ISH)

∫
[a,b]

Kdx)+

= (γ(ISH)

∫
[a,b]

Fdx+ ξ(ISH)

∫
[a,b]

Kdx)−.

Similarly, for three cases above, we have

(ISH)

∫
[a,b]

(γF + ξK)+dx = (γ(ISH)

∫
[a,b]

Fdx+ ξ(ISH)

∫
[a,b]

Kdx)+

Hence, by Theorem 3.2, γF, ξK ∈ ISH[a, b] and

(ISH)

∫
[a,b]

(γF + ξK)dx = γ(ISH)

∫
[a,b]

Fdx+ ξ(ISH)

∫
[a,b]

Kdx.

This completes the proof.

Theorem 3.4
Let F,K ∈ ISH[a, b] and F (x) ≤ K(x) nearly everywhere on [a, b], then

(ISH)

∫
[a,b]

F (x)dx ≤ (ISH)

∫
[a,b]

Kdx
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Proof. If F (x) ≤ K(x) nearly everywhere on [a, b] and F,K ∈ ISH[a, b],
then F−, F+,K−,K+ ∈ SH[a, b] and F− ≤ F+,K− ≤ K+ nearly ev-
erywhere on [a, b]. By Lemma 2.5

(SH)

∫
[a,b]

F−(x)dx ≤ (SH)

∫
[a,b]

K−dx

and

(ISH)

∫
[a,b]

F+(x)dx ≤ (ISH)

∫
[a,b]

K+dx.

Hence by Theorem 3.2, we have

(ISH)

∫
[a,b]

F (x)dx ≤ (ISH)

∫
[a,b]

Kdx.

This completes the proof.

Theorem 3.5
Let F,K ∈ ISH[a, b] and d(F,K) is Sequential Lebesgue (SL) integrable
on [a, b], then

d((ISH)

∫
[a,b]

Fdx, (ISH)

∫
[a,b]

Kdx) ≤ (SL)

∫
[a,b]

d(F,K)dx.

Proof. By metric definition,

d((ISH)

∫
[a,b]

Fdx, (ISH)

∫
[a,b]

Kdx)

= max(|((SH)

∫
[a,b]

Fdx)− − ((SH)

∫
[a,b]

Kdx)−|, |((SH)

∫
[a,b]

Fdx)+ − ((SH)

∫
[a,b]

Kdx)+|)

= max(|(SH)

∫
[a,b]

(F− −K−)dx|, |(SH)

∫
[a,b]

(F+ −K+)dx|)

≤ max((SL)

∫
[a,b]

|(F− −K−)|dx, (SL)
∫
[a,b]

|(F+ −K+)|dx)

≤ (SL)

∫
[a,b]

max(|(F− −K−)|, |(F+ −K+)|)dx

= (SL)

∫
[a,b]

d(F,K)dx.

This completes the proof.

Theorem 3.6
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If F ∈ ISH[a, c] and F ∈ ISH[c, b], then F ∈ ISH[a, b] and

(ISH)

∫ b

a
F = (ISH)

∫ c

a
F + (ISH)

∫ b

c
F.

Proof.
If F ∈ ISH[a, c]), then by Theorem 3.2, F− ∈ SH[a, c]) and F− ∈
SH[c, b]). Hence, F− ∈ SH[a, b]) and

(SH)

∫ b

a
F− = (SH)

∫ c

a
F− + (SH)

∫ b

c
F−

= ((ISH)

∫ c

a
F + (ISH)

∫ b

c
F )−.

Similarly,
Since F ∈ ISH[a, c]), then by Theorem 3.2, F+ ∈ SH[a, c]) and F+ ∈
SH[c, b]). Hence, F+ ∈ SH[a, b]) and

(SH)

∫ b

a
F+ = (SH)

∫ c

a
F+ + (SH)

∫ b

c
F+

= ((ISH)

∫ c

a
F + (ISH)

∫ b

c
F )+.

Hence by Theorem 3.2, F ∈ ISH[a, b] and

(ISH)

∫ b

a
F = (ISH)

∫ c

a
F + (ISH)

∫ b

c
F.
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