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EXISTENCE OF POSITIVE SOLUTIONS FOR FOURTH-ORDER BOUNDARY
VALUE PROBLEMS WITH THREE- POINT BOUNDARY CONDITIONS

N. NYAMORADI 1,∗

ABSTRACT. In this work, by employing the Krasnosel’skii fixed point theorem, we
study the existence of positive solutions of a three-point boundary value problem for
the following fourth-order differential equation{

u(4)(t)− f(t, u(t), u′′(t)) = 0 0 ≤ t ≤ 1,
u(0) = u(1) = 0, αu′′(0)− βu′′′(0) = 0, u′′(1)− αu′′(η) = 0,

whereβ > 0, 0 < η < 1, 0 < αη < 1, (1− αη) + β(1− α) > 0.

Keywords: Positive solution, Fourth-order boundary value problem, Three-point bound-
ary conditions, Fixed point theorem.

1. I NTRODUCTION

In this paper, we will study the existence of positive solutions of a three-point
boundary value problem for the following fourth-order differential equation{

u(4)(t)− f(t, u(t), u′′(t)) = 0 0 ≤ t ≤ 1,
u(0) = u(1) = 0, αu′′(0)− βu′′′(0) = 0, u′′(1)− αu′′(η) = 0,

(1.1)

whereβ > 0, 0 < η < 1, 0 < αη < 1, ∆ := (1− αη) + β(1− α) > 0.

Recently, motivated by the wide application of the BVPs in physical and applied
mathematics, the study of multi-point boundary value problems has received increas-
ing interest. Many approaches, such as the Leray– Schauder continuation theorem,
nonlinear alternatives of Leray–Schauder, fixed-point theorems, and coincidence de-
gree theory, are used to acquire the existence and multiplicity results, see [1, 2, 3, 4].
The study of multi-point boundary value problems of linear second-order ordinary dif-
ferential equations was initiated by Il’in and Moiseev [5]. Then Gupta [6] studied
three-point boundary value problems of nonlinear ordinary differential equations. The
first work about positive solutions of multi-point boundary value problems is due to
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Ma [7]. In [7], under the assumption that the nonlinearity off is either super-linear or
sub-linear, the existence of at least one positive solution was showed by applying the
Guo-Krasnoselskii’s fixed point theorem. See Liu [8], Li [9], Yao [10], Wei and Pang
[11], Zhonga et al. [12] for more information.

Here, by a positive solutionu∗ of BVP (1) we mean a solutionu∗ of BVP (1) which
satisfiesu∗ > 0, 0 < t < 1. We give the following assumptions:
(H1) β > 0, 0 < η < 1, 0 < α < 1+β

η+β
(≤ 1

η
) and∆ := (1− αη) + β(1− α) > 0.

(H2) f ∈ C([0, 1]× [0,∞)× (−∞, 0], [0.∞)) and

0 <

∫ 1

0

(s + β)(1− s)ds < +∞.

Inspired and motivated by the works mentioned above, in this work we will consider
the existence of positive solutions to BVP (1). we shall first give a new form of the
solution, and then determine the properties of the Green’s function for associated lin-
ear boundary value problems; finally, by employing the Guo-Krasnosel’skii fixed point
theorem, some sufficient conditions guaranteeing the existence of a positive solution.
The rest of the article is organized as follows: in Section 2, we present some prelim-
inaries and the Guo-Krasnosel’skii fixed point theorem that will be used in Section 3.
The main results and proofs will be given in Section 3. Finally, in Section 4, we shall
give two examples to illustrate our main results.

2. PRELIMINARIES

In this section, we present some notations and preliminary lemmas that will be
used in the proofs of the main results.

Definition 2.1. Let X be a real Banach space. A non-empty closed setP ⊂ X is
called a cone ofX if it satisfies the following conditions:
(1) x ∈ P, µ ≥ 0 impliesµx ∈ P ,
(2) x ∈ P,−x ∈ P impliesx = 0.

Let E = {u ∈ C2[0, 1]; u(0) = u(1) = 0}. Then we have the following lemma:

Lemma 2.2. For u ∈ E, ‖u‖∞ ≤ ‖u′‖∞ ≤ ‖u′′‖∞, where‖u‖∞ = supt∈[0,1] |u(t)|.

thus,E is a Banach space when it is endowed with the norm‖u‖ = ‖u′′‖∞.

Lemma 2.3. If Y (t) ∈ C([0, 1]), then the following boundary value problem{
y′′(t) + Y (t) = 0 0 ≤ t ≤ 1,
y(0)− βy′(0) = 0, y(1)− αy(η) = 0,

(2.1)

has a unique solution

y(t) =

∫ 1

0

G(t, s)Y (s)ds, (2.2)
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where

G(t, s) =


1
∆

(s + β)((1− t) + α(t− η)), s ≤ min{t, η};
1
∆

((s + β)(1− t) + α(t− s)(η + β)), 0 < η ≤ s ≤ t ≤ 1;
1
∆

(t + β)((1− s) + α(s− η)), 0 ≤ t ≤ s ≤ η ≤ 1;
1
∆

(t + β)(1− s), max{t, η} ≤ s.

(2.3)

Proof. In fact, if u(t) is a solution of the BVP (2.2), then we may assume that

y(t) = −
∫ t

0

(t− s)Y (s)ds + At + B.

By the boundary conditions (2.1), we get

A =
1

∆

{∫ 1

0

(1− s)Y (s)ds− α

∫ η

0

(η − s)Y (s)ds
}

,

B =
β

∆

{∫ 1

0

(1− s)Y (s)ds− α

∫ η

0

(η − s)Y (s)ds
}

,

Therefore, BVP (2.1) has a unique solution

y(t) = −
∫ t

0

(t− s)Y (s)ds +
t

∆

{∫ 1

0

(1− s)Y (s)ds− α

∫ η

0

(η − s)Y (s)ds
}

+
β

∆

{∫ 1

0

(1− s)Y (s)ds− α

∫ η

0

(η − s)Y (s)ds
}

.

The proof is complete.

Lemma 2.4. If u ∈ C[0, 1], then the following boundary value problem{
u′′(t) = −y(t) 0 ≤ t ≤ 1,
u(0) = u(1) = 0,

(2.4)

has a unique solution

u(t) =

∫ 1

0

H(t, s)y(s)ds, (2.5)

where

H(t, s) =

{
s(1− t), s ≤ t
t(1− s), t ≤ s

.

Proof. In fact, if u(t) is a solution of the BVP (2.4), then we may suppose that

u(t) = −
∫ t

0

(t− s)y(s) + At + B.

By the boundary conditions (2.4), we getB = 0 and

A =

∫ 1

0

(1− s)y(s)ds.

Therefore, BVP (2.4) has a unique solution

u(t) = −
∫ t

0

(t− s)y(s)ds + t

∫ 1

0

(1− s)y(s)ds =

∫ 1

0

H(t, s)y(s)ds.
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The proof is complete.

Remark 1. By Lemma 2.3 and Lemma 2.4, the BVP (1.1) has a unique solution

u(t) =

∫ 1

0

H(t, s)

∫ 1

0

G(s, r)f(r, u(r), u′′(r))drds, (2.6)

where

y(t) := −u′′(t) =

∫ 1

0

G(t, s)f(s, u(s), u′′(s))ds. (2.7)

We need some properties of the functionH andG in order to discuss the existence
of positive solutions.

Lemma 2.5. (See [13])H(t, s) ≥ 0 andG(t, s) ≥ 0, for all (t, s) ∈ [0, 1]× [0, 1].

Lemma 2.6. (See [13]). For allt, s ∈ [0, 1]× [0, 1], we have

k1(t)G(s, s) ≤ G(t, s) ≤ k2(s + β)(1− s),

where

k1(t) = min
{
1, α(1− η), t, 1− t

}
, k2 =

max
{
1 + α, α(1−η)

1−αη

}
(1− αη) + β(1− α)

.

Obviouslyk1(t) ≥ 0 is a nonnegative function andk2 is positive constant.

Lemma 2.7. The unique solutionu(t) of the BVP (1.1) is nonnegative and satisfies
mint∈[η,1](−u′′(t)) ≥ λ‖u‖, whereλ = min

{
η, αη, α(1−η)

1−αη

}
Proof. It is obvious thatu(t) is nonnegative andy(t) = −u′′(t) is concave on

[0, 1] since, by Lemma 2.3,y′′(t) = −f(t, u(t), u′′(t)) ≤ 0. By (2.5), Lemma 2.3
and Lemma 2.5, we easily know thaty(0) ≥ 0. Let ‖y‖∞ = y(t∗), t∗ ∈ [0, 1]. If
0 ≤ α ≤ η < 1, thenminη≤t≤1 y(t) = y(1).
(1) For0 ≤ t∗ ≤ η < 1, by concavity ofy, we easily know

‖y‖∞ = y(t∗) ≤ y(1) + (y(η)− y(1))
t∗ − 1

η − 1
≤ 1− αη

α(1− η)
y(1).

(2) Forη ≤ t∗ < 1, we have

‖y‖∞ = y(t∗) ≤ y(0) + (y(η)− y(0))
t∗

η
≤ 1

αη
y(1).

If 1 ≤ α < α+β
αη+β

≤ 1
η
, thenminη≤t≤1 y(t) = y(η). Thus, we have

‖y‖∞ = y(t∗) ≤ y(η)
t∗

η
<

y(η)

η
.

From the above discussion, we get

min
η≤t≤1

y(t) ≥ min
{
η, αη,

α(1− η)

1− αη

}
‖y‖∞ = λ‖y‖∞.

Thus, by Lemma 2.2, we have

min
η≤t≤1

(−u′′(t)) ≥ λ‖ − u′′‖∞ = λ‖u‖.
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Then, we achieve the desired result.
Denote

P = {u ∈ E; u(t) ≥ 0, min(−u′′(t))t∈[η,1] ≥ λ‖u‖}.

It is obvious thatP is cone.
Define the operatorT by

Tu(t) =

∫ 1

0

H(t, s)

∫ 1

0

G(s, r)f(r, u(r), u′′(r))drds. (2.8)

By Remark 1, BVP (1.1) has a positive solutionu = u(t) if and only if u is a fixed
point ofT .

Lemma 2.8.The operator defined in (2.8) is completely continuous and satisfiesT (P ) ⊆
P .

Proof. The operator defined in (2.8) by an application of the Arzela- Ascoli theorem,
is completely continuous and by Lemma 6, we know thatT (P ) ⊆ P .
Our approach is based on the following Guo-Krasnosel’skii fixed point theorem of
cone expansion-compression type ([14] and [15]).

Theorem 2.9. ([14]) Let E be a Banach space andP ⊆ E a cone inE. AssumeΩ1

andΩ2 are open subsets ofE with 0 ∈ Ω1 andΩ1 ⊂ Ω2. LetT : P
⋂

(Ω2\Ω1) → P
be a completely continuous operator. In addition suppose either
(A) ‖Tu‖ ≤ ‖u‖, ∀u ∈ P ∩ ∂Ω1 and‖Tu‖ ≥ ‖u‖, ∀u ∈ P ∩ ∂Ω2 or
(B) ‖Tu‖ ≥ ‖u‖, ∀u ∈ P ∩ ∂Ω1 and‖Tu‖ ≤ ‖u‖, ∀u ∈ P ∩ ∂Ω2

holds. ThenT has a fixed point inP
⋂

(Ω2\Ω1).

3. M AIN RESULTS

In this section, we discuss the existence of a positive solution of BVP (1.1). For
convenience we set

max f0 = lim
−v→o+

max
t∈[0,1]

sup
u∈[0,+∞]

f(t, u, v)

−v
,

min f0 = lim
−v→o+

min
t∈[0,1]

inf
u∈[0,+∞]

f(t, u, v)

−v
,

max f∞ = lim
−v→+∞

max
t∈[0,1]

sup
u∈[0,+∞]

f(t, u, v)

−v
,

min f∞ = lim
−v→+∞

min
t∈[0,1]

inf
u∈[0,+∞]

f(t, u, v)

−v
.

Theorem 3.1.Suppose thatf ∈ C([0, 1]×[0,∞)×(−∞, 0], [0.∞)) andf is superlin-
ear, i.e.,max f0 = 0 andmin f∞ = +∞; then the BVP (1.1) has at least one positive
solution.
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Proof. Sincemax f0 = 0, then for anyε satisfyingk2ε
∫ 1

0
(s + β)(1 − s)ds ≤ 1,

there existsR1 > 0 such that

f(t, u, v) ≤ ε(−v), for t ∈ [0, 1], u ∈ [0, +∞), 0 ≤ −v ≤ R1. (3.1)

SetΩ1 = {u ∈ P : ‖u‖ < R1}. Then, for anyu ∈ P ∩∂Ω1, from Lemma 2.6, Lemma
2.8 and using (3.1) we have

−(Tu)′′(t) =

∫ 1

0

G(t, s)f(s, u(s), u′′(s))ds

≤ k2

∫ 1

0

(s + β)(1− s)f(s, u(s), u′′(s))ds

≤ k2ε

∫ 1

0

(s + β)(1− s)(−u′′(s))ds

≤ ‖u′′‖∞ = ‖u‖,

which implies that

‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω1. (3.2)

On the other hand, sincemin f∞ = +∞, then for anyε satisfying
εk1(

1
2
(η + 1))λ

∫ 1

0
G(s, s)ds ≥ 1, there existsR2 > R1 > 0 such that

f(t, u, v) ≥ ε(−v), for t ∈ [0, 1], u ∈ [0, +∞), −v ≥ R2. (3.3)

SetΩ2 = {u ∈ P : ‖u‖ < R2}. For anyu ∈ P ∩ ∂Ω2, by Lemma 2.7 one has
mint∈[τ,1] u(t) ≥ λ‖u‖. Thus, from (2.8) and (3.3) we can conclude that

−(Tu)′′(
1

2
(η + 1)) =

∫ 1

0

G(
1

2
(η + 1), s)f(s, u(s), u′′(s))ds

≥ k1(
1

2
(η + 1))

∫ 1

0

G(s, s)f(s, u(s), u′′(s))ds

≥ εk1(
1

2
(η + 1))

∫ 1

0

G(s, s)(−u′′(s))ds

≥ εk1(
1

2
(η + 1))λ‖u‖

∫ 1

0

G(s, s)ds

≥ ‖u‖,

and thus

‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω2. (3.4)

Therefore, by (3.2), (3.4) and the first part of Theorem 1 we know that the operatorT
has a fixed point inP

⋂
(Ω2\Ω1).

Theorem 3.2.Suppose thatf ∈ C([0, 1]×[0,∞)×(−∞, 0], [0.∞)) andf is sublinear,
i.e., min f0 = +∞ and max f∞ = 0; then the BVP (1.1) has at least one positive
solution.
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Proof. Sincemin f0 = +∞, then for anyε satisfyingεk1(
1
2
(η+1))λ

∫ 1

0
G(s, s)ds ≥

1, there existsR1 > 0 such that

f(t, u, v) ≥ ε(−v), for t ∈ [0, 1], u ∈ [0, +∞), 0 ≤ −v ≤ R1. (3.5)

SetΩ1 = {u ∈ P : ‖u‖ < R1}. For anyu ∈ P ∩ ∂Ω1, by Lemma 2.7 one has
mint∈[τ,1] u(t) ≥ λ‖u‖. Thus, from (2.9) and (3.5) we can conclude that

−(Tu)′′(
1

2
(η + 1)) =

∫ 1

0

G(
1

2
(η + 1), s)f(s, u(s), u′′(s))ds

≥ k1(
1

2
(η + 1))

∫ 1

0

G(s, s)f(s, u(s), u′′(s))ds

≥ εk1(
1

2
(η + 1))

∫ 1

0

G(s, s)(−u′′(s))ds

≥ εk1(
1

2
(η + 1))λ‖u‖

∫ 1

0

G(s, s)ds

≥ ‖u‖,
and thus

‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω1. (3.6)

Next, sincemax f∞ = 0, we consider two cases:
Case(i): Suppose thatf(t, u, v) is bounded, i.e., there exist a positive constantM such
thatf(t, u, v) ≤ M . Takemax{k2M

∫ 1

0
(s + β)(1− s)ds, R1} ≤ R2. Foru ∈ P with

‖u‖ = R2,

−(Tu)′′(t) =

∫ 1

0

G(t, s)f(s, u(s), u′′(s))ds

≤ k2

∫ 1

0

(s + β)(1− s)f(s, u(s), u′′(s))ds

≤ k2M

∫ 1

0

(s + β)(1− s)ds

≤ R2 = ‖u‖,
Case(ii): Suppose thatf(t, u, v) is unbounded. Sincemax f∞ = 0, then for anyε
satisfyingk2ε

∫ 1

0
(s + β)(1− s)ds ≤ 1, there existR0 > R1 such that

f(t, u, v) ≤ ε(−v), for t ∈ [0, 1], u ∈ [0, +∞), −v ≥ R0. (3.7)

Then we define a functionf ∗(r) : [0,∞) → [0,∞) by

f ∗(r) = max{f(t, u, v) : t ∈ [0, 1], 0 ≤ u ≤ r, 0 ≤ −v ≤ r}.

It is easy thatf ∗(r) is non-decreasing andlimr→+∞
f∗(r)

r
= 0. There existsR0 such

that

f ∗(r) ≤ εr, for r ∈ [R0, +∞). (3.8)

TakingR2 > R0, from (3.7) and (3.8)

f(t, u, v) ≤ f ∗(R2) ≤ εR2, for t ∈ [0, 1], 0 ≤ u ≤ R2, 0 ≤ −v ≤ R2. (3.9)
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On the other hand, foru ∈ P with ‖u‖ = R2, from Lemma 2.2 we know that

‖u‖∞ ≤ R2. (3.10)

From Lemma 2.6 and by using (3.9) and (3.10), foru ∈ P with ‖u‖ = R2

−(Tu)′′(t) =

∫ 1

0

G(t, s)f(s, u(s), u′′(s))ds

≤ k2

∫ 1

0

(s + β)(1− s)f(s, u(s), u′′(s))ds

≤ k2εR2

∫ 1

0

(s + β)(1− s)ds

≤ R2 = ‖u‖,

Therefore, in either case, we setΩ2 = {u ∈ P : ‖u‖ < R2} such that

‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω2. (3.11)

Therefore, by (3.6), (3.11) and the second part of Theorem 2.9 we know that the oper-
atorT has a fixed point inP

⋂
(Ω2\Ω1).

4. APPLICATION

Example 4.1.Consider the following boundary value problem system:{
u(4)(t) = f(t, u(t), u′′(t)) 0 ≤ t ≤ 1,
u(0) = u(1) = 0, u′′(0)− u′′′(0) = 0, u′′(1)− 1

2
u′′(1

2
) = 0,

, (4.1)

wheref(t, u(t), u′′(t)) = 1√
1+u

− (u′′−3 + sin πt. Clearly,

0 <

∫ 1

0

(s +
1

2
)(1− s)ds < +∞, min f0 = +∞, max f∞ = 0.

By Theorem 3.2, system (4.1) has at least one positive solution.

Example 4.2.Consider the following boundary value problem system:{
u(4)(t) = f(t, u(t), u′′(t)) 0 ≤ t ≤ 1,
u(0) = u(1) = 0, u′′(0)− u′′′(0) = 0, u′′(1)− 1

2
u′′(1

2
) = 0,

(4.2)

where,f(t, u(t), u′′(t)) = (−u′′3
√

1+u
− (u′′5 + (−u′′3 sin πt. Clearly,

0 <

∫ 1

0

(s +
1

2
)(1− s)ds < +∞, max f0 = 0, min f∞ = +∞.

Then by Theorem 3.1, system (4.2) has at least one positive solution.
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