Caspian Journal of Mathematical Sciences (CJMS)

University of Mazandaran, Iran

http://cjms.journals.umz.ac.ir

ISSN: 1735-0611

CJMS. 3(1)(2014), 15-23

B-Focal Curves Of Biharmonic B-General Helices In Heisenberg Group

Talat Körpınar ¹ and Essin Turhan ²

¹ Muş Alparslan University, Department of Mathematics 49250, Muş, Turkey

² Fırat University, Department of Mathematics 23119, Elazığ, Turkey

Abstract. In this paper, we study B-focal curves of biharmonic B-general

helices according to Bishop frame in the Heisenberg group Heis^3 . Finally, we characterize the B-focal curves of biharmonic B-general helices in terms of Bishop frame in the Heisenberg group Heis^3 .

Keywords: Biharmonic curve, Bishop frame, Heisenberg group, Parallel transport, Helix.

2000 Mathematics subject classification: 31B30, 58E20.

1. Introduction

A smooth map $\phi: N \longrightarrow M$ is said to be biharmonic if it is a critical point of the bienergy functional:

$$E_2\left(\phi\right) = \int_N \frac{1}{2} \left| \mathcal{T}(\phi) \right|^2 dv_h,$$

where $\mathcal{T}(\phi) := \operatorname{tr} \nabla^{\phi} d\phi$ is the tension field of ϕ .

Received: 4 Sep. 2012 Revised: 25 Feb. 2013 Accepted: 11 Mar. 2013

¹ Corresponding author: talatkorpinar@gmail.com

The Euler-Lagrange equation of the bienergy is given by $\mathcal{T}_2(\phi) = 0$. Here the section $\mathcal{T}_2(\phi)$ is defined by

$$\mathcal{T}_2(\phi) = -\Delta_{\phi} \mathcal{T}(\phi) + \operatorname{tr} R\left(\mathcal{T}(\phi), d\phi\right) d\phi, \tag{1.1}$$

and called the bitension field of ϕ . Non-harmonic biharmonic maps are called proper biharmonic maps, [7,8].

In this paper, we study \mathcal{B} -focal curves of biharmonic \mathfrak{B} -general helices according to Bishop frame in the Heisenberg group Heis³. Finally, we characterize the \mathcal{B} -focal curves of biharmonic \mathfrak{B} -general helices in terms of Bishop frame in the Heisenberg group Heis³.

2. The Heisenberg Group Heis³

Heisenberg group Heis^3 can be seen as the space \mathbb{R}^3 endowed with the following multiplication:

$$(\overline{x}, \overline{y}, \overline{z})(x, y, z) = (\overline{x} + x, \overline{y} + y, \overline{z} + z - \frac{1}{2}\overline{x}y + \frac{1}{2}x\overline{y})$$
(2.1)

 Heis^3 is a three-dimensional, connected, simply connected and 2-step nilpotent Lie group.

The Riemannian metric g is given by

$$g = dx^2 + dy^2 + (dz - xdy)^2.$$

The Lie algebra of Heis³ has an orthonormal basis

$$\mathbf{e}_1 = \frac{\partial}{\partial x}, \quad \mathbf{e}_2 = \frac{\partial}{\partial y} + x \frac{\partial}{\partial z}, \quad \mathbf{e}_3 = \frac{\partial}{\partial z},$$
 (2.2)

for which we have the Lie products [11]

$$[\mathbf{e}_1, \mathbf{e}_2] = \mathbf{e}_3, \ [\mathbf{e}_2, \mathbf{e}_3] = [\mathbf{e}_3, \mathbf{e}_1] = 0$$

with

$$g(\mathbf{e}_1, \mathbf{e}_1) = g(\mathbf{e}_2, \mathbf{e}_2) = g(\mathbf{e}_3, \mathbf{e}_3) = 1.$$

We obtain

$$\nabla_{\mathbf{e}_{1}} \mathbf{e}_{1} = \nabla_{\mathbf{e}_{2}} \mathbf{e}_{2} = \nabla_{\mathbf{e}_{3}} \mathbf{e}_{3} = 0,
\nabla_{\mathbf{e}_{1}} \mathbf{e}_{2} = -\nabla_{\mathbf{e}_{2}} \mathbf{e}_{1} = \frac{1}{2} \mathbf{e}_{3},
\nabla_{\mathbf{e}_{1}} \mathbf{e}_{3} = \nabla_{\mathbf{e}_{3}} \mathbf{e}_{1} = -\frac{1}{2} \mathbf{e}_{2},
\nabla_{\mathbf{e}_{2}} \mathbf{e}_{3} = \nabla_{\mathbf{e}_{3}} \mathbf{e}_{2} = \frac{1}{2} \mathbf{e}_{1}.$$

3. Biharmonic \mathfrak{B} -General Helices with Bishop Frame In The Heisenberg Group Heis 3

Let $\gamma: I \longrightarrow Heis^3$ be a non geodesic curve on the Heisenberg group $Heis^3$ parametrized by arc length. Let $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ be the Frenet frame fields tangent to the Heisenberg group $Heis^3$ along γ defined as follows:

 \mathbf{T} is the unit vector field γ' tangent to γ , \mathbf{N} is the unit vector field in the direction of $\nabla_{\mathbf{T}}\mathbf{T}$ (normal to γ), and \mathbf{B} is chosen so that $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ is a positively oriented orthonormal basis. Then, we have the following Frenet formulas:

$$\nabla_{\mathbf{T}}\mathbf{T} = \kappa \mathbf{N},$$

$$\nabla_{\mathbf{T}}\mathbf{N} = -\kappa \mathbf{T} + \tau \mathbf{B}, 3.1$$

$$\nabla_{\mathbf{T}}\mathbf{B} = -\tau \mathbf{N},$$
(3.1)

where κ is the curvature of γ and τ is its torsion and

$$g(\mathbf{T}, \mathbf{T}) = 1, \ g(\mathbf{N}, \mathbf{N}) = 1, \ g(\mathbf{B}, \mathbf{B}) = 1, \ 3.2$$
 (3.2)
 $g(\mathbf{T}, \mathbf{N}) = g(\mathbf{T}, \mathbf{B}) = g(\mathbf{N}, \mathbf{B}) = 0.$

In the rest of the paper, we suppose everywhere $\kappa \neq 0$ and $\tau \neq 0$.

The Bishop frame or parallel transport frame is an alternative approach to defining a moving frame that is well defined even when the curve has vanishing second derivative. The Bishop frame is expressed as [1]

$$\nabla_{\mathbf{T}}\mathbf{T} = k_1\mathbf{M}_1 + k_2\mathbf{M}_2,$$

$$\nabla_{\mathbf{T}}\mathbf{M}_1 = -k_1\mathbf{T}, 3.3$$

$$\nabla_{\mathbf{T}}\mathbf{M}_2 = -k_2\mathbf{T},$$
(3.3)

where

$$g(\mathbf{T}, \mathbf{T}) = 1, \ g(\mathbf{M}_1, \mathbf{M}_1) = 1, \ g(\mathbf{M}_2, \mathbf{M}_2) = 1, \ 3.4 \quad (3.4)$$

 $g(\mathbf{T}, \mathbf{M}_1) = g(\mathbf{T}, \mathbf{M}_2) = g(\mathbf{M}_1, \mathbf{M}_2) = 0.$

Here, we shall call the set $\{\mathbf{T}, \mathbf{M}_1, \mathbf{M}_2\}$ as Bishop trihedra, k_1 and k_2 as Bishop curvatures. where $\theta(s) = \arctan \frac{k_2}{k_1}$, $\tau(s) = \theta'(s)$ and $\kappa(s) = \sqrt{k_2^2 + k_1^2}$. Thus, Bishop curvatures are defined by

$$k_1 = \kappa(s)\cos\theta(s), 3.5$$

$$k_2 = \kappa(s)\sin\theta(s).$$
(3.5)

With respect to the orthonormal basis $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ we can write

$$\mathbf{T} = T^{1}\mathbf{e}_{1} + T^{2}\mathbf{e}_{2} + T^{3}\mathbf{e}_{3},$$

$$\mathbf{M}_{1} = M_{1}^{1}\mathbf{e}_{1} + M_{1}^{2}\mathbf{e}_{2} + M_{1}^{3}\mathbf{e}_{3}, 3.6$$

$$\mathbf{M}_{2} = M_{2}^{1}\mathbf{e}_{1} + M_{2}^{2}\mathbf{e}_{2} + M_{2}^{3}\mathbf{e}_{3}.$$
(3.6)

To separate a general helix according to Bishop frame from that of Frenet-Serret frame, in the rest of the paper, we shall use notation for the curve defined above as \mathfrak{B} -general helix.

Theorem 3.1. Let $\gamma_{\mathfrak{B}}: I \longrightarrow Heis^3$ be a unit speed biharmonic \mathfrak{B} -general helix. Then the parametric equation of $\gamma_{\mathfrak{B}}$ are

$$x_{\mathfrak{B}}(s) = \frac{\sin \theta}{(\frac{k_1^2 + k_2^2}{\sin^2 \theta} - \cos \theta)^{\frac{1}{2}}} \sin[(\frac{k_1^2 + k_2^2}{\sin^2 \theta} - \cos \theta)^{\frac{1}{2}} s + \zeta_0] + \zeta_2,$$

$$y_{\mathfrak{B}}(s) = -\frac{\sin \theta}{(\frac{k_1^2 + k_2^2}{\sin^2 \theta} - \cos \theta)^{\frac{1}{2}}} \cos[(\frac{k_1^2 + k_2^2}{\sin^2 \theta} - \cos \theta)^{\frac{1}{2}} s + \zeta_0] + \zeta_3, 3.7(3.7)$$

$$z_{\mathfrak{B}}(s) = (\cos \theta) s + \frac{\sin^2 \theta}{(\frac{k_1^2 + k_2^2}{\sin^2 \theta} - \cos \theta)^{\frac{1}{2}}} (\frac{s}{2} - \frac{\sin 2[(\frac{k_1^2 + k_2^2}{\sin^2 \theta} - \cos \theta)^{\frac{1}{2}} s + \zeta_0]}{4(\frac{k_1^2 + k_2^2}{\sin^2 \theta} - \cos \theta)^{\frac{1}{2}}} - \frac{\zeta_1 \sin \theta}{(\frac{k_1^2 + k_2^2}{\sin^2 \theta} - \cos \theta)^{\frac{1}{2}}} \cos[(\frac{k_1^2 + k_2^2}{\sin^2 \theta} - \cos \theta)^{\frac{1}{2}} s + \zeta_0] + \zeta_4,$$

where ζ_0 , ζ_1 , ζ_2 , ζ_3 , ζ_4 are constants of integration.

4. $\mathcal{B} ext{-}Focal$ Curve of Biharmonic $\mathfrak{B} ext{-}General$ Helices with Bishop Frame In The Heisenberg Group Heis³

Denoting the focal curve by $\mathfrak{focal}_{\gamma_{\mathfrak{B}}}^{B}$ of $\gamma_{\mathfrak{B}}$, we can write

$$\mathfrak{focal}_{\gamma_{\mathfrak{M}}}^{B}(s) = (\gamma + \mathfrak{f}_{1})$$

 $\mathrm{BM}_1 + \mathfrak{f}_2^{\mathcal{B}}\mathbf{M}_2)(s), (4.1)$ where the coefficients $\mathfrak{f}_1^{\mathcal{B}}$, $\mathfrak{f}_2^{\mathcal{B}}$ are smooth functions of the parameter of the curve γ , called the first and second focal curvatures of γ , respectively.

To separate a focal curve according to Bishop frame from that of Frenet-Serret frame, in the rest of the paper, we shall use notation for the focal curve defined above as \mathcal{B} -focal curve.

Theorem 4.1. Let $\gamma_{\mathfrak{B}}: I \longrightarrow Heis^3$ be a unit speed biharmonic \mathfrak{B} -general helix with non-zero natural curvatures. Then, the position

vector of $\mathfrak{focal}_{\gamma_{\mathfrak{B}}}^{B}$ is

$$\begin{split} & \mathfrak{focal}_{\gamma_{\mathfrak{B}}}^{B}\left(s\right) = [\frac{\sin\theta}{(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}}\sin[(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}s+\zeta_{0}] \\ & + \mathfrak{p}\sin[(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}s+\zeta_{0}] \\ & + \frac{1-\mathfrak{p}k_{1}}{k_{2}}\cos\theta\cos[(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}s+\zeta_{0}] + \zeta_{2}]\mathbf{e}_{1} \\ & + [-\frac{\sin\theta}{(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}}\cos[(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}s+\zeta_{0}] \\ & - \mathfrak{p}\cos[(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}s+\zeta_{0}] \\ & + \frac{1-\mathfrak{p}k_{1}}{k_{2}}\cos\theta\sin[(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}s+\zeta_{0}] + \zeta_{3}]\mathbf{e}_{2} \\ & + [-[\frac{\sin\theta}{(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}}\sin[(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}s+\zeta_{0}] + \zeta_{2}] \\ & [-\frac{\sin\theta}{(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}}\cos[(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}s+\zeta_{0}] + \zeta_{3}] \\ & + (\cos\theta)\,s + \frac{\sin^{2}\theta}{(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}}(\frac{s}{2} - \frac{\sin2[(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}s+\zeta_{0}]}{4(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}} - \cos\theta)^{\frac{1}{2}}s + \zeta_{0}] \\ & - \frac{\zeta_{1}\sin\theta}{(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}}\cos[(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}s+\zeta_{0}] \\ & - \frac{1-\mathfrak{p}k_{1}}{k_{2}}\sin\theta+\zeta_{4}]\mathbf{e}_{3}, \end{split}$$

where ζ_0 , ζ_1 , ζ_2 , ζ_3 , ζ_4 are constants of integration.

Proof. Assume that γ is a unit speed biharmonic curve and $\mathfrak{focal}_{\gamma_{\mathfrak{B}}}^{B}$ its \mathcal{B} -focal curve on Heis³.

By differentiating of the formula (4.1), we get

$$\mathfrak{F}_{\gamma}^{\mathcal{B}}(s)' = (1 - \mathfrak{f}_{1}^{\mathcal{B}}k_{1} - \mathfrak{f}_{2}^{\mathcal{B}}k_{2})\mathbf{T} + (\mathfrak{f}_{1}^{\mathcal{B}})'\mathbf{M}_{1} + (\mathfrak{f}_{2}^{\mathcal{B}})'\mathbf{M}_{2}.$$

Using above equation, the first 2 components vanish, we get

$$\mathfrak{f}_1^{\mathcal{B}} k_1 + \mathfrak{f}_2^{\mathcal{B}} k_2 = 1,
\left(\mathfrak{f}_1^{\mathcal{B}}\right)' = 0.$$

Considering second equation above system, we chose

$$\mathfrak{f}_1^{\mathcal{B}} = \mathfrak{p} = \text{constant} \neq 0.$$

Then

$$\mathfrak{f}_2^{\mathcal{B}} = \frac{1 - \mathfrak{p}k_1}{k_2}.$$

On the other hand, we have

$$\mathbf{T} = \sin \theta \cos \left[\left(\frac{k_1^2 + k_2^2}{\sin^2 \theta} - \cos \theta \right)^{\frac{1}{2}} s + \zeta_0 \right] \mathbf{e}_1 + \sin \theta \sin \left[\left(\frac{k_1^2 + k_2^2}{\sin^2 \theta} - \cos \theta \right)^{\frac{1}{2}} s + \zeta_0 \right] \mathbf{e}_2 + \cos \theta \mathbf{e}_3.$$

Thus, it is seen that

$$\mathfrak{focal}_{\gamma}^{B}(s)=(\gamma+\mathfrak{p}\mathbf{M}_{1}+\frac{1-\mathfrak{p}k_{1}}{k_{2}}\mathbf{M}_{2})(s),$$

By means of obtained equations, we express (4.2). This completes the proof.

In the light of Theorem 4.1, we express:

Theorem 4.2. Let $\gamma_{\mathfrak{B}}: I \longrightarrow Heis^3$ be a unit speed biharmonic \mathfrak{B} -general helix and $\mathfrak{focal}^B_{\gamma_{\mathfrak{B}}}$ its \mathcal{B} -focal curve on $Heis^3$. Then, the

parametric equations of $\operatorname{focal}_{\operatorname{lgg}}^B$ are given by

$$\begin{split} x_{\mathsf{focal}_{\gamma}^{\mathcal{B}}}(s) &= [\frac{\sin\theta}{(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}}\sin[(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}s+\zeta_{0}] \\ &+ \mathfrak{p}\sin[(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}s+\zeta_{0}] \\ &+ \frac{1-\mathfrak{p}k_{1}}{k_{2}}\cos\theta\cos[(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}s+\zeta_{0}] + \zeta_{2}], \\ z_{\mathsf{focal}_{\gamma}^{\mathcal{B}}}(s) &= [-\frac{\sin\theta}{(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}}\cos[(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}s+\zeta_{0}] \\ &- \mathfrak{p}\cos[(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}s+\zeta_{0}] \\ &+ \frac{1-\mathfrak{p}k_{1}}{k_{2}}\cos\theta\sin[(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}s+\zeta_{0}] \\ &+ \frac{1-\mathfrak{p}k_{1}}{k_{2}}\cos\theta\sin[(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}s+\zeta_{0}] \\ &+ \mathfrak{p}\sin[(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}s+\zeta_{0}] \\ &+ \mathfrak{p}\sin[(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}s+\zeta_{0}] \\ &- \frac{\sin\theta}{(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}}\cos[(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}s+\zeta_{0}] \\ &- \mathfrak{p}\cos[(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}s+\zeta_{0}] \\ &+ \frac{1-\mathfrak{p}k_{1}}{k_{2}}\cos\theta\sin[(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}s+\zeta_{0}] \\ &+ \frac{1-\mathfrak{p}k_{1}}{k_{2}}\cos\theta\sin[(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}s+\zeta_{0}] \\ &+ [-[\frac{\sin\theta}{(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}}\sin[(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}s+\zeta_{0}] + \zeta_{2}] \\ &- \frac{\sin\theta}{(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}}\cos[(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}s+\zeta_{0}] + \zeta_{3}] \\ &+ (\cos\theta)s + \frac{\sin^{2}\theta}{(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}}\cos[(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}s+\zeta_{0}] \\ &- \frac{\zeta_{1}\sin\theta}{(\frac{k_{1}^{2}+k_{2}^{2}}{\cos^{2}\theta}-\cos\theta)^{\frac{1}{2}}}{\cos[(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}s+\zeta_{0}] - \frac{1-\mathfrak{p}k_{1}}{k_{2}}}{\sin^{2}\theta}\cos\theta} \\ &- \frac{\zeta_{1}\sin\theta}{(\frac{k_{1}^{2}+k_{2}^{2}}{\cos\theta}-\cos\theta)^{\frac{1}{2}}}\cos((\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}s+\zeta_{0}] - \frac{1-\mathfrak{p}k_{1}}{k_{2}}\sin\theta + \zeta_{4}], \end{split}$$

where $\zeta_0, \zeta_1, \zeta_2, \zeta_3, \zeta_4$ are constants of integration.

Proof. Substituting (2.1) into (4.2), we obtain above system. This completes the proof.

If we use Mathematica both $\gamma_{\mathfrak{B}}$ and its focal curve, we have

Figure 1.

References

- [1] L. R. Bishop, There is More Than One Way to Frame a Curve, Amer. Math. Monthly 82 (3) (1975) 246-251.
- [2] B. Bükcü, M.K. Karacan, Special Bishop motion and Bishop Darboux rotation axis of the space curve, J. Dyn. Syst. Geom. Theor. 6 (1) (2008) 27–34.
- [3] TA. Cook, *The curves of life*, Constable, London 1914, Reprinted (Dover, London 1979).
- [4] J. Eells, J.H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109–160.
- [5] J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media, Prentice-Hall, New Jersey, (1965).
- [6] J. Inoguchi, Submanifolds with harmonic mean curvature in contact 3-manifolds, Colloq. Math. 100 (2004), 163–179.
- [7] G.Y. Jiang, 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A 7 (1986), 130–144.
- [8] G.Y. Jiang, 2-harmonic maps and their first and second variation formulas, Chinese Ann. Math. Ser. A 7 (1986), 389–402.
- [9] W. E. Langlois, Slow Viscous Flow, Macmillan, New York; Collier-Macmillan, London, (1964).
- [10] T. Körpmar, E. Turhan, V. Asil, Biharmonic \mathfrak{B} -General Helices with Bishop Frame In The Heisenberg Group Heis³, World Applied Sciences Journal 14 (10) (2010), 1565-1568.

- [11] S. Rahmani, Metriqus de Lorentz sur les groupes de Lie unimodulaires, de dimension trois, Journal of Geometry and Physics 9 (1992), 295-302.
- [12] R. Uribe-Vargas: On vertices, focal curvatures and differential geometry of space curves, Bull. Brazilian Math. Soc. 36 (3) (2005), 285–307.