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Abstract: In this work some quantitative structure activity relationship models were developed for prediction of three 

bioenvironmental parameters of 28 volatile organic compounds, which are used in assessing the behavior of pollutants in soil. 

These parameters are; half-life, non dimensional effective degradation rate constant and effective Péclet number in two type of soil. 

The most effective descriptors which were selected by stepwise multiple linear regression method reflect some information about 

structure and polarity of molecules. Linear and non-linear models were established by multiple linear regressions and least-squares 

support vector machine respectively. The statistical parameters of developed models demonstrated that both of them are 

satisfactory. However the models established with least-squares support vector machine are more stable and reliable than multiple 

linear regressions model. 
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1. Introduction 

 

Volatile organic compounds (VOCs) are one of the 

most important environmental concerns. They may 

enter to the soil from a variety of sources and may 

contaminate the ground water [1-3]. Thus the study of 

behavior of VOCs in soils has attracted considerable 

attention for the evaluation of their possible risks to 

humans and the environment. Modeling of the 

environmental fate and transport of VOCs has been 

carried out by number of researchers in recent years [4-

7]. They used different indices and parameters to 

screen the VOCs in environment. For example, half-

life (logT1/2) and effective parameters can be used as 

criteria for assess the behavior of VOCs in soils. 

Effective parameters are essential properties of 
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homogeneous zone, which describe the flux processes 

in homogeneous zone of soil. One ffective parameter is 

non dimensional effective degradation rate constant, 

which is defined as: 

 

 �eff-nd = �effL / Veff                                             (1) 

 

where �eff is effective degradation rate constant, Veff is 

effective velocity, and L is characteristic soil length. 

This quantity represents effects of degradation losses 

within the soil column, and volatilization losses at the 

soil surface as well. One another effective parameter is 

the effective Péclet number. It is a dimensionless 

number relevant in the study of transport phenomena in 

fluid flows and is defined to be the ratio of the rate of 

advection of a physical quantity by the flow to the rate 

of diffusion of the same quantity. For mass diffusion by 

using method of moments, it is defined as: 

 

 Peff = VeffL / Deff                                                                      (2)  

 

where Deff is the effective mass diffusion coefficient 

[7]. Diffusion increases with decreasing Péclet number 

and reduces biodegradation losses, consequently 

leading to more mass being available for leaching. In 

this case; the probability of contamination of ground 

water will be increased. These parameters have been 

computed using temporal moment analysis (TMA), 

which is a non-parametric, statistical procedure that 

also provides useful information on solute transport 

characteristics in soils [8]. 

Since the experimental determination of these 

parameters needs time-consuming experiments and 

complex calculations therefore they have been 

measured for small fraction of VOCs. Moreover 

different compounds will often have different Péclet 

numbers and nondimensional effective degradation rate 

constants in the same flow condition. Whereas, the 

values of these parameters are affected by structural 

features of compounds therefore, it is possible to 

calculate them by quantitative structure properties 

relationships (QSAR) approaches. In this method 

relevant molecular structural parameters are correlated 

mathematically to interested properties or activities of 

chemicals [9].  

There are some reports about QSAR modeling of half-

life of environmental chemicals [10-12]. In a former 

paper, Gramatica et al. developed principle component 

analysis (PCA) model for estimation of degradation 

half-life data of 250 persistent organic pollutants 

(POPs) [10]. Their 6-parameters model has the 

statistics of square correlation coefficient of R2=0.85 

and root mean square error of RMSE=0.76 for training 

set and R2=0.79 and RMSE=0.78 for prediction set. 

Also Papa et al. established a multiple linear regression 

(MLR) in combination with the genetic algorithm 

variable subset selection procedure to predict the 

tropospheric half-life of 166 VOCs by three parameters 

model. Their best QSAR models showed RMSEs in 

range of 0.41-0.67 and 0.84-0.65 for training and 

prediction data sets, respectively. [11]. In a recent 

work, Luan et al. reported a QSAR model for 

prediction of the mean and the maximum atmospheric 

degradation half-life values of persistent organic 

pollutants by using nonlinear gene expression 

programming (GEP) [12]. 
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 The examination of their model on their test set 

provided the statistic of R2; 0.80 and 0.81 and RMSE 

of 0.448 and 0.426 for the mean and maximum half-life 

values, respectively. 

Recently Parashar et al. used a sensitivity analysis to 

study the importance of different physical/chemical 

processes on volatilization, degradation, and leaching 

losses of some VOCs in two typical types of soil [7]. 

They calculated the effective nondimentional 

parameters by TMA technique and then the sensitivity 

of losses was examined with respect to their non 

dimensional parameters.  

Since our literature survey indicate that there are not 

any published report about QSAR prediction of 

effective Péclet numbers and effective nondimentional 

degradation rate constants of VOCs, therefore we 

decided to develop some QSAR models to predict these 

parameters and half-life of some VOCs. 

 

2. Methods 

2.1. Data set 

 

  The experimental data shown in Table 1 are half-life, 

effective Péclet numbers and effective nondimentional 

degradation rate constants of 28 volatile organic 

compounds that were taken from Parashar’s paper [7]. 

In this table half-life data represented in logarithmic 

units due to their abroad range. VOCs were evaluated 

under the initial condition of a uniform concentration 

of organic chemical located at a certain depth in sandy 

and clayey soil. The compounds were assumed to move 

by vapor or liquid diffusion and by mass flow while 

undergoing first-order degradation and linear 

equilibrium adsorption. Compounds in data set were 

sorted according to the values of each parameter and 

test set was selected from this set by desirable distance 

from each other (y-ranking method). In each case the 

training set consists of 22 compounds while test set has 

6 members. 

 

2.2. Descriptors generation and selection 

 

To obtain a QSAR model, the compounds must 

represented by the molecular descriptors that encode 

the structural features of chemicals. 

 Therefore, the chemical structures of molecules were 

drown by using Hyperchem package (V.7) [13] and 

optimized by the AM1 semi-empirical method. Then a 

more precise optimization was done with semi-

empirical AM1 method by MOPAC package (Ver. 6) 

[14]. Dragon (Ver.3) [15] and CODESSA softwares 

[16] were used to calculated molecular descriptors by 

using the Hyperchem and MOPAC output files. All 

calculated descriptors were divided to five classes: 

constitutional, topological, geometrical, electronic and 

quantum chemical descriptors. Constitutional 

descriptors reflect only the molecular composition of 

the compound.  

Topological descriptors describe the atomic 

connectivity in a molecule. Geometrical descriptors are 

calculated from three-dimension atomic coordinates of 

the molecule. Electronic and quantum chemical 

descriptors reflect characteristics of the charge 

distribution in the molecule and add important 

information to the conventional descriptors. 



Table 1:Data set and corresponding observed MLR and LS-SVM predicted values of Peff and �eff-nd  in sandy and clayey soil and logT1/2    

 

      Sandy soil  Clayey soil 

 Chemical  name 
logT1/2  

(exp.) 

logT1/2  

(pred.)

MLR 

logT1/2  

(pred.)

LS-

SVM 

Peff 

(exp.) 

 

Peff 

(pred.) 

MLR 

Peff 

(pred.) 

LS-

SVM 

�eff-nd 

(exp.) 

�eff-nd 

(pred.) 

MLR 

�eff-nd 

(pred.) 

LS-

SVM 

Peff 

(exp.) 

Peff 

(pred.) 

MLR 

Peff 

(pred.) 

LS-

SVM 

�eff-nd 

(exp.) 

�eff-nd 

(pred.) 

MLR 

�eff-nd 

(pred.) 

LS-

SVM 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

1,1,1-Trichloroethane 

1,1-Dichloroethane 

1,2-Dichloroethane 

2,4-Dichlorophenol 

2-Chloronapthalene 

Acrolein 

Benzene 

Bromoethane 

Chlordane 

Chloroethane 

Chloroethene 

Chloroform 

Chloromethane 

DBCP 

Dichlorodifluoromethane 

Dichloromethane 

EPTC 

Ethylene dibromide 

Heptachlor 

Hexachlorocyclohexane 

Methyl ethyl ketone 

Methyl isobutyl ketone 

Phorate 

Toluene 

Toxaphene 

Trichloroethylene 

Trillate 

Xylene 

2.563 

1.653* 

1.954 

2.204 

3.158 

2.477 

2.563 

1.477* 

2.000 

1.477 

1.477 

2.000 

2.079 

3.000 

4.000* 

2.000* 

1.477 

3.563 

3.342 

2.860 

2.000 

2.000* 

1.914 

0.699 

3.563 

2.863* 

2.000 

2.041 

2.547 

2.197 

1.820 

2.640 

3.184 

2.244 

2.323 

1.437 

2.409 

1.728 

1.588 

1.818 

1.970 

2.932 

3.840 

2.763 

1.836 

3.845 

3.212 

3.003 

1.758 

1.683 

2.231 

0.979 

2.912 

3.749 

1.743 

1.770 

2.694 

2.297 

1.958 

2.418 

3.115 

2.310 

2.653 

1.767 

2.029 

1.619 

1.571 

1.987 

1.949 

2.962 

3.631 

2.913 

1.747 

3.628 

3.342 

2.835 

1.669 

1.646 

2.112 

0.732 

3.151 

3.727 

2.044 

1.886 

1.670 

3.260 

5.640 

6.550* 

6.290 

7.730 

3.370 

2.720 

6.390 

2.150 

1.110 

3.980* 

2.470 

6.610 

0.120* 

4.130 

6.210 

6.190* 

6.210 

6.220 

7.390* 

6.970 

6.260 

2.270 

6.680 

2.470* 

5.010 

3.120 

2.273 

2.889 

4.301 

7.968 

4.794 

6.402 

4.254 

3.024 

6.085 

2.876 

1.815 

2.734 

2.505 

7.829 

1.128 

3.343 

6.037 

4.401 

5.934 

7.611 

6.393 

5.610 

7.149 

3.054 

5.875 

3.375 

5.593 

3.237 

1.893 

2.822 

5.141 

5.869 

5.357 

7.427 

3.860 

2.930 

6.253 

2.753 

0.846 

3.280 

2.435 

6.625 

1.893 

4.277 

6.126 

5.236 

6.214 

6.698 

7.472 

6.516 

6.207 

2.486 

6.541 

3.673 

5.834 

3.246 

0.014 

0.054 

0.016 

0.119 

0.033 

0.002* 

0.011 

0.030 

0.204* 

0.052 

0.022 

0.017 

0.006 

0.006 

0.001 

0.011 

0.404 

0.001 

0.128 

0.134* 

0.009 

0.014* 

0.340 

0.974* 

0.007* 

0.009 

1.550 

0.116 

-0.021 

-0.017 

-0.024 

0.101 

0.305 

0.108 

0.221 

-0.025 

0.298 

-0.035 

0.048 

-0.040 

-0.060 

-0.006 

-0.054 

-0.035 

0.419 

-0.027 

0.145 

0.101 

0.114 

0.129 

0.456 

0.497 

0.122 

0.039 

1.396 

0.044 

0.012 

0.008 

0.004 

0.159 

0.169 

0.040 

0.105 

0.003 

0.226 

0.002 

0.020 

0.001 

-0.004 

0.019 

0.006 

-0.003 

0.355 

0.004 

0.166 

0.110 

0.067 

0.092 

0.387 

0.374 

0.209 

0.017 

1.386 

0.063 

0.370 

0.990* 

3.470 

8.220* 

6.130 

8.010 

1.070 

0.800 

7.160 

0.520 

0.230 

1.510 

0.700 

7.580 

0.020* 

1.680 

6.160 

4.910* 

5.850 

5.950 

8.600 

7.700 

6.620* 

0.980 

8.970 

0.630* 

0.410 

0.780 

2.575 

1.701 

1.512 

7.815 

5.095 

7.734 

1.650 

1.579 

7.177 

1.011 

0.365 

1.742 

-0.007 

8.842 

-0.155 

0.334 

6.729 

2.825 

5.156 

6.723 

8.790 

5.094 

6.224 

1.982 

8.167 

2.094 

0.948 

1.432 

1.034 

1.346 

1.688 

7.506 

6.029 

8.163 

1.134 

1.299 

7.056 

0.794 

0.637 

1.789 

0.911 

7.507 

0.250 

1.435 

6.126 

0.951 

6.002 

6.173 

8.372 

7.300 

5.528 

1.054 

8.797 

0.325 

0.474 

0.856 

0.188 

0.675 

0.178* 

1.630 

0.460 

0.014* 

0.135 

0.289 

2.860* 

0.614* 

0.175 

0.201 

0.058 

0.077 

0.007 

0.109 

6.030 

0.008 

1.800 

1.880 

0.092 

0.160 

5.010* 

4.860 

0.100* 

0.113 

0.021 

1.710 

0.287 

0.275 

0.421 

1.551 

0.371 

-0.549 

1.116 

-0.222 

1.301 

0.259 

-0.082 

0.480 

0.699 

-0.845 

0.155 

0.724 

5.097 

-0.662 

2.249 

1.811 

-0.197 

1.253 

3.206 

4.050 

0.894 

0.169 

-0.227 

2.623 

0.331 

0.295 

0.335 

1.550 

0.413 

0.075 

0.191 

0.128 

1.066 

0.259 

0.166 

0.251 

0.094 

0.056 

0.085 

0.126 

5.908 

0.100 

1.833 

1.846 

0.146 

0.207 

3.530 

4.737 

0.782 

0.292 

0.114 

1.810 

In the above table "*" indicate the test set compounds 



              Table 2: Descriptors and specification of multiple linear regression models 

Dependen

t variable 
Name of descriptor Notation  

Classificatio

n 
Constant Coeff.  SE 

logT1/2   average molecular weight AMW constitutional 0.653 0.13 0.014 

 HA dependent HDCA2 ZefirovsPC HAdependen

t. 

electronic 
 

-4.56 0.710 

 number of double bonds nDB constitutional  0.32 0.061 

 3D-MoRSE-signal 18 weighted by atomic 

masses 

Mor18m geometrical  0.58 0.162 

       

Peff  

(sandy) 

R maximal autocorrelation of lag 4/weighted 

by atomic sanderson electronegativities 

R4e_A topological -3.310 17.45 5.321 

 Mean information index of atomic 

composition 

AAC topological  4.78 0.957 

 R maximal autocorrelation of lag 2/weighted 

by atomic sanderson electronegativities 

R2e_A topological  -7.15 2.277 

 Geary autocorrelation - lag 2 / weighted by 

atomic polarizabilities 

GATS2p topological  1.88 0.831 

Peff 

(clayey) 

R maximal autocorrelation of lag 4/weighted 

by atomic sanderson electronegativities 

R4e_A topological 3.370 53.12 6.523 

 3D-MoRSE-signal 29/weighted by atomic 

vander Waals volumes 

Mor29v geometrical  -12.08 2.444 

 3D-MoRSE-signal 12/ unweighted Mor12u geometrical  5.61 1.242 

 R maximal autocorrelation of lag 

2/unweighted 

R2u_A topological  -10.73 3.222 

number of multiple bonds nBM constitutional -0.100 0.06 0.012 �eff-nd  

(sandy) Qyy COMMA2 value/weighted by atomic 

Sanderson 

QYYe geometrical  0.01 0.001 

 Moran autocorrelation-lag 6/ weighted by 

atomic Sanderson electronegativities 

MATS6e topological  0.20 0.070 

 Mean information content index  Kierflexibilit

yindex 

topological  0.02 0.014 

3D-MoRSE-signal 30/ unweighted Mor30u geometrical -1.300 21.89 3.910 �eff-nd  

(clayey) Moran autocorrelation -lag 3 /weighted by 

atomic masses 

MATS3m topological  3.11 0.588 

 R maximal autocorrelation of lag 

4/unweighted 

R6u_A topological  31.07 7.946 

 structural information content (neighborhood 

symmetry of 3-order). 

SIC3 topological  4.21 1 
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After calculation of the molecular descriptors, 

descriptors that show high correlation (R> 0.90) with 

each other were identified and only one of them in each 

correlated pair was considered in developing the model 

because of these descriptors encoded similar 

information about the molecule of interest.  

Also descriptors that are constant or near-constant for 

all molecules were eliminated from pool of descriptors. 

Then, the stepwise multiple linear regression method 

was used for the selection of the most relevant 

descriptors [17]. Table 2 shows the names and classes 

of selected descriptors. These descriptors would be 

used as inputs for construction of Least-squares support 

vector machine (LS-SVM) and MLR models. 

 

2.3. Least-squares support vector machine 

 

Least-squares support vector machine (LS-SVM), 

which is a modified algorithm of SVM, has the 

capability of dealing with linear and non-linear 

multivariate calibration and resolving these problems 

in a relatively rapid way. This novel type of machine 

learning method was developed by Suykens et al. [18] 

with the implementation of a least squares version for 

support vector machine.  

The details of LS-SVM algorithm could be found in the 

references of [19-21]. In principle, LS-SVM always fits 

a linear relation between the regressors (x) and the 

dependent variable (y) follows: 

 

 

 

 y=
�

=

N

i

i

1

α T

ix
x + b                                      (3) 

 

and  

 

 iα = 2�ei                                                      (4) 

 

 In the above equations, 
iα  is the Lagrange multipliers 

called support value, b is the bias term and � (gam) is 

the relative weight of the error term, which would be 

optimized by the user. By introducing the kernel 

function, following nonlinear regression function is 

achieved. 

y= 
�

=

N

i

i

1

α

K (xi, x) + b                                   (5)   

 

where K(xi, x) is the kernel function. The most general 

kernel function is radial basis function (RBF):  

   

K (xi, x) = exp (-|| xi- xj||
2 /2 σ

2)                     (6) 

 

where σ
2 is the width of the RBF function. 

Generalization capability of SVM depends on the 

proper selection of its parameters. After training, the 

machine is used to predict or estimate target values for 

objects where these values are unknown. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The results of diversity test 
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3. Results and discussion 

3.1. Diversity analysis  

 

Rational division of the experimental data set into 

training and test sets are an important part in the 

development and validation of reliable QSAR model.  

In this study, diversity analysis was performed to make 

sure that the structures of the training and test cases can 

represent those of the whole ones. In this way, the 

mean distances of one sample to the remaining ones 

( id ) were computed from descriptor space matrix as 

follows: 

   1

1

n

ij
j

i

d

d
n

=

�

=
−

      i= 1, 2… n                            (7) 

where dij is a distance score for two different 

compounds, that can be measured by the Euclidean 

distance norm based on the compound’s descriptors 

(Xik and Xjk): 

 

dij= ( )
2

1

m

ik jk
k

x x
=

−�                                    (8) 

 

Then the mean distances were normalized within the 

interval of zero to one and the result values were 

plotted against experimental parameters (Fig. 1). As 

can be seen from this figure, the structures of the 

compounds are diverse in all sets and the training set 

with a broad representation of the chemistry space was 

adequate to ensure the model’s stability and the 

diversity of test set can prove the predictive capability 

of the model. 

 

3.2. Model development 

 

The method of stepwise multi-linear regression was 

used to select the most relevant descriptors. The results 

of calculation of correlation matrix for selected 

descriptors of each parameter showed that there is no 

high correlation among the selected descriptors. Then 

the MLR technique was used to build linear QSAR 

models to predict the effective Péclet numbers and 

effective nondimentional degradation rate constants of 

some VOCs in sandy and clayey soil and also to 

predict their half-life values. Table 2 shows the 

specification of these MLR models. For modeling of 

each parameter, the MLR technique was performed on 

the molecules of the training set by SPSS (V.13) and 

the best model was applied on the molecules of the test 

set to evaluate the prediction power of developed 

models. 

 The calculated values of these parameters by MLR 

models were shown in Table 1. 

Since the bioenvironmental activities of VOCs is very 

complex phenomena that influenced by many 

environmental and structural parameters, therefore it 

was necessary to develop some non-linear models to 

investigate any non-linear relation between dependent 

variables and molecular descriptors. 

Due to some advantage of LS-SVM over ANN 

technique (such as the absence of overtraining and 

ability to work on small data set) it was decided to use 

LS-SVM technique with RBF kernel function as a non-

linear feature mapping method. In the model 

development by using LS-SVM technique, the values 

of � and �2 parameters were a manageable task as a 

two-dimensional problem. To find out the optimal 
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values of � and �2, a search was performed based on 

cross validated root mean square error (RMSECV) of 

the original training set for all combinations of � and �2 

from 1 to 80, with increment steps of 1.  

A robust model is achieved by selecting parameters 

that give the lowest RMSE. The obtained response 

graph of RMSECV of effective nondimentional 

degradation rate constants in clayey soil as a function 

of � and �2 is presented in Fig. 2. The same graph for 

other parameters was achieved in the same way. By 

inspection to these graphs, optimal values of � and �2 

are collected in Table 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Response graph of LS-SVM model of �eff-nd (clayey) 

 

 

Table 3: Optimal values of � and �2 for LS-SVM models 

 

Dependent variable �  �2 

logT1/2 80 20 

Peff (sandy) 80 19 

Peff (clayey) 30 2 

�eff-nd (sandy) 15 50 

�eff-nd (clayey) 75 10 
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The developed models were evaluated by test sets. The 

calculated values of logT1/2, Peff and �eff-nd in sandy 

 and clayey soil of VOCs by LS-SVM models are 

shown in Table 1. Leave one out cross validation test 

on developed LS-SVM models showed that these 

models are more stable and reliable than MLR models.  

The cross validated correlation coefficient ( 2
cvR ), 

standardized predicted error sum of squares (SPRESS) 

and other statistical parameters for the MLR and LS-

SVM models are shown in Table 4.  

The residual of LS-SVM models calculated values of 

each parameter are plotted against their experimental 

values in Fig. 3. The propagation of residuals on both 

sides of zero line shows that no systematic error exists 

in the developed models. As can be seen in Table 2 

sixteen descriptors appear in QSAR models of Peff and 

�eff-nd in sandy and clayey soils, which eleven of them 

are topological and four of them are geometrical. 

Inspection to these descriptors revealed the effect of 

atomic connectivity and three-dimension structure of 

VOCs on their bioenvironmental parameters. Four 

descriptors appear in QSAR model of logT1/2. Among 

of these descriptors average molecular weight (AMW) 

and number of double bonds (nDB) are constitutional. 

AMW depends on number and type of atoms. nDB 

encodes the information about number of attack sites 

for electrophilic compounds. HA dependent HDCA2 

ZefirovsPC describes the potency of molecules in 

formation of hydrogen bonds. Mor18m represent 3D-

structure of molecules based on electron diffraction. 

Among of these descriptors AMW and Mor18m 

represent size and topology of molecules and nDB and 

HA dependent HDCA2 ZefirovsPC encode the effect 

of electronic aspect on molecular degradability of 

chemicals.  

 

 

Table 4: Statistical parameters obtained using MLR and LS-SVM  

 MLR LS-SVM 

training set test set   training set test set   Dependent 

variable R RMSE R RMSE 
2
cvR

 
SPRESS R RMSE R RMSE 

2
cvR

 
SPRESS 

logT1/2 0.92 0.28 0.87 0.48 0.63 0.50 0.97 0.16 0.80 0.62 0.65 0.35 

Peff (sandy) 0.90 0.89 0.87 1.40 0.69 1.07 0.98 0.39 0.94 1.03 0.87 0.75 

Peff 

(clayey) 
0.94 1.18 0.94 1.10 0.75 1.20 0.99 0.46 0.89 1.7 0.82 0.72 

�eff-nd 

(sandy) 
0.95 0.09 0.94 0.13 0.57 0.13 0.99 0.05 0.85 0.26 0.73 0.14 

�eff-nd 

(clayey) 
0.93 0.65 0.92 0.84 0.60 0.79 0.99 0.12 0.93 1.00 0.70 0.52 
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� Figure 3:  Plots of residuals versus their experimental factor
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Estimation of the relative importance of each descriptor 

in the LS-SVM models is important for chemical 

interpretation. In this study, sensitivity analysis was 

used for this purpose. This method is performed based 

on the sequential setting to zero of each descriptor.  

For each zeroed descriptor, root mean square error 

(RMSEi) was calculated. Generally RMSEi value 

increases in this way. Then, the differences between 

RMSEi and RMSE of established LS-SVM was 

calculated and shown as DRMSE. Each descriptor 

which causes greater value of DRMSE is more 

important. Results of the sensitivity analysis showed 

that the order of importance of descriptors in LS-SVM 

models for each interested bioenvironmental parameter 

are; AMW> HAdependentHDCA2ZefirovsPC> nDB> 

Mor18m for logT1/2, AAC> R4e_A> R2e_A> GATS2p 

for Peff (sandy soil), Mor29v> R2u_A> Mor12u> 

R4e_A for Peff (clayey soil), QYYe> MATS6e> 

Kierflexibilityindex and nBM for �eff-nd (sandy soil) and 

Mor30u> MATS3m> R6u_A> SIC3 for �eff-nd (clayey). 

 

4. Conclusion 

 

The results of this study revealed that it was possible to 

predict the half-life, nondimentional effective 

degradation rate constants and effective Péclet numbers 

in two type of soil for volatile organic compounds from 

their structural features. Descriptors that were appeared 

in these models were topological and electronic types, 

which revealed the role of electronic and steric 

interactions in environmental fats of chemicals.  

ntial of its oxidation reaction. 
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