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Abstract. The main purpose of this paper is to establish some
new results on the superstability and stability via a fixed point
approach for the Pexiderized exponential equation, i.e.,

∥f(x+ y)− g(x)h(y)∥ ≤ ψ(x, y),

where f , g and h are three functions from an arbitrary commuta-
tive semigroup S to an arbitrary unitary complex Banach algebra
and also ψ : S2 → [0,∞) is a function. Furthermore, in connection
with the open problem of Th. M. Rassias and our results we gen-
eralized the theorem of Baker, Lawrence, Zorzitto and theorem of
L. Székelyhidi.
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1. Introduction

In 1940 S. M. Ulam [36] gave a wide ranging talk before the Mathematics
club of the University of Wisconsin in which he discussed a number of
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important unsolved problems. Among those was the question concern-
ing the stability of group homomorphisms:
Let G1 be a group and let G2 be a metric group with the metric d(.,.).
Given ϵ > 0, does there exist a δ > 0 such that if a function f : G1 → G2

satisfies the inequality d(f(xy), f(x)f(y)) < δ for all x, y ∈ G1, then
there exists a homomorphism h : G1 → G2 with d(f(x), h(x)) < ϵ for all
x ∈ G?
Generally, the concept of stability for a functional equation comes up
when our the functional equation is replaced by an inequality which acts
as a perturbation of that equation. The case of approximately additive
functions was solved by D. H. Hyers [14] under the assumption that G1

and G2 are Banach spaces. In 1950, Hyers’s Theorem was generalized
by T. Aoki [2] for additive mappings and independently, in 1978, by Th.
M. Rassias [31] for linear mappings considering the Cauchy difference
controlled by sum of powers of norms. On the other hand, J. M. Rassias
[24, 26, 27] considered the Cauchy difference controlled by a product of
different powers of norm. However, there was a singular case; for this
singularity a counterexample was given by P. Gavruta [13]. This stabil-
ity is called Ulam-Gavruta -Rassias stability (see also [1, 8, 33, 20, 21]).
In addition, J. M. Rassias considered the mixed product-sum of powers
of norms as the control function. This stability is called J.M.Rassias
stability (see also [15, 16, 23, 28]).
The exponential function is a powerful tool in each field of natural sci-
ences and engineering, because many natural phenomena well known to
us can be described best of all by means of it. The exponent law of
exponential functions is well represented by the exponential functional
equation

f(x+ y) = f(x)f(y).

Hence, we call every solution function of the exponential functional equa-
tion an exponential function. A function f : R → R continuous at a
point is an exponential function if and only if f(x) = ax for all x ∈ R or
f(x) = 0 for all x ∈ R, where a > 0 is a constant. (see also [6])
In 1979, another type of stability was observed by J. Baker, J. Lawrence
and F. Zorzitto [6]. Indeed, they proved that if a function is approx-
imately exponential, then it is either a true exponential function or
bounded. This result was the first result concerning the superstabil-
ity phenomenon of functional equations. Later, J. Baker [5] generalized
this famous result as follows:
Let (S,+) be an arbitrary semigroup, and let f map S into the field C
of all complex numbers. Assume that f is an approximately exponential
function, i.e., there exists a nonnegative number ε such that

∥f(x+ y)− f(x)f(y)∥ ≤ ε for x, y ∈ S.
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Then f is either bounded or exponential (see Baker [5], Baker, Lawrence
and Zorzitto [6], and Kuczma [19]). Such a phenomenon is called the
superstability of the exponential equation(see also [3, 7, 10] ). In the
proof of the preceding theorem, the multiplicative property of the norm
was crucial. Indeed, the proof above works also for functions f : S → A,
where A is a normed algebra in which the norm is multiplicative, i.e.,
∥xy∥ = ∥x∥∥y∥ for all x, y ∈ S. Examples of such real normed algebras
are the quaternions and the Cayley numbers. In the same paper Baker
gives the following example to show that this result fails if the algebra
does not have the multiplicative norm property. Let ϵ > 0, choose δ > 0
so that |δ − δ2| = ϵ and let f : C → C ⊕ C be defined as

f(λ) = (eλ, δ), λ ∈ C.

Then, with the nonmultiplicative norm given by ∥(λ, µ)∥ = max{|λ|, |µ|},
we have ∥f(λ + µ) − f(λ)f(µ)∥ = ϵ for all complex λ and µ, f is un-
bounded, but it is not true that f(λ + µ) = f(λ)f(µ) for all complex
λ and µ. In this paper, as a consequence of our results, we establish
this result positively but in a unitary complex Banach algebra. Also we
present this result for the Pexiderized exponential equation.
The result of Baker, Lawrence and Zorzitto [6] was generalized by L.
Székelyhidi [34] in another way and he obtained the following result.

Theorem 1.1. [34] Let (G, .) be an Abelian group with identity and let
f,m : G → C be functions such that there exist functions M1,M2 :→
[0,∞) with

∥f(x.y)− f(x)m(y)∥ ≤ min{M1(x),M2(y)}
for all x, y ∈ G. Then either f is bounded or m is an exponential and
f(x) = f(1)g(x) for all x ∈ G.

During the thirty-first International Symposium on Functional Equa-
tions, Th. M. Rassias [29] introduced the term mixed stability of the
function f : E → R (or C), where E is a Banach space, with respect
to two operations addition and multiplication among any two elements
of the set {x, y, f(x), f(y)}. Especially, he raised an open problem con-
cerning the behavior of solutions of the inequality

∥f(x.y)− f(x)f(y)∥ ≤ θ(∥x∥p + ∥y∥p).
In connection with this open problem, we generalized the theorem of
Baker, Lawrence and Zorzitto and theorem of L. Székelyhidi; more pre-
cisely, we proved the superstability and stability of the exponential func-
tional equation and its Pexiderized when the Cauchy difference of expo-
nential equation is not bounded.
In the following section, first we consider the superstability and stabil-
ity for the equations of the form f(x + y) = g(x)f(y), in which f is a
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function from a commutative semigroup to an complex Banach space
and g is function from a commutative to complex field and next we
consider the superstability and stability for the equations of the forms
f(x+ y) = g(x)f(y) and f(x+ y) = g(x)h(x) when f, g and h are three
functions from a commutative semigroup to an unitary complex Banach
algebra.
For the readers convenience and explicit later use, we will recall a fun-
damental results in fixed point theory.

Definition 1.2. The pair (X, d) is called a generalized complete metric
space if X is a nonempty set and d : X2 → [0,∞] satisfies the following
conditions:

(1) d(x, y) ≥ 0 and the equality holds if and only if x = y;
(2) d(x, y) = d(y, x);
(3) d(x, z) ≤ d(x, y) + d(y, z);
(4) every d-Cauchy sequence in X is d-convergent.

for all x, y ∈ X.

Note that the distance between two points in a generalized metric
space is permitted to be infinity.

Theorem 1.3. [11] Let (X, d) be a generalized complete metric space
and J : X → X be strictly contractive mapping with the Lipschitz con-
stant L. Then for each given element x ∈ X, either

d(Jn(x), Jn+1(x)) = ∞

for all nonnegative integers n or there exists a positive integer n0 such
that

(1) d(Jn(x), Jn+1(x)) <∞, for all n ≥ n0;
(2) the sequence {Jn(x)} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X :

d(Jn0(x), y) <∞};
(4) d(y, y∗) ≤ 1

1−Ld(J(y), y).

2. Main result

Throughout this Section, assume that (S,+) is an arbitrary commu-
tative semigroup, E is a complex Banach space and X is a complex
Banach algebra with unit 1X , for every A ⊆ X we denote the set of
unitary elements in A with U(A) and also ψ : S2 → [0,∞) is a function.
In the following Theorem, we consider the superstability of the a Pexider
type of exponential equation

f(x+ y) = g(x)f(y),
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in which f is a function from a commutative semigroup to an complex
Banach space and g is function from a commutative to complex field.

Definition 2.1. Let f : S → C be a function, then we define the set
Nf with

Nf = {a ∈ S : f(α) ∈ F\{0, 1} and |f(α)| > 1}.

Definition 2.2. Let f : S → X be a function, then we define the set
Mf with

Mf = {a ∈ G : f(a) ∈ C\{0, 1} × {1X}},
and also we introduce the function Scf : Mf → C, where f(a) =
Scf(a)× 1X for all a ∈Mf . Also we consider the set

M̃f = {a ∈Mf : |Scf(a)| > 1}.

Theorem 2.3. Suppose that f : S → E, g : S → C are two functions
and satisfies the inequality

∥f(x+ y)− g(x)f(y)∥ ≤ ψ(x, y) (2.1)

for all x, y ∈ S. If Ng ̸= Ø and ψ(x, y + a) ≤ ψ(x, y) for all x, y ∈ S
and a ∈ Ng, then there is a unique function T : S → E, where

T (x+ y) = g(x)T (y),

(g(x+ y)− g(x)g(y))T (z) = 0

and

∥f(y)− T (y)∥ ≤ inf
a∈Ng

ψ(a, y)

|g(a)| − 1

for all x, y, z ∈ S.

Proof. Let a ∈ Ng be fixed and Letting x = a in (2.1), we get

∥f(a+ y)− g(a)f(y)∥ ≤ ψ(a, y) (2.2)

for all y ∈ S. Let us consider the set A := {g : S → E} and introduce
the generalized metric on A:

d(g, h) = sup
y∈S

∥g(y)− h(y)∥
ψ(a, y)

.

It is easy to show that (A, d) is complete metric space. Now we define
the function Ja : A→ A with

Ja(h(y)) =
1

g(a)
h(y + a)
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for all h ∈ A and y ∈ S. So

d(Ja(u), Ja(h)) = sup
y∈S

∥u(y + a)− h(y + a)∥
|g(a)|ψ(a, y)

≤ sup
y∈S

∥u(y + a)− h(y + a)∥
|g(a)|ψ(a, y + a)

=
1

|g(a)|
d(u, h)

for all u, h ∈ A, that is J is a strictly contractive selfmapping of A, with
the Lipschitz constant L = 1

|g(a)| . From (2.2), we get

∥f(y + a)

g(a)
− f(y)∥ ≤ ψ(a, y)

|g(a)|

for all y ∈ S, which says that d(J(f), f) ≤ L < ∞. By Theorem (1.3),
there exists a mapping Ta : S → E such that

(1) Ta is a fixed point of J , i.e.,

Ta(y + a) = g(a)Ta (2.3)

for all y ∈ S. The mapping Ta is a unique fixed point of J in
the set Ã = {h ∈ A : d(f, h) <∞}.

(2) d(Jn(f), Ta) → 0 as n→ ∞. This implies that

Ta(y) = lim
n→∞

f(y + na)

g(a)n

for all x ∈ S.
(3) d(f, Ta) ≤ 1

1−Ld(J(f), f), which implies,

d(f, Ta) ≤
1

|g(a)| − 1
.

From (2.2), its easy to show that following inequality

∥f(y + na)− g(a)nf(y)∥ ≤
n−1∑
i=0

ψ(a, y + ia)|g(a)|n−1−i (2.4)

for all y ∈ S and n ∈ N. Now since ψ(a, y + a) ≤ ψ(a, y) for all y ∈ S,
so

ψ(a, y +ma) ≤ ψ(a, y)

for all x ∈ S and m ∈ N, thus from (2.4), we obtain

∥f(y + na)− g(a)nf(y)∥ ≤ ψ(a, y)
|g(a)|n − 1

|g(a)| − 1
(2.5)
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for all y ∈ S. With this inequality (2.5), we prove that Ta = Tb for each
a, b ∈ Ng. We have from inequality (2.5)

∥f(y + na)− g(a)nf(y)∥ ≤ ψ(a, y)
|g(a)|n − 1

|g(a)| − 1
(2.6)

∥f(y + nb)− g(b)nf(y)∥ ≤ ψ(b, y)
|g(b)|n − 1

|g(b)| − 1
(2.7)

for all y ∈ S. On the replacing y by y + nb in (2.6) and y by y + na in
(2.7)

∥f(y + n(a+ b))− g(a)nf(y + nb)∥ ≤ ψ(a, y)
|g(a)|n − 1

|g(a)| − 1

∥f(y + n(a+ b))− g(b)nf(y + na)∥ ≤ ψ(b, y)
|g(b)|n − 1

|g(b)| − 1
.

Thus,

∥g(a)nf(y+nb)−g(b)nf(y+na)∥ ≤ ψ(a, y)
|g(a)|n − 1

|g(a)| − 1
+ψ(b, y)

|g(b)|n − 1

|g(b)| − 1

and dividing by |g(a)ng(b)n|

∥f(y + na)

g(a)n
− f(y + nb)

g(b)n
∥ ≤

ψ(a, y)

(|g(b)| − 1)|g(a)|n
(1− 1

|g(b)|n
) +

ψ(b, y)

(|g(a)| − 1)|g(b)|n
(1− 1

|g(b)|n
)

and letting n to infinity, we obtain Ta(y) = Tb(y) for all y ∈ S. Therefore,
there a unique function T such that T = Ta for every a ∈ Ng and

∥f(y)− T (y)∥ ≤ ψ(a, y)

|g(a)| − 1

for all y ∈ S and a ∈ Ng. Since a ∈ Ng is a arbitrary element, so

∥f(y)− T (y)∥ ≤ inf
a∈Ng

ψ(a, y)

|g(a)| − 1

for all y ∈ S.
Let x, y ∈ S and a ∈ Ng be three arbitrary fixed elements, from (2.1)

∥f(x+ y + na)− g(x)f(y + na)∥ ≤ ψ(x, y + na)

and dividing by |g(a)|n,

∥f(x+ y + na)

g(a)n
− g(y)

f(x+ na)

g(a)n
∥ ≤ ψ(x, y + na)

|g(a)|n
≤ ψ(x, y)

|g(a)|n

and letting n to infinity, we get T (x+ y) = g(x)T (y).
Let x, y, z ∈ S be arbitrary elements, then

T (x+ y + z) = g(x+ y)T (z)
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and

T (x+ y + z) = g(x)T (y + z) = g(x)g(y)T (z)

or

(g(x+ y)− g(x)g(y))T (z) = 0

for all x, y, z ∈ S. The proof is complete.
In connection with the open problem of Th. M. Rassias and and Theo-
rem (2.3), in the following we prove Baker’s theorem [5] when the Cauchy
difference of exponential equation is not bounded and also we prove a
generalized version of L. Székelyhidi’s theorem.

Corollary 2.4. Let f : S → C satisfying

∥f(x+ y)− f(x)f(y)∥ ≤ ψ(x, y)

for all x, y ∈ S. If ψ(x, y + a) ≤ ψ(x, y) for all x, y ∈ S and a ∈ Nf ,
then f is either bounded or is exponential.

Proof. In Theorem (2.3), if we put E = C and g(x) = f(x), then we
will had

∥f(y)− T (y)∥ ≤ infa∈Ng

ψ(a,y)
|f(a)|−1 and (f(x+ y)− f(x)f(y))T (z) = 0

for all x, y, z ∈ S. If f is a unbounded function, then f = T and f is
exponential.

Corollary 2.5. Let f, g : S → C, S be with identity, f be a nonzero
function and

∥f(x+ y)− g(x)f(y)∥ ≤ ψ(x, y)

for all x, y ∈ S, where ψ(x, y+ a) ≤ ψ(x, y) for all x, y ∈ S and a ∈ Ng,
then g is either bounded or g is exponential and f(x) = g(x)f(0) for all
x ∈ G.

Proof. With Theorem (2.3), if g us a unbounded function, then
f = T , which implies f(x) = g(x)f(0) for all x ∈ S and since

(g(x+ y)− g(x)g(y))T (z) = 0

for any x, y, z ∈ S and f(= T ) is a nonzero function, so g is exponential.
In [5], Baker presented an example to show that

∥f(x+ y)− f(x)f(y)∥ ≤ ε for x, y ∈ S

implies that f is either bounded or exponential fails if the algebra does
not have the multiplicative norm property. Here, we establish this result
positively but in a unitary complex Banach algebra.

Theorem 2.6. Suppose that f, g : S → X satisfying

∥f(x+ y)− g(x)f(y)∥ ≤ ψ(x, y) (2.8)
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for all x, y ∈ S. If M̃g ̸= Ø and ψ(x, y + a) ≤ ψ(x, y) for all x, y ∈ S

and a ∈ M̃g, then there exists a exactly one function T : S → X such
that

T (x+ y) = g(x)f(y)

(g(x+ y)− g(x)g(y))T (z) = 0

and satisfies

∥f(y)− T (y)∥ ≤ inf
a∈M̃g

[
ψ(a, y)

|Scg(a)| − 1
]

for all x, y, z ∈ S.

Proof. Let a ∈ M̃g be a arbitrary fixed element, so g(a) = Scg(a)×
1X , in which Scg : Mg → C (by Definition 2.2), and from 2.8, we see
that

∥f(a+ y)− g(a)f(y)∥ = ∥f(a+ y)− Scg(a)(1Xf(y))∥
= ∥f(a+ y)− Scg(a)f(y)∥ ≤ ψ(a, y)

thus, ∥f(y + a) − Scg(a)f(y)∥ ≤ ψ(a, y) for all y ∈ S. Now since

NScg = M̃g, so from Theorem (2.3), there is a unique function T : S → X
such that

T (x+ y) = Scg(x)T (y)

[Scg(x+ y)− Scg(x)Scg(y)]T (z) = 0

and satisfying

∥f(y)− T (y)∥ ≤ inf
a∈M̃g

[
ψ(a, y)

|Scg(a)| − 1
]

for all x, y, z ∈ S. From inequality (2.8), we have

∥f(x+ y + na)− g(x)f(y + na)∥ ≤ ψ(x, y + na),

then on the dividing by |Scg(a)|n we see that

∥f(x+ y + na)

Scg(a)n
− g(x)

f(y + na)

Scg(a)n
∥ ≤ ψ(x, y + na)

|Scg(a)|n
≤ ψ(x, y)

|Scg(a)|n

hence, T (x + y) = g(x)T (y) for all x, y ∈ S. Now let x, y, z ∈ S be
arbitrary elements, then

T (x+ y + z) = g(x+ y)T (z)

and
T (x+ y + z) = g(x)T (y + z) = g(x)g(y)T (z)

so,
(g(x+ y)− g(x)g(y))T (z) = 0

for all x, y, z ∈ S. The proof is complete.
In the following, we generalize the well-known Baker’s superstability
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and stability result for exponential mappings with values in the field of
complex numbers to the case of an arbitrary unitary complex Banach
algebra.

Corollary 2.7. Let f : S → X satisfying

∥f(x+ y)− f(x)f(y)∥ ≤ ψ(x, y)

for all x, y ∈ S. If Scf(M̃f ) is unbounded and ψ(x, y + a) ≤ ψ(x, y) for

all x, y ∈ S and a ∈ M̃f , then f is exponential.

Proof. In Theorem (2.6), if we put g(x) = f(x), then we will had

∥f(x)− T (x)∥ ≤ inf
a∈M̃f

[ ψ(a,y)
|Scf(a)|−1 ] and (f(x+ y)− f(x)f(y))T (z) = 0

for all x, y, z ∈ S. Now since Scf is unbounded, then we have f = T ,
which says that f is exponential and the proof is complete.

Corollary 2.8. Let f, g : S → X be three functions, S be with identity
and f(0) ̸= 1X and also

∥f(x+ y)− g(x)f(y)∥ ≤ ψ(x, y)

for all x, y ∈ S, where ψ(x, y+ a) ≤ ψ(x, y) for all x, y ∈ S and a ∈ Ng,
then Scg is either bounded or g(x+ y) = g(y)g(x) and f(x) = f(0)g(x)
for all x ∈ S.

Proof. With Theorem (2.6).
In the following Theorem, we consider the superstability of the a Pex-
iderized of exponential equation

f(x+ y) = g(x)f(y),

in which f, g and h are three functions from a commutative semigroup
to to an unitary an complex Banach algebra.

Theorem 2.9. Let f, g, h : S → X be three functions and g(x0) = 1X
for a fixed x0 ∈ S and also

∥f(x+ y)− g(x)h(y)∥ ≤ ψ(x, y) (2.9)

for all x, y ∈ S. If M̃g ̸= Ø and ψ(x, y + a) ≤ ψ(x, y) for all x, y ∈ S

and a ∈ M̃g, then there exists a exactly one function T : S → X such
that

T (x+ y) = g(x)T (y),

(g(x+ y)− g(x)g(y))T (z) = 0

and satisfies

∥f(y)− T (y)∥ ≤ inf
a∈M̃g

ψ̃(a, y)

|Scg(a)| − 1
,
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∥h(y)− T (y)∥ ≤ inf
a∈M̃g

ψ̂(a, y)

|Scg(a)| − 1

for all x, y, z ∈ S, in which ψ̃(x, y) = ψ(x, y) + ∥g(x)∥ψ(x0, y) and

ψ̂(x, y) = ψ(x, y) + ψ(x0, x+ y) for x, y ∈ S.

Proof. Applying (2.9) we get for all x, y ∈ S

∥f(x+ y)− g(x)f(y)∥ ≤ ∥f(x+ y)− g(x)h(y)∥+ ∥g(x)f(y)− g(x)h(y)∥
≤ ψ(x, y) + ∥g(x)∥ψ(x0, y)

and

∥h(x+ y)− g(x)h(y)∥ ≤ ∥h(x+ y)− f(x+ y)∥+ ∥f(x+ y)− g(x)h(y)∥
≤ ψ(x, y) + |g(x0)|ψ(x0, x+ y)

We set ψ̃(x, y) = ψ(x, y) + ∥g(x)∥ψ(x0, y) and ψ̂(x, y) = ψ(x, y) +
ψ(x0, x+ y) for x, y ∈ S and these are obvious that

ψ̃(x, y + 1) ≤ ψ̃(x, y)

and

ψ̂(x, y + 1) ≤ ψ̂(x, y)

for x, y ∈ S. Therefore by Theorem (2.6), then there exists a exactly
one function H : S → X such that

H(x+ y) = g(x)H(y)

(g(x+ y)− g(x)g(y))H(z) = 0

and satisfies

∥f(y)−H(y)∥ ≤ inf
a∈M̃g

ψ̃(a, y)

|Scg(a)| − 1

for all x, y, z ∈ S, where H(x) = limn→∞
f(x+na)
Scg(a)n for all x ∈ S and

any fixed a ∈ M̃g. And also then there exists a exactly one function
F : S → X such that

F (x+ y) = g(x)F (y)

(g(x+ y)− g(x)g(y))F (z) = 0

and satisfies

∥h(y)− F (y)∥ ≤ inf
a∈M̃g

ψ̂(a, y)

|Scg(a)| − 1
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for all x, y, z ∈ S, where F (x) = limn→∞
h(x+na)
Scg(a)n for all x ∈ S and any

fixed a ∈ M̃g. Furthermore, we have

∥f(x+ na)

Scg(a)n
− h(x+ na)

Scg(a)n
∥ = |Scg(a)|−n∥f(x+ na)− h(x+ na)∥(2.10)

≤ |g(x0)|ψ(x0, x+ na)

Scg(a)n
≤ ψ(x0, x)

Scg(a)n
(2.11)

for all x ∈ S and any fixed a ∈ M̃g. Hence, H = F for all x, y ∈ S and
there exists a exactly one function T : S → X such that

T (x+ y) = g(x)T (y),

(g(x+ y)− g(x)g(y))T (z) = 0

and satisfies

∥f(y)− T (y)∥ ≤ inf
a∈M̃g

ψ̃(a, y)

|Scg(a)| − 1
,

∥h(y)− T (y)∥ ≤ inf
a∈M̃g

ψ̂(a, y)

|Scg(a)| − 1

for all x, y, z ∈ S.
As a consequence of Theorem (2.9), we have the following results.

Corollary 2.10. Let f, g, h : S → X be three functions, S be with
identity and g(0) = 1X and also

∥f(x+ y)− g(x)h(y)∥ ≤ ψ(x, y)

for all x, y ∈ S. If ψ(x, y+a) ≤ ψ(x, y) for all x, y ∈ S and a ∈ M̃g, then
Scg is either bounded or h = f , f(x) = f(0)g(x) and g is exponential.
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