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ABSTRACT. In this paper, we consider invariant (a,3)- metrics
which are induced by invariant Riemannian metrics and invariant
vector fields on homogeneous spaces. We first study geodesic vec-
tors and investigates the set of all homogeneous geodesics of (a, §)-
metrics. Then we study the geometry of simply connected two-step
nilpotent Lie groups of dimension five equipped with a left invari-
ant (a, 8)- metrics and we examine Lie algebras with 1-dimensional
center, 2-dimensional center and 3-dimensional center.
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1. INTRODUCTION

Finsler geometry is just the Riemannian geometry without the qua-
dratic restriction. Finsler generalized Riemann’s theory in his doctoral
thesis, but his name was established in differential geometry by Cartan

[2].

In 1972, Matsumoto had introduced the concept of («, 3)-metric in
Finsler geometry [10]. A Finsler metric of the form
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F= 04(25(5), s = E?

where a = /a;j(z)y’y/ induced by a Riemannian metric @ = a;;dz'®@dz’
on a connected smooth n-manifold M and 3 = b;(x)y’ is a 1-form on M,
is called an («, 3)-metric. (a, B)-metrics are the generalizations of the
Randers metric, introduced by G. Randers [13]. There are various ap-
plications of («, #)-metrics in information geometry, physics and biology.

The concept of geodesics is a very important subjects in geometry. In-
deed, geodesics are the generalization of a straight line in an Euclidean
space. Geodesic can be viewed as a curve that minimizes the distance be-
tween two points on the manifold. A geodesic in a homogeneous Finsler
space (G/H, F) is called homogeneous geodesic if it is an orbit of a one-
parameter subgroup of G.

In [7], Latifi has extended the concept of homogeneous geodesics in
homogeneous Finsler spaces and he has given a criterion for the charac-
terization of geodesic vectors. In [§], Latifi and Razavi study homoge-
neous geodesics in a three-dimensional connected Lie group with a left
invariant Randers metric.

A connected Riemannian manifold (M, g) is said to be homogeneous
if a connected group of isometries G acts transitively on it. Then M can
be viewed as a coset space G/H with a G -invariant metrics, where H is
the isotropy subgroup at a fixed point o of M. A geodesic y(t) through
the origin o = eH is called a homogeneous geodesic if it is an orbit of a
one-parameter subgroup of G. Indeed,

7(t) = exp(tZ)(o),

where Z is a non-zero vector in the Lie algebra g of G.

Homogeneous geodesic in a Lie group were studied by V. V. Kajzer
in [5] where he proved that a Lie group G with a left-invariant metric
has at least one homogeneous geodesic through the identity.

A connected Riemannian manifold which admits a transitive nilpotent
Lie group G of isometries is called a nilmanifold [3]. E. Wilson showed
that for a given homogeneous nilmanifold M, there exists a unique nilpo-
tent Lie subgroup N of I(M) acting simply transitively on M, and N
is normal in I(M) [14]. J. Lauret classified, up to isometry, all ho-
mogeneous nilmanifolds of dimension 3 and 4 (not necessarily two-step
nilpotent) and computed the corresponding isometry groups. He also
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studied, as example, the structure of specific five-dimensional two-step
nilmanifolds with two-dimensional center [9].

The Lie algebra g is called two-step nilpotent Lie algebra if [z, [y, 2]] =
0 for any z,y,z € g. A Lie group G is said to be two-step nilpotent if
its Lie algebra g is two-step nilpotent. Two-step nilpotent Lie groups
endowed with a left-invariant metric, often called two-step homogeneous
nilmanifolds are studied in the last years [11], 12].

In this paper, we study the existence of invariant vector fields on ho-
mogeneous Finsler spaces with («, 5)- metrics. Also, we study the geom-
etry of simply connected two-step nilpotent Lie groups of dimension five
endowed with left invariant (o, 8)- metrics. We consider homogeneous
geodesics in an invariant (o, 8)- metrics on simply connected two-step
nilpotent Lie groups of dimensional five.

2. PRELIMINARIES

In this section, we recall briefly some known facts about Finsler spaces.
For details, see [1].

Definition 2.1. Let M be a n- dimensional C'*° manifold and TM =
UzemT»M be its tangent bundle. A Finsler metric on a manifold M is
a non-negative function F' : TM — R with the following properties:

(1) F is smooth on the slit tangent bundle TM° := TM \ {0}.

(2) F(z,\y) = A\F(x,y) for any z € M,y € T, M and A > 0.

(3) The n x n Hessian matrix

1 [ 0% F? }
2 Loytoyd
is positive definite at every point (x,y) € TMP°.

[gz‘j] =

The following bilinear symmetric form g, : T, M x T,M — R is
positive definite
(1, 0) 1 02
U, v) = =
Y= 5 950t
We recall that, by the homogeneity of F' we have

F%(z,y 4 su + tv)] s—i—o-

9y (u,v) = gij(z,y)uv?!,  F=/gij(z,y)y'yl.

Definition 2.2. Let o = /a;; (z) y'y/ be a norm induced by a Rie-
mannian metric @ and 3 (x,y) = b;(z)y’ be a 1-form on an n- dimen-
sional manifold M. Suppose

b= [1B@)la = /% (@)bi(x)b;(x),
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and let the function F' is defined as follows

F:=ap(s), s= o (2.1)

where ¢ = @(s) is a positive C* function on (—bg, by) satisfying
p(s) — s (s)+ (b* —s*) " (s) >0, |s| < b<by.

Then F is a Finsler metric if ||3(z)||o < bo for any x € M. A Finsler
metric in the form [2.1]is called an («, /3)- metric.

The Riemannian metric @ induces an inner product on any cotangent
space Ty M such that

(dz'(x),dx’ (z)) = @ (z).

The induced inner product on 7 M induced a linear isomorphism be-
tween T M and T, M. Then the 1-form 8 corresponds to a vector field

X on M such that
i (v X (@) = Bxy).
Also, we have
1B@) 0 = 1 X (2)]la-

Therefore we can write (a, 3)- metrics as follows:

Fo.y)=aley)e (W) , (2.2)

where for any xr € M,

Ja(F @ @) = 1% @ih <t

Let 7T M be the pull-back of the tangent bundle TM by 7 : TM°? —
M. Unlike the Levi-Civita connection in Riemannian geometry, there is
no unique natural connection in the Finsler case. Among these connec-
tions on m*T'M, we choose the Chern connection whose coefficients are
denoted by Fék [1]. This connection is almost g-compatible and has no

torsion. Since, in general, the Chern connection coefficients F;k in nat-
ural coordinates have a directional dependence, we must define a fixed
reference vector.

Let o(t) be a smooth regular curve in M, with velocity field T'. Let

W(t) := Wi(t) 8?02. be a vector field along o. The expression

dW*
dt

0
% |o(t)a

+ WITHTE) o.m)|
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would have defined the covariant derivative DpW with reference vector
T. A curve o(t), with velocity T'= &(t) is a Finslerian geodesic if
T
D {7} =0, ith reference vector T
T\ % ) w Y
such that the constant speed geodesics are precisely the solution of

D7T =0, with reference vector T.

Since T = dd%i 62“ this differential equations that describe constant

speed geodesics are
d?ct  dod do® .
dz T ar Fiwen =0

Definition 2.3. Let g be a Lie algebra and G is the simply connected
Lie group with Lie algebra g. A Finsler metric F' : TG — [0, 00) will
be called left-invariant if

F((La)*eX) =F(X), Yae G, VX €g,
where L, is the left translation and e is the unit element of the Lie
group.
Let G be a connected Lie group with Lie algebra g. We may identify

the tangent bundle T'G with G x g by means of the diffeomorphism that
sends (g, X) to (Lg)«X € T,G.

Definition 2.4. A Finsler function F' : TG — Ry will be called G-
invariant if F' is constant on all G-orbits in TG = G X g. Indeed,

F(9,X)=F(e,X), Vg€ G and X € g.

The G-invariant Finsler functions on TG may be identified with the
Minkowski norms on g. If F : TG — Ry is a G-invariant Finsler
function, then we may define F': g — Ry by

F(X) = F(e, X),

where e denotes the identity in G. Conversely, if we are given a Minkowski
norm F': g — R4, then F arises from a G-invariant Finsler function
F: TG — R4 given by

F(g,X) = F(X), forall (3,X)e€G xg.

3. HOMOGENEOUS GEODESICS

Let g and h be the Lie algebras of the Lie groups G and H respectively.
Then the direct sum decomposition of g as g = h + m, where m is a
subspace of g such that Ad(h)(m) C m, Vh € H, is called a reductive
decomposition of g.
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Definition 3.1. A Finsler space (M, F') is called a homogeneous Finsler
space if the group of isometries of (M, F), I(M, F'), acts transitively on
M.

We recall that, any homogeneous Finsler manifold M = G/H is a
reductive homogeneous space.

Definition 3.2. Let (G/H, F') be a homogeneous Finsler space and e
be the identity of G. A non-zero vector X € g is called a geodesic vector
if the curve exp(tX).eH is a geodesic of (G/H, F).

Let G be a connected Lie group with Lie algebra g and let a be a
left invariant Riemannian metric on G. In [6], the author proved that a
vector Y € g is a geodesic vector if and only if

a(Y,[Y,Z)) =0, VZeg. (3.1)

In [7], the second author proved the following result that gives a cri-
terion for a non-zero vector to be a geodesic vector in a homogeneous
Finsler space.

Lemma 3.3. A non-zero vector Y € g is a geodesic vector if and only
if
9y = Y, [V, Z]m) =0, VZeg. (3.2)

Now we have the following results for geodesic vector of («, 5)-metrics:

Theorem 3.4. Let G/H be a homogeneous («, 3)-metric F' defined by
the F = a¢(s), s = f/a induced by an invariant Riemannian metric a
and an invariant vector field X such that X(H) = X. Then, a non-zero
vector y € g is a geodesic vector if and only if

a(Aym + BX, [y, 2lm) =0, Vz €y, (3.3)
where
a(X,y)

Valy,y)

A=¢*q) - d(q)d'(q)g, B=¢(q)F(y) and q=
Proof. We know that,

gy(u,v) = 775F2(y+5u+tv)|52t:0. (3.4)

Let
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By using the formula [3.4) and after some calculations, we get

u,v) = alu,v 2 a U / d(X’U) _&(X,y)d(y,v)
aylu.0) = (o)) + (o) (o) Jies — T

+ ((QZ"(q))2 + ¢(Q)¢”(q))( a(X,v) _ a(X,y)aly v))

Valy) - (alyy)
% <€L(X, u)\/m_ a(y7u)a(X7y))

a(y,y)
(q)9'(q) (
va(y,y)

a(X,y)
a(y,y)

Gom (s [, 2Jm) = @lm, [9: 2Jm) (#2(0) — 6() (0)a)

A(X. . 21) (¢/(0) P (0)) (35)
= a(Aym + BX, [y, Z]m)a

DJLo| ~

+ a(X,uw)a(y,v) — a(u,v)a(X, ?J))y

where g = . So for all z € g we have:

_l’_

where
A=¢*q) — ()¢ (9)a, B=¢')F(y).
Then by lemma Gym Ym [, 2]m) = 0 if and only if
a(Aym + BX, [y, z]lm) =0, Vz€g.
U

Corollary 3.5. Let G/H be a homogeneous («, 3)-metric F with F =
ap(s), s = B/a defined by an invariant Riemannian metric a and an
invariant vector field X such that X (H) = X. Suppose that y € g — {0}
and a(X, [y, z]m) = 0. Then y is a geodesic vector of (M, F) if and only
if it is a geodesic vector of (M,a).

Proof. From equation we have
Gum (s [0 2Im) = @um [9: 2Im) (%(@) — 6(0) (a)a)
By the definition of («, #)-metrics ¢?(q) — ¢(q)¢’(q)q is positive. Then

gym (yma [yv Z]m) = 07

if and only if a(ym, [y, z]m) = 0. O
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4. simply connected two-step nilpotent Lie groups of
dimension five

In this section we study simply connected two-step nilpotent Lie
groups of dimension five equipped with left-invariant (¢, 5)- metrics and
has 1-dimensional, 2-dimensional and 3-dimensional center.

4.1. Lie algebras with 1-dimensional center. Let g denotes a 5-
dimensional 2-step nilpotent Lie algebra with 1- dimensional center £ and
let G be the corresponding simply connected Lie group. We assume that
g is equipped with an inner product (,). Let e5 be a unit vector in ¢ and
let a be the orthogonal complement of € in g . In [4], S. Homolya and O.
Kowalski showed that there exist an orthonormal basis {eq, e, €3, 4, €5}
of g such that

[e1,ea] = Aes, [es,eq] = pes, (4.1)
where A > p > 0. Also the other commutators are zero.

For Example, O(2) x SO(2) be a Lie group for A # p and U(2) x Zo
be a Lie group for A\ = p [12].

Let F be a left invariant (a, 3)-metric on simply connected two-step
nilpotent Lie group G defined by the Riemannian metric @ and the vec-
tor field X = Z?Zl xie;. We want to describe all geodesic vectors of
(G, F).

By using Theorem a vector y = Zle yie; of g is a geodesic vector
if and only if

d(AES:yiei + B 25: i€, [25: yiei, e]) = 0, (4.2)
i=1 i=1 i=1
where
A=¢*q) = d(@)¢'(0)a, B=¢(@)F(y) and q= ——=—=
for each j =1,2,3,4,5.
So we get:
Ay1(Ays + Bxs) = 0,

)\yQ(Ay5 + B.%'5) =0,

pys3(Ays + Bxs) = 0,
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pya(Ays + Brs) = 0. (4.3)

Corollary 4.1. Let F be the (a, B)-metric induced by the Riemannina
metric a and the left invariant vector field X = 2?21 xTie; on simply
connected two-step nilpotent Lie group of dimension five with one di-
mensional center. Then geodesic vectors depending only on a(X,es).

Corollary 4.2. Let F be the («, 3)-metric induced by the invariant
Riemannian metric a and the left invariant vector field X = Z?:l T;ie;
on simply connected two-step nilpotent Lie group of dimension five with
one dimensional center. Then a vector y € g is a geodesic vector if and

only if y € spanfer, ez, es, €4} or y = fes for B # 0.

Corollary 4.3. Let (M, F) be the (a, B)-metric induced by an invari-
ant Riemannina metric a and the left invariant vector field X on simply
connected two-step nilpotent Lie group of dimension five with one di-
mensional center. Then X is a geodesic vector of (M,a) if and only if
X is a geodesic vector of (M, F).

Theorem 4.4. Let (M, F) be the (a, 8)-metric induced by the Riemann-
ian metric a and the left invariant vector field X = Z?:l xTie; on simply
connected two-step nilpotent Lie groups of dimension five with one di-
mensional center. Then y € g is a geodesic vector of (M, F) if and only
if y is a geodesic vector of (M, a).

Proof. From a(X,[y,ei]) = 0 for each ¢ = 1,2,3,4,5. Let y =
Z?:l yie; € g is a geodesic vector of (M, a). By using equation m we
have:

a(y, ly, ei]) =0,
for each ¢« = 1,2,3,4,5. Then by using equation y is a geodesic
vector of (M, F).
Conversely, let y = Z?Zl yie; € g is a geodesic vector of (M, F'). Since
a(X, [y,e;]) =0 for each i = 1,2,3,4,5 by using We have:

a(y,ly,e]) =0, i=1,2,3,4,5.
O
4.2. Lie algebras with 2-dimensional center. In [4] S. Homolya and

O. Kowalski, showed that there exist an orthonormal basis {e1, e2, €3, e4, €5}
of g such that

[e1,e2] = ey, [e1,e3] = pes, (4.4)
where {e4,e5} is a basis for the center of g, the other commutators are
zero and A > u > 0.
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For Example, Zy X Zs X Zg be a Lie group for A # p and O(2) X Zo
be a Lie group for A = p [12].

Let F be a left invariant (a, 8)- metric on simply connected two-step
nilpotent Lie groups of dimension five with two dimensional center de-

fined by the Riemannian metric @ and the vector field X = Z?Zl Ti€;.

By using Theorem a vector y = Z?:1 y;¢e; of g is a geodesic vector
if and only if

5 5 5
A(AD yiei+BY miei, [>_yiei e5]) =0, (4.5)
=1 =1 =1

where
a(Xx,
A=¢*(q) — d(a)¢' (). B=¢'(¢)F(y) and ¢= M
a(y,y)
for each j =1,2,3,4,5.
So we get:
Y2 (Ays + Bzy) + pys(Ays + Brs) = 0,
Ay1(Ays + Bzy) =0,
py1(Ays + Bxs) = 0. (4.6)

Corollary 4.5. Let F' be the (o, B)- metric induced by the Riemannian
metric a and the left invariant vector field X on simply connected two-
step nilpotent Lie groups of dimension five with two dimensional center.
Then geodesic vectors dependig only on a(X,eq),a(X,e5), A and p.

Corollary 4.6. Let (M, F) be the (a,3)- metric induced by the Rie-
mannian metric a and the left invariant vector field X on simply con-
nected two-step nilpotent Lie group of dimension five with two dimen-
sional center. Then X is a geodesic vector of (M, a) if and only if X is
a geodesic vector of (M, F).

Theorem 4.7. Let (M, F) be the (a,3)- metric induced by the Rie-
mannian metric a and the left invariant vector field X = Z§:1 Tie; on
simply connected two-step nilpotent Lie groups of dimension five with
two dimensional center. Then y € g is a geodesic vector of (M, F) if
and only if y is a geodesic vector of (N, a).
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Proof. From a(X,[y,ei]) = 0 for each i = 1,2,3,4,5. Let y =
Z?:l yie; € g is a geodesic vector of (M, a). By using equation m we
have:

a(y, [yv 61]) =0,
for each ¢ = 1,2,3,4,5. Then by using equation y is a geodesic
vector of (M, F).
Conversely, let y = 2?21 yie; € g is a geodesic vector of (M, F'). Since
a(X, [y, e;]) = 0 for each i = 1,2,3,4,5 by using [4.5| we have:

a(y,[y,e]) =0, i=1,2,3,4,5.
O

4.3. Lie algebras with 3-dimensional center. In this section, we
study simply connected two-step nilpotent Lie group of dimension five
with 3-dimensional center equipped with left-invariant (v, 5)- metric. In
[], S. Homolya and O. Kowalski showed that there exist an orthonormal
basis {e1, €2, €3, €4, €5} of g such that:

[61, 62] = )\63, (47)

where {e3, e4, €5} is a basis for the center of g, the other commutators
are zero and A > 0.

For Example, Hz x R? or O(2) x O(2) be a Lie group with the metric
Heisenberg Lie algebra hz(\) @ R? [12].

Let F be a left invariant (a, )- metric on simply connected two-step
nilpotent Lie groups of dimension five with three dimensional center de-
fined by the Riemannian metric @ and the vector field X = 2?21 Ti€;.
We want to describe all geodesic vectors of (M, F').

By using Theorem a vector y = Z?:l yie; of g is a geodesic vector
if and only if

5 5 5
d(AZyiei + B Z Ti€4, [Z Yi€s, ej]) =0, (4.8)
i=1 =1 =1

where

A=¢*(q) —d(q)¢'()a, B=¢'(¢)F(y) and ¢= M
a(y,y)

for each j =1,2,3,4,5.

So we get:
)\y1<Ay3 + B.Tg) =0,
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Ay2(Ays + Bxz) = 0. (4.9)
Then, we conclude the following results:

Corollary 4.8. Let (M, F) be the (a,3)- metric induced by the Rie-
mannian metric @ and the left invariant vector field X = Zle Ti€e;
on simply connected two-step nilpotent Lie groups of dimension five

with three dimensional center. Then geodesic vectors dependig only on
d(X, 63) .

Corollary 4.9. Let (M, F) be the (a,)- metric induced by the Rie-
mannian metric a and the left invariant vector field X on simply con-
nected two-step nilpotent Lie group of dimension five with three dimen-
sional center. Then X is a geodesic vector of (M, a) if and only if X is
a geodesic vector of (M, F).

Theorem 4.10. Let (M, F) be the («, 3)- metric defined by an invariant
metric a and an left invariant vector field X = x1e1 4+ xoeo +x4e4 + T5€5
on simply connected two-step nilpotent Lie group of dimension five with
three dimensional center. Then y € g is a geodesic vector if and only if
y € Span{es,eq,e5} ory € Span{ey,ea,eq,e5}.

Theorem 4.11. Let (M, F) be the («, 3)- metric induced by the Rie-
mannian metric a and the left invariant vector field X = x1e1 + xoeo +
xqeq + xs5€5 0on simply connected two-step nilpotent Lie groups of dimen-
sion five with three dimensional center. Then y € g is a geodesic vector
of (M, F) if and only if y is a geodesic vector of (N,a).

Proof. From a(X,[y,e]) = 0 for each i = 1,2,3,4,5. Let y =
Z?Zl yie; € g is a geodesic vector of (M, a). By using equation we
have:

&(yv [ya 61]) =0,
for each ¢« = 1,2,3,4,5. Then by using equation y is a geodesic
vector of (M, F).
Conversely, let y = Z?Zl yie; € g is a geodesic vector of (M, F'). Since
a(X,[y,e;]) =0 for each i = 1,2,3,4,5 by using Mwe have:

a(y, [y, ei]) =0, i=1,2,3,4,5.
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