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Abstract. In this paper, we consider invariant (α, β)- metrics
which are induced by invariant Riemannian metrics and invariant
vector fields on homogeneous spaces. We first study geodesic vec-
tors and investigates the set of all homogeneous geodesics of (α, β)-
metrics. Then we study the geometry of simply connected two-step
nilpotent Lie groups of dimension five equipped with a left invari-
ant (α, β)- metrics and we examine Lie algebras with 1-dimensional
center, 2-dimensional center and 3-dimensional center.
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1. Introduction

Finsler geometry is just the Riemannian geometry without the qua-
dratic restriction. Finsler generalized Riemann’s theory in his doctoral
thesis, but his name was established in differential geometry by Cartan
[2].

In 1972, Matsumoto had introduced the concept of (α, β)-metric in
Finsler geometry [10]. A Finsler metric of the form
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F = αϕ(s), s =
β

α
,

where α =
√

ãij(x)yiyj induced by a Riemannian metric ã = ãijdx
i⊗dxj

on a connected smooth n-manifold M and β = bi(x)y
i is a 1-form on M ,

is called an (α, β)-metric. (α, β)-metrics are the generalizations of the
Randers metric, introduced by G. Randers [13]. There are various ap-
plications of (α, β)-metrics in information geometry, physics and biology.

The concept of geodesics is a very important subjects in geometry. In-
deed, geodesics are the generalization of a straight line in an Euclidean
space. Geodesic can be viewed as a curve that minimizes the distance be-
tween two points on the manifold. A geodesic in a homogeneous Finsler
space (G/H,F ) is called homogeneous geodesic if it is an orbit of a one-
parameter subgroup of G.

In [7], Latifi has extended the concept of homogeneous geodesics in
homogeneous Finsler spaces and he has given a criterion for the charac-
terization of geodesic vectors. In [8], Latifi and Razavi study homoge-
neous geodesics in a three-dimensional connected Lie group with a left
invariant Randers metric.

A connected Riemannian manifold (M, g) is said to be homogeneous
if a connected group of isometries G acts transitively on it. Then M can
be viewed as a coset space G/H with a G -invariant metrics, where H is
the isotropy subgroup at a fixed point o of M . A geodesic γ(t) through
the origin o = eH is called a homogeneous geodesic if it is an orbit of a
one-parameter subgroup of G. Indeed,

γ(t) = exp(tZ)(o),

where Z is a non-zero vector in the Lie algebra g of G.

Homogeneous geodesic in a Lie group were studied by V. V. Kajzer
in [5] where he proved that a Lie group G with a left-invariant metric
has at least one homogeneous geodesic through the identity.

A connected Riemannian manifold which admits a transitive nilpotent
Lie group G of isometries is called a nilmanifold [3]. E. Wilson showed
that for a given homogeneous nilmanifoldM , there exists a unique nilpo-
tent Lie subgroup N of I(M) acting simply transitively on M , and N
is normal in I(M) [14]. J. Lauret classified, up to isometry, all ho-
mogeneous nilmanifolds of dimension 3 and 4 (not necessarily two-step
nilpotent) and computed the corresponding isometry groups. He also
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studied, as example, the structure of specific five-dimensional two-step
nilmanifolds with two-dimensional center [9].

The Lie algebra g is called two-step nilpotent Lie algebra if [x, [y, z]] =
0 for any x, y, z ∈ g. A Lie group G is said to be two-step nilpotent if
its Lie algebra g is two-step nilpotent. Two-step nilpotent Lie groups
endowed with a left-invariant metric, often called two-step homogeneous
nilmanifolds are studied in the last years [11, 12].

In this paper, we study the existence of invariant vector fields on ho-
mogeneous Finsler spaces with (α, β)- metrics. Also, we study the geom-
etry of simply connected two-step nilpotent Lie groups of dimension five
endowed with left invariant (α, β)- metrics. We consider homogeneous
geodesics in an invariant (α, β)- metrics on simply connected two-step
nilpotent Lie groups of dimensional five.

2. Preliminaries

In this section, we recall briefly some known facts about Finsler spaces.
For details, see [1].

Definition 2.1. Let M be a n- dimensional C∞ manifold and TM =
∪x∈MTxM be its tangent bundle. A Finsler metric on a manifold M is
a non-negative function F : TM → R with the following properties:

(1) F is smooth on the slit tangent bundle TM0 := TM \ {0}.
(2) F (x, λy) = λF (x, y) for any x ∈ M , y ∈ TxM and λ > 0.
(3) The n× n Hessian matrix

[gij ] =
1

2

[ ∂2F 2

∂yi∂yj

]
is positive definite at every point (x, y) ∈ TM0.

The following bilinear symmetric form gy : TxM × TxM −→ R is
positive definite

gy(u, v) =
1

2

∂2

∂s∂t
F 2(x, y + su+ tv)|s=t=0.

We recall that, by the homogeneity of F we have

gy(u, v) = gij(x, y)u
ivj , F =

√
gij(x, y)yiyj .

Definition 2.2. Let α =
√
ãij (x) yiyj be a norm induced by a Rie-

mannian metric ã and β (x, y) = bi(x)y
i be a 1-form on an n- dimen-

sional manifold M . Suppose

b := ∥β(x)∥α :=
√

ãij(x)bi(x)bj(x),
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and let the function F is defined as follows

F := αφ(s), s =
β

α
, (2.1)

where φ = φ(s) is a positive C∞ function on (−b0, b0) satisfying

φ (s)− sφ′ (s) +
(
b2 − s2

)
φ′′ (s) > 0, |s| ≤ b < b0.

Then F is a Finsler metric if ∥β(x)∥α < b0 for any x ∈ M . A Finsler
metric in the form 2.1 is called an (α, β)- metric.

The Riemannian metric ã induces an inner product on any cotangent
space T ∗

xM such that

⟨dxi(x), dxj(x)⟩ = ãij(x).

The induced inner product on T ∗
xM induced a linear isomorphism be-

tween T ∗
xM and TxM . Then the 1-form β corresponds to a vector field

X̃ on M such that

ã
(
y, X̃ (x)

)
= β (x, y) .

Also, we have

∥β(x)∥α = ∥X̃(x)∥α.
Therefore we can write (α, β)- metrics as follows:

F (x, y) = α (x, y)φ

(
ã(X̃ (x) , y)

α(x, y)

)
, (2.2)

where for any x ∈ M ,√
ã
(
X̃ (x) , X̃ (x)

)
= ∥X̃(x)∥α < b0.

Let π∗TM be the pull-back of the tangent bundle TM by π : TM0 →
M . Unlike the Levi-Civita connection in Riemannian geometry, there is
no unique natural connection in the Finsler case. Among these connec-
tions on π∗TM , we choose the Chern connection whose coefficients are
denoted by Γi

jk [1]. This connection is almost g-compatible and has no

torsion. Since, in general, the Chern connection coefficients Γi
jk in nat-

ural coordinates have a directional dependence, we must define a fixed
reference vector.

Let σ(t) be a smooth regular curve in M , with velocity field T . Let
W (t) := W i(t) ∂

∂xi be a vector field along σ. The expression[dW i

dt
+W jT k(Γi

jk)(σ,T )

] ∂

∂xi
|σ(t),
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would have defined the covariant derivative DTW with reference vector
T . A curve σ(t), with velocity T = σ̇(t) is a Finslerian geodesic if

DT

[ T

F (T )

]
= 0, with reference vector T,

such that the constant speed geodesics are precisely the solution of

DTT = 0, with reference vector T.

Since T = dσi

dt
∂
∂xi , this differential equations that describe constant

speed geodesics are

d2σi

dt2
+

dσj

dt

dσk

dt
(Γi

jk)(σ,T ) = 0.

Definition 2.3. Let g be a Lie algebra and G is the simply connected
Lie group with Lie algebra g. A Finsler metric F : TG −→ [0,∞) will
be called left-invariant if

F
(
(La)∗eX

)
= F (X), ∀a ∈ G, ∀X ∈ g,

where La is the left translation and e is the unit element of the Lie
group.

Let G be a connected Lie group with Lie algebra g. We may identify
the tangent bundle TG with G×g by means of the diffeomorphism that
sends (g,X) to (Lg)∗X ∈ TgG.

Definition 2.4. A Finsler function F : TG −→ R+ will be called G-
invariant if F is constant on all G-orbits in TG = G× g. Indeed,

F (g,X) = F (e,X), ∀g ∈ G and X ∈ g.

The G-invariant Finsler functions on TG may be identified with the
Minkowski norms on g. If F : TG −→ R+ is a G-invariant Finsler
function, then we may define F̃ : g −→ R+ by

F̃ (X) = F (e,X),

where e denotes the identity inG. Conversely, if we are given a Minkowski
norm F̃ : g −→ R+, then F̃ arises from a G-invariant Finsler function
F : TG −→ R+ given by

F (g,X) = F̃ (X), for all (g,X) ∈ G× g.

3. Homogeneous Geodesics

Let g and h be the Lie algebras of the Lie groups G andH respectively.
Then the direct sum decomposition of g as g = h + m, where m is a
subspace of g such that Ad(h)(m) ⊂ m, ∀h ∈ H, is called a reductive
decomposition of g.
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Definition 3.1. A Finsler space (M,F ) is called a homogeneous Finsler
space if the group of isometries of (M,F ), I(M,F ), acts transitively on
M .

We recall that, any homogeneous Finsler manifold M = G/H is a
reductive homogeneous space.

Definition 3.2. Let (G/H,F ) be a homogeneous Finsler space and e
be the identity of G. A non-zero vector X ∈ g is called a geodesic vector
if the curve exp(tX).eH is a geodesic of (G/H,F ).

Let G be a connected Lie group with Lie algebra g and let ã be a
left invariant Riemannian metric on G. In [6], the author proved that a
vector Y ∈ g is a geodesic vector if and only if

ã(Y, [Y,Z]) = 0, ∀Z ∈ g. (3.1)

In [7], the second author proved the following result that gives a cri-
terion for a non-zero vector to be a geodesic vector in a homogeneous
Finsler space.

Lemma 3.3. A non-zero vector Y ∈ g is a geodesic vector if and only
if

gYm = (Ym, [Y,Z]m) = 0, ∀Z ∈ g. (3.2)

Now we have the following results for geodesic vector of (α, β)-metrics:

Theorem 3.4. Let G/H be a homogeneous (α, β)-metric F defined by
the F = αϕ(s), s = β/α induced by an invariant Riemannian metric ã

and an invariant vector field X̃ such that X̃(H) = X. Then, a non-zero
vector y ∈ g is a geodesic vector if and only if

ã(Aym +BX, [y, z]m) = 0, ∀z ∈ g, (3.3)

where

A = ϕ2(q)− ϕ(q)ϕ′(q)q, B = ϕ′(q)F (y) and q =
ã(X, y)√
ã(y, y)

.

Proof. We know that,

gy(u, v) =
1

2

∂2

∂t∂s
F 2(y + su+ tv)|s=t=0. (3.4)

Let

F (x, y) = α(x, y)ϕ
( ã(X(x), y)

α(x, y)

)
.
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By using the formula 3.4 and after some calculations, we get

gy(u, v) = ã(u, v)ϕ2(q) + ã(y, u)ϕ(q)ϕ′(q)
( ã(X, v)√

ã(y, y)
− ã(X, y)ã(y, v)

(ã(y, y))
3
2

)
+
(
(ϕ′(q))2 + ϕ(q)ϕ′′(q)

)( ã(X, v)√
ã(y, y)

− ã(X, y)ã(y, v)

(ã(y, y))
3
2

)
×
(
ã(X,u)

√
ã(y, y)− ã(y, u)ã(X, y)√

ã(y, y)

)
+

ϕ(q)ϕ′(q)√
ã(y, y)

(
ã(X,u)ã(y, v)− ã(u, v)ã(X, y)

)
,

where q = ã(X,y)√
ã(y,y)

. So for all z ∈ g we have:

gym(ym, [y, z]m) = ã(ym, [y, z]m)
(
ϕ2(q)− ϕ(q)ϕ′(q)q

)
+ ã(X, [y, z]m)

(
ϕ′(q)F (y)

)
= ã(Aym +BX, [y, z]m),

(3.5)

where

A = ϕ2(q)− ϕ(q)ϕ′(q)q, B = ϕ′(q)F (y).

Then by lemma 3.3, gym(ym, [y, z]m) = 0 if and only if

ã(Aym +BX, [y, z]m) = 0, ∀z ∈ g.

□

Corollary 3.5. Let G/H be a homogeneous (α, β)-metric F with F =
αϕ(s), s = β/α defined by an invariant Riemannian metric ã and an

invariant vector field X̃ such that X̃(H) = X. Suppose that y ∈ g−{0}
and ã(X, [y, z]m) = 0. Then y is a geodesic vector of (M,F ) if and only
if it is a geodesic vector of (M, ã).

Proof. From equation 3.5, we have

gym(ym, [y, z]m) = ã(ym, [y, z]m)
(
ϕ2(q)− ϕ(q)ϕ′(q)q

)
.

By the definition of (α, β)-metrics ϕ2(q)− ϕ(q)ϕ′(q)q is positive. Then

gym(ym, [y, z]m) = 0,

if and only if ã(ym, [y, z]m) = 0. □
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4. simply connected two-step nilpotent Lie groups of
dimension five

In this section we study simply connected two-step nilpotent Lie
groups of dimension five equipped with left-invariant (α, β)- metrics and
has 1-dimensional, 2-dimensional and 3-dimensional center.

4.1. Lie algebras with 1-dimensional center. Let g denotes a 5-
dimensional 2-step nilpotent Lie algebra with 1- dimensional center k and
let G be the corresponding simply connected Lie group. We assume that
g is equipped with an inner product ⟨, ⟩. Let e5 be a unit vector in k and
let a be the orthogonal complement of k in g . In [4], S. Homolya and O.
Kowalski showed that there exist an orthonormal basis {e1, e2, e3, e4, e5}
of g such that

[e1, e2] = λe5, [e3, e4] = µe5, (4.1)

where λ ⩾ µ > 0. Also the other commutators are zero.

For Example, O(2)× SO(2) be a Lie group for λ ̸= µ and U(2)× Z2

be a Lie group for λ = µ [12].
Let F be a left invariant (α, β)-metric on simply connected two-step

nilpotent Lie group G defined by the Riemannian metric ã and the vec-
tor field X =

∑5
i=1 xiei. We want to describe all geodesic vectors of

(G,F ).

By using Theorem 3.4, a vector y =
∑5

i=1 yiei of g is a geodesic vector
if and only if

ã(A
5∑

i=1

yiei +B
5∑

i=1

xiei, [
5∑

i=1

yiei, ej ]) = 0, (4.2)

where

A = ϕ2(q)− ϕ(q)ϕ′(q)q, B = ϕ′(q)F (y) and q =
ã(X, y)√
ã(y, y)

,

for each j = 1, 2, 3, 4, 5.

So we get:

λy1(Ay5 +Bx5) = 0,

λy2(Ay5 +Bx5) = 0,

µy3(Ay5 +Bx5) = 0,
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µy4(Ay5 +Bx5) = 0. (4.3)

Corollary 4.1. Let F be the (α, β)-metric induced by the Riemannina

metric ã and the left invariant vector field X =
∑5

i=1 xiei on simply
connected two-step nilpotent Lie group of dimension five with one di-
mensional center. Then geodesic vectors depending only on ã(X, e5).

Corollary 4.2. Let F be the (α, β)-metric induced by the invariant

Riemannian metric ã and the left invariant vector field X =
∑4

i=1 xiei
on simply connected two-step nilpotent Lie group of dimension five with
one dimensional center. Then a vector y ∈ g is a geodesic vector if and
only if y ∈ span{e1, e2, e3, e4} or y = βe5 for β ̸= 0.

Corollary 4.3. Let (M,F ) be the (α, β)-metric induced by an invari-
ant Riemannina metric ã and the left invariant vector field X on simply
connected two-step nilpotent Lie group of dimension five with one di-
mensional center. Then X is a geodesic vector of (M, ã) if and only if
X is a geodesic vector of (M,F ).

Theorem 4.4. Let (M,F ) be the (α, β)-metric induced by the Riemann-

ian metric ã and the left invariant vector field X =
∑4

i=1 xiei on simply
connected two-step nilpotent Lie groups of dimension five with one di-
mensional center. Then y ∈ g is a geodesic vector of (M,F ) if and only
if y is a geodesic vector of (M, ã).

Proof. From 4.1, ã(X, [y, ei]) = 0 for each i = 1, 2, 3, 4, 5. Let y =∑5
i=1 yiei ∈ g is a geodesic vector of (M, ã). By using equation 3.1 we

have:
ã(y, [y, ei]) = 0,

for each i = 1, 2, 3, 4, 5. Then by using equation 4.2, y is a geodesic
vector of (M,F ).

Conversely, let y =
∑5

i=1 yiei ∈ g is a geodesic vector of (M,F ). Since
ã(X, [y, ei]) = 0 for each i = 1, 2, 3, 4, 5 by using 4.2 we have:

ã(y, [y, ei]) = 0, i = 1, 2, 3, 4, 5.

□

4.2. Lie algebras with 2-dimensional center. In [4] S. Homolya and
O. Kowalski, showed that there exist an orthonormal basis {e1, e2, e3, e4, e5}
of g such that

[e1, e2] = λe4, [e1, e3] = µe5, (4.4)

where {e4, e5} is a basis for the center of g, the other commutators are
zero and λ ≥ µ > 0.
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For Example, Z2 × Z2 × Z2 be a Lie group for λ ̸= µ and O(2) × Z2

be a Lie group for λ = µ [12].

Let F be a left invariant (α, β)- metric on simply connected two-step
nilpotent Lie groups of dimension five with two dimensional center de-
fined by the Riemannian metric ã and the vector field X =

∑5
i=1 xiei.

By using Theorem 3.4, a vector y =
∑5

i=1 yiei of g is a geodesic vector
if and only if

ã(A
5∑

i=1

yiei +B
5∑

i=1

xiei, [
5∑

i=1

yiei, ej ]) = 0, (4.5)

where

A = ϕ2(q)− ϕ(q)ϕ′(q)q, B = ϕ′(q)F (y) and q =
ã(X, y)√
ã(y, y)

,

for each j = 1, 2, 3, 4, 5.

So we get:

λy2(Ay4 +Bx4) + µy3(Ay5 +Bx5) = 0,

λy1(Ay4 +Bx4) = 0,

µy1(Ay5 +Bx5) = 0. (4.6)

Corollary 4.5. Let F be the (α, β)- metric induced by the Riemannian
metric ã and the left invariant vector field X on simply connected two-
step nilpotent Lie groups of dimension five with two dimensional center.
Then geodesic vectors dependig only on ã(X, e4), ã(X, e5), λ and µ.

Corollary 4.6. Let (M,F ) be the (α, β)- metric induced by the Rie-
mannian metric ã and the left invariant vector field X on simply con-
nected two-step nilpotent Lie group of dimension five with two dimen-
sional center. Then X is a geodesic vector of (M, ã) if and only if X is
a geodesic vector of (M,F ).

Theorem 4.7. Let (M,F ) be the (α, β)- metric induced by the Rie-

mannian metric ã and the left invariant vector field X =
∑3

i=1 xiei on
simply connected two-step nilpotent Lie groups of dimension five with
two dimensional center. Then y ∈ g is a geodesic vector of (M,F ) if
and only if y is a geodesic vector of (N, ã).
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Proof. From 4.4, ã(X, [y, ei]) = 0 for each i = 1, 2, 3, 4, 5. Let y =∑5
i=1 yiei ∈ g is a geodesic vector of (M, ã). By using equation 3.1 we

have:

ã(y, [y, ei]) = 0,

for each i = 1, 2, 3, 4, 5. Then by using equation 4.5, y is a geodesic
vector of (M,F ).

Conversely, let y =
∑5

i=1 yiei ∈ g is a geodesic vector of (M,F ). Since
ã(X, [y, ei]) = 0 for each i = 1, 2, 3, 4, 5 by using 4.5 we have:

ã(y, [y, ei]) = 0, i = 1, 2, 3, 4, 5.

□

4.3. Lie algebras with 3-dimensional center. In this section, we
study simply connected two-step nilpotent Lie group of dimension five
with 3-dimensional center equipped with left-invariant (α, β)- metric. In
[4], S. Homolya and O. Kowalski showed that there exist an orthonormal
basis {e1, e2, e3, e4, e5} of g such that:

[e1, e2] = λe3, (4.7)

where {e3, e4, e5} is a basis for the center of g, the other commutators
are zero and λ > 0.

For Example, H3×R2 or O(2)×O(2) be a Lie group with the metric
Heisenberg Lie algebra h3(λ)⊕ R2 [12].

Let F be a left invariant (α, β)- metric on simply connected two-step
nilpotent Lie groups of dimension five with three dimensional center de-
fined by the Riemannian metric ã and the vector field X =

∑5
i=1 xiei.

We want to describe all geodesic vectors of (M,F ).

By using Theorem 3.4, a vector y =
∑5

i=1 yiei of g is a geodesic vector
if and only if

ã(A
5∑

i=1

yiei +B
5∑

i=1

xiei, [
5∑

i=1

yiei, ej ]) = 0, (4.8)

where

A = ϕ2(q)− ϕ(q)ϕ′(q)q, B = ϕ′(q)F (y) and q =
ã(X, y)√
ã(y, y)

,

for each j = 1, 2, 3, 4, 5.

So we get:

λy1(Ay3 +Bx3) = 0,
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λy2(Ay3 +Bx3) = 0. (4.9)

Then, we conclude the following results:

Corollary 4.8. Let (M,F ) be the (α, β)- metric induced by the Rie-

mannian metric ã and the left invariant vector field X =
∑5

i=1 xiei
on simply connected two-step nilpotent Lie groups of dimension five
with three dimensional center. Then geodesic vectors dependig only on
ã(X, e3).

Corollary 4.9. Let (M,F ) be the (α, β)- metric induced by the Rie-
mannian metric ã and the left invariant vector field X on simply con-
nected two-step nilpotent Lie group of dimension five with three dimen-
sional center. Then X is a geodesic vector of (M, ã) if and only if X is
a geodesic vector of (M,F ).

Theorem 4.10. Let (M,F ) be the (α, β)- metric defined by an invariant
metric ã and an left invariant vector field X = x1e1+x2e2+x4e4+x5e5
on simply connected two-step nilpotent Lie group of dimension five with
three dimensional center. Then y ∈ g is a geodesic vector if and only if
y ∈ Span{e3, e4, e5} or y ∈ Span{e1, e2, e4, e5}.

Theorem 4.11. Let (M,F ) be the (α, β)- metric induced by the Rie-
mannian metric ã and the left invariant vector field X = x1e1 + x2e2 +
x4e4+x5e5 on simply connected two-step nilpotent Lie groups of dimen-
sion five with three dimensional center. Then y ∈ g is a geodesic vector
of (M,F ) if and only if y is a geodesic vector of (N, ã).

Proof. From 4.7, ã(X, [y, ei]) = 0 for each i = 1, 2, 3, 4, 5. Let y =∑5
i=1 yiei ∈ g is a geodesic vector of (M, ã). By using equation 3.1 we

have:
ã(y, [y, ei]) = 0,

for each i = 1, 2, 3, 4, 5. Then by using equation 4.8, y is a geodesic
vector of (M,F ).

Conversely, let y =
∑5

i=1 yiei ∈ g is a geodesic vector of (M,F ). Since
ã(X, [y, ei]) = 0 for each i = 1, 2, 3, 4, 5 by using 4.8 we have:

ã(y, [y, ei]) = 0, i = 1, 2, 3, 4, 5.

□
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