تعداد نشریات | 30 |
تعداد شمارهها | 467 |
تعداد مقالات | 4,519 |
تعداد مشاهده مقاله | 7,144,865 |
تعداد دریافت فایل اصل مقاله | 5,334,676 |
Improving the convergence order of Steffensen’s method from two to four and its dynamic | ||
Caspian Journal of Mathematical Sciences | ||
دوره 12، شماره 2 - شماره پیاپی 24، 2023، صفحه 313-330 اصل مقاله (841.79 K) | ||
نوع مقاله: Research Articles | ||
شناسه دیجیتال (DOI): 10.22080/cjms.2024.26574.1678 | ||
نویسنده | ||
Vali Torkashvand* | ||
Department of Mathematics, Farhangian University, Tehran, Iran | ||
تاریخ دریافت: 20 دی 1402، تاریخ بازنگری: 16 اسفند 1402، تاریخ پذیرش: 22 اسفند 1402 | ||
چکیده | ||
In this paper, the degree of convergence of Newton’s method has been increased from two to four using two function evaluations. For this purpose,the weakness of Newton’s method, derivative calculation has been eliminated with a proper approximation of the previous data. Then, by entering two selfaccelerating parameters, the family new with-memory methods with Steffensen-Like memory with convergence orders of 2.41, 2.61, 2.73, 3.56, 3.90, 3.97, and 4 are made. This goal has been achieved by approximating the self-accelerator parameters by using the secant method and Newton interpolation polynomials. Finally, we have examined the dynamic behavior of the proposed methods for solving polynomial equations. | ||
کلیدواژهها | ||
With-memory method؛ Accelerator parameter؛ Basin of attraction؛ Efficiency index؛ Newton’s interpolatory polynomial | ||
آمار تعداد مشاهده مقاله: 108 تعداد دریافت فایل اصل مقاله: 211 |