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ABSTRACT. In this paper we deal with the existence of weak solu-
tion for a p(t)-Kirchhoff-type problem of the following form

— (=B [y silaop® dt) A(AIPO-2AY) =
MNIPD =29 4+ g(t,9) inT,
Y=AY=0 on OI.

Using the Mountain Pass Theoem, we establish conditions ensuring
the existence result.
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1. INTRODUCTION

In this paper we study the following problem

ﬁfp A0 dt) A(ASPO-2A0) =

AIW’ u+ g(t,ﬁ) inT, (1.1)
Y=A9=0 on JI'.

where I' ¢ RY, N > 2 is a bounded smooth domain with smooth
boundary AT, p(t) € C(T), a,B > 0 are constants, g is a continuous
function, A is a real parameter. We impose these conditions on the
nonlinearity g(t, s) € C(T,R):
(g1) The the Carathéodory function g : I' x R — R satisfies the
subcritical growth condition, i.e. there exists a constant ¢; > 0
so that

g(t, s)] < e1(1 4 |52,

for all (t,s) € I' x R where ¢(t) € C(T) and q(t) < pj(t).
(g2) g(z,5) = o(|s|PD25) as s — 0 uniformly with respect to ¢t € I.
2p~ 2
(g3) There exist M > 0and 0 € (p“‘, (p+) ) so that 0 < 0G(t, s) <
p
sg(t, s), for all |s| > M and ¢ € T where G(t,s) = [ g(t,7) dr.

Nonlocal p(t)-biharmonic elliptic problems are an interesting area of
nonlinear analysis, connecting many different mathematical fields such
as partial differential equations (PDEs), functional analysis and the cal-
culus of variations. By utilizing both nonlocal operators and space
for variables in the exponent of equations, these problems are exten-
sions of classical biharmonic equation. The applications of nonlocal
p(t)-biharmonic operators are vast and impactful, addressing complex
problems across multiple disciplines. Numerous papers have been pub-
lished, focusing on various aspects such as existence and multiplicity of
solutions, qualitative properties, and applications of these problems in
different contexts, (see [, 2, B, &, 9]).

We concentrate on a new Kirchhoff problem related to the p(t ) biharmonic
operator, that is, the form with a nonlocal coefficient (a—f [;. G ]A19|p(t) dt).
Its background is derived from nagative Young’s modulus when the
atoms are separated into two pieces instead of being compressed, lead-
ing to a negative strain.

As we know, the eigenvalues of p(t)-biharmonic problem with Navier-
boundary conditions

A(JAYPDO2AY9) = A[9PH—29  inT,
Y=A0=0 on JI'.
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were studied in [3], and the first eigenvalue is determined by the following
Rayleigh quotient

: Jr ot A9PO at

A1 = in
L0 S s [0 dt

(1.2)

where X = W2PO(I) N VVO1 P (t)(f‘). Moreover, under some special con-
ditions, A; is positive.

The authors in [11] for the first time, studied this form of the Kirchhoff-
type problem

{ —(a—0b [p|Vu*dz) Au= AufP"?u  inT,
u =0 on JI,

with 2 < p < 2* := (2N)/(N — 2), and they obtained the existence
of solutions by using the mountain pass theorem. Furthermore, some
interesting results have been obtained for this kind of Kirchhoff-type
problem. We refer the readers to [, 10, 13] and the references therein.

Now, we state our main result:

Theorem 1.1. Assume that the function q € C(T') satisfies
_ o Np(t)
1<p <p(t)<pt <2 <q <q(t) <pit) = —""~
pm<p(t) <p" <2 <q <qt) <pp) N k() (L3)
and 2p~ < 0.
Then considering conditions (g1)-(gs), for all A € R, problem (@)

admits a nontrivial weak solution.

2. NOTATIONS AND PRELIMINARIES

Let T be a bounded domain of RV, denote
Cy(T) = {p(t); p(z) € CT), p(t) > 1, ¥t €T},
pt =max{p(t); t €T}, p~ =min{p(t); t € T};

Lr® (T') = {¥ : T" — R measurable and/ |19(t)|p(t) dt < oo},
r

®)
with the norm |90y = |9, = inf {,u >0; [n )%‘p dr < 1} .

Proposition 2.1 (See [0]). The space (LPO(T), ] - p(t)) s separable,

uniformly convez, reflexive and its conjugate space is LYY (') where q(t)
is the conjugate function of p(t), i.e., ﬁ"‘?lt) =1, forallt €eT'. Ford e

LPO(T) and v € LIO(T), we have | [rdvdt] < (p% + q%) 9] py [Vg() <
2|ﬁ’p(t)‘v|q(t)-
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The Sobolev space with variable exponent W5P()(T') is defined as
follows: WEPO(I') = {9 € LPO(T) : D*9 € LPO(T), |a| < k}, where

|| . . ..
DY = G ¥, with & = (aq,...,ay) is a multi-index and
02T ot 2 . oty

la| = Zf\il a;. The space W*P(!)(T") equipped with the norm 19 kp(e) =
Z| al<k | DD p¢), also becomes a separable and reflexive Banach space.
For more details, we refer the reader to [5, .

Proposition 2.2 (See [0]). For p,r € C(T) such that r(t) < pi(t) for
all t €T, there is a continuous embedding W*P®(T') — LTO(T). If we
replace < with <, the embedding is compact.

We denote by Wok’p(t)(f‘) the closure of C$°(T") in WH5P(T'). Note
that the weak solutions of problem ([L.1]) are considered in the generalized

Sobolev space X = W2PE(I') N Wol’p(t) (I') equipped with the norm
t

ol =mfdp>0: |20 4 <l

| H T &

Remark 2.3. According to [12], the norm || - |3, is equivalent to the
norm |A - [, in the space X. Consequently, the norms || - || ), || - ||
and |A - |, are equivalent.

We consider the functional p(d) = [i.|A9[P®) dt and give the following
fundamental proposition.

Proposition 2.4 (See [4]). For v € X and ¥, C X, we have
(1) ||9|| < 1 (respectively= 1;> 1) <= p(¥) < 1 (respectively= 1;>
1);
(2) |9l > 1, then [9]P < p(9) < 9] ;
(3) if [0l <1, then [[9[|P" < p(d) <[9P ;
(4) |9l = 0 (respectively — o0) <= p(¥y) — O(respectively —
0).
Let us define the functional
1
K () :/|A19|p(t) dz.
r p(t)

It is well known that K is well defined, even and C' in X. Moreover,
the operator L = K’ : X — X* defined as

(L(9),v) = / |AYPO-2 A9 AL dt
r

for all ¥, v € X satisfies the following assertions.

Proposition 2.5 (See El Amrouss et al. [4]). The derivative operator
L has the following properties:
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(1) L is continuous, bounded and strictly monotone;

(2) L is a mapping of (Sy)-type, namely: ¥, — ¥ andlimsup,,_, o L(Vp)(¥n—
V) <0, implies ¥, — 0;

(3) L is a homeomorphism.

3. PROOF OF THE MAIN RESULT

Deﬁnition 3.1. We say that ¥ € X is a weak solution of problem (),

/j/ |Awp”m/ﬁAmP “2A0Ap dt — /ﬁmp 29pdt =

/g(t,'l?)w dt,
T

for any ¢ € X.

The problem (El]) has a variational form with the energy functional
J : X = R, defined as follows:

ﬂ&:aéM)MW’ﬁ—§<AA;mwmﬁy

_ = 9@ g
AﬁmeIcﬁ AG@M&, (3.1)

for all ¥ € X. Moreover, the functional J is well defind and of class
C' in X. Furthermore, we have

J0).9) = (0= [ —laopOa) [ |aopo-2aonpar

—A/nmmﬁﬁwﬁ—/@@ﬁnmu (3.2)
r r

for every ¢ € X. Hence, we can observe that the critical points of J are
weak solutions of problem ([L.1).

3.1. Compactness condition.

Definition 3.2. Let (X, ] - ||) be a Banach space and J € C}(X). We
say that J satisfies the Palais-Smale condition at level ¢ ((PS). in short),
if any sequence {u,} C X satisfying

J(Wy,) = c and J'(9,) -0 in X* as n— oo, (3.3)
has a convergent subsequence.

Lemma 3.3. Assume that (g1)- (g ) hold Then the functional J sat-

isfies the (PS). condition, where ¢ < %
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Proof. We proceed in two steps.
Stepl. We prove that {9, } is bounded in X. Let {¢,} C X be a (PS),
2

@
sequence such that ¢ < ﬁ

e For A > 0. Arguing by contradiction, we assume that, passing
eventually to a subsequence, still denote by {¥,}, we have ||¥,| — +o0
as n — +00. Using (@) and (gs), for n large enough, we can write

C+ ||19nH > aj(ﬁn) - <Jl(19n)719n>
1 3 1 2
20<{/AﬁnMﬂﬁ—-l/AﬁnMﬂm
(0 Jo s 20P e = 5 ) gt onP )
1
A/jﬂnﬂﬂdt/kyuﬁndt
rp(t)| | r ( ) )
—qa—@/]wAmmﬂmL/mmmmﬁ—A/meMt
r p(t) r r
- / 9(t, V)V dt
I
0
>a(— —1) [ |A9,[PD dt+
> %+ )F\ |

_ 2
"o [0, de)" A - 1) [ 0 ae - i),
r p r

22 o

where |I'| = [ dt. Therefore, we deduce that

A(

6
C+ [[9all + A(

+ — _ —
DI 2 el = DI+ Bl + )

—C).

Dividing the above inequality by ||J,|[P", taking into account (@)
holds and passing to the limit as n — +o00, we obtain a contradiction.
It follows that {¥,} is bounded in X.

e For A <0. From (B.3) and (gs), for n large enough, we have

—6 1 _
+ =9, I~ — C|r.
20 )2 p+)\| | T

0 .
C+WMZQ%;*UWNP+ﬁ(

It follows from (@) that {9, } is bounded in X.
Step2. Now, we will prove that {¢,,} has a convergent subsequence in
X. Up to a subsequence, for some ¢ € X we have
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¥, =19, in X;

¥ — 9, in LPO(T);
¥, — 0, in LIO(T);
Un(t) — 9(t), a.e. in T.

By Holder inequality and Proposition @, we obtain

’/\ﬂn\p(t)‘Qﬂn(ﬁn ~d)di] < / [P 1, — 9] dt
N T
1
< |[[|9 P ||p(r;<>t31 195 = Olpee)

—0, as n — 4oo,

and then,

lim / |9, [P 209,,(8,, — ) dt = 0. (3.4)
T

n——+00

Now, let € > 0 be small enough. By assumptions (g1) and (g2), we
have

lg9(t, 0n)| < el9alPO 71+ e(e) 911, (3.5)

Using (@), Hoélder inequality and Proposition @, we deduce that

‘/g(t,ﬂn)(ﬁn—ﬁ) | §/e|19n|p(t)_1]19n—u\
T I
+ c(&)|[9n9D 19, — 9| dt
< €|[|9, [PO-1 0 — 0
< ell0aP O~y 19 =Dl

+ (@0l "7 g [19n = Dllgqe)
q(t)—1

—0, as n — oo,

and then,

lim g(t,0n) (0, — V) dt = 0. (3.6)

n——+oo r

From (@), we conclude that

(J (9n), U — ) — 0.
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Therefore
1
J'(0,), 0, —9) = (a — /an<t>dt
(7). 0 = 0) = (@ = 6 | —oslavn® dt)
X / |AY, [PO~2A0,, (AY, — AY) dt
A [ 10O 20,0, = e = [ 60,0, ~0)at
Q

— 0.

So, considering (@) and (@) we obtain
5/ |AD,, [P®) dt /|A19 PO=2 A9, (AY,, — AY) dt — 0.(3.7)

Similar to the proof of Lemma 3.1 in [7], we can deduce that the
sequence

1
— B / —|AY, [P dz b is bounded
@A
and we have
1 (t
— B | —=|A9,|PYdx » 0, as n — +oc.
r p(t)
This fact combined with (@) implies that
/ |AD,[PO2 A0, (AY,, — AD) dt — 0.
r

Since L is of (S1) by Proposition @, we obtain 9, — 9 in X. The
proof is complete. U

3.2. Proof of Theorem B

Lemma 3.4. Assume that g satisfies (g1)- (g3) . Then J satisfies the
Mountain Pass geometry, that is,
(i) there exists p,0 > 0 such that J(¥) > 6 > 0, for any ¥ € X with

101l = p.
(ii) there exists e € X with |le|| > p such that J (e) < 0.

Proof. First we prove the statement (i).
e Assume A < 0. Using (g1) and (gs), we can write

G(t,9)] < I%t)m\p(t) n ;8 (3.8)
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Let € = sa) (0,1) and v € X be such that ||J]] = p. By
Propositions @ , we have

D B[ agp g
J () /Fp( )|A19|p dt -5 </F oA dt>
_ = 9@ g
A/Fp(t)wy dt /FG(t,ﬂ) dt

1 B 1 2 |19’p(t)
Za/Aﬁp(t)dt—</A19p(t)dt> —€
e o Y 2 \ o2 0

ofe ‘19|q(t)
© J o

> (a— ;)/()ymp at—2 (/Fp(lt)mmp(t) dt>2

_Cc_/mg,q(t) dt
r

! _Celo)

€ + - _
> —(a— —)|9IP" — IR 9|4
> o= DI = 5 5191 9]
a B 9p— —pt C’c( ) ot
> _ 9||4P —P 9 q —p 19p
> (3,5 ~ 55,7211 ol =" )i

Considering (@), we can choose p > 0 and then there exists § > 0 such
that J(¥) > § > 0 for every ¥ € X with ||| = p.
e Assume A\ > 0. Let € > 0 be small enough such that 2[)%(0( - /\%) =
€. Counsider p € (0,1) and ¥ € X such that |9 = p. By Propositions
ﬁ and @, we deduce that
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J(ﬁ)—a/olwyp t—§</()|M\p )2
—A/ ——|[9|P® qt /G (t,0)d
> a/rp()\myf“(ﬂ dt — g (/Fp(t)mmp(f) dt>2
-2 ([ )mmp(t)d ) JII g [

A

_ € L|A19|p(t) dxcc(e)/mmq(t)dt
q r

A1 Jr p(t)
1 A € + B op—  Cc(e) -
> (pla— 30 = 5 I = 5o s I = = e
1 A 5 -t CC( ) _ ot +
> (5,70 3) ~ 5P = = I )1l

Considering (B), there exists A* > 0 such that for any A € (0,\*),
there exists § > 0 such that for any ¥ € X with [[¢| = p we have
J(9) >0 >0.

Now, we prove the statement (ii).

By (g3), we know that for all M > 0, there exists Cjps > 0 so that

G(z,9) > M|9|° — Cy, forall (z,9) e T x R. (3.9)

Let ¢ € Cg°(T'), ¢ > 0 and n > 1. Using (@), we obtain
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1 (t) B 1 (t) ’
J(ny) = FflnAsolp dt — 3 FflnAwlp dt

p(t) 2 \Jrp(t)
o A or® gy —
A/Fp(t)lw d /FG(tﬂW) dt

< a/ LMA@p(t) dr — B (/ imAwp(t) dt>2
— Jrp@) 2 \UJr p(t)

1
) / L lnglP® dt — M / nol? dt + CalT)
r p(t) T

+ 20~ 2
an” / ) B (/ ) )
< AplP® gt — AplP® gt

A
i /\solp(t) dz — Mn‘)/ lol? dt + Cu|T].
p r r

Since 6 > 2p~ > pT > p~, we have J(np) — —oo0 as t — +oo.
So, choosing e = ny with 7 > 1 large enough, we obtain |le|| > p and
J(ng) < 0. O

By Lemmas @, @ and the fact that J(0) = 0, J satisfies the Moun-
tain Pass Theorem. Therefore, problem (|l.1) has indeed a nontrivial
weak solution.
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