تعداد نشریات | 30 |
تعداد شمارهها | 467 |
تعداد مقالات | 4,522 |
تعداد مشاهده مقاله | 7,145,308 |
تعداد دریافت فایل اصل مقاله | 5,334,971 |
Numerical approximation based on Bernouli polynomials for solving second-order hyperbolic telegraph equations | ||
Caspian Journal of Mathematical Sciences | ||
مقاله 7، دوره 13، شماره 1 - شماره پیاپی 25، 2024، صفحه 74-93 اصل مقاله (636.54 K) | ||
نوع مقاله: Review Article | ||
شناسه دیجیتال (DOI): 10.22080/cjms.2023.25277.1653 | ||
نویسندگان | ||
Hamideh Abdollahi Lashaki* 1؛ Mashallah Matinfar2؛ Mozhgan Akbari3؛ hany Ahmed4 | ||
1science facaulty, Farhangian University, Mazandarabn, Iran | ||
2University of Mazandaran | ||
3University of Guilan | ||
4Helwan University | ||
تاریخ دریافت: 18 فروردین 1402، تاریخ بازنگری: 10 خرداد 1402، تاریخ پذیرش: 10 تیر 1402 | ||
چکیده | ||
In this paper, a practical matrix method is presented for solving a particular type of telegraph equations. This procedure is based on Bernouli Polynomials. This matrix method with collocation suited nodes, decreases the supposed equations into system of algebric equations with unknown Bernouli coefficients. The obtained system is solved and approximate solutions are achieved. The well-conditioning of problems is also considered. The indicated method creates the well-conditioned problems. Some numerical problems are comprised to confirm the efficacy and fitting of the suggested method. The presented technique is easy to implement and produces accurate results. The precision of the method is demonstrated by measuring the errors between exact solutions and approximate solutions for each problem. | ||
کلیدواژهها | ||
Hyperbolic telegraph equations؛ Bernouli polynomials؛ Operational matrix, Finite difference | ||
آمار تعداد مشاهده مقاله: 94 تعداد دریافت فایل اصل مقاله: 168 |