تعداد نشریات | 30 |
تعداد شمارهها | 467 |
تعداد مقالات | 4,519 |
تعداد مشاهده مقاله | 7,144,860 |
تعداد دریافت فایل اصل مقاله | 5,334,673 |
Numerical approximation for generalized fractional Volterra integro-differential equations via parabolic contour | ||
Caspian Journal of Mathematical Sciences | ||
مقاله 14، دوره 13، شماره 1 - شماره پیاپی 25، 2024، صفحه 189-202 اصل مقاله (159.33 K) | ||
نوع مقاله: Research Articles | ||
شناسه دیجیتال (DOI): 10.22080/cjms.2023.25932.1667 | ||
نویسنده | ||
Shiva Eshaghi* | ||
Department of Basic Science, Kermanshah University of Technology, Kermanshah, Iran | ||
تاریخ دریافت: 05 شهریور 1402، تاریخ بازنگری: 12 شهریور 1402، تاریخ پذیرش: 14 شهریور 1402 | ||
چکیده | ||
In this article, a numerical scheme is constructed to approximate the generalized fractional Volterra integro-differential equations with the regularized Prabhakar derivative. The solution of the problem is represented in the form of inverse Laplace transform in the complex plane. Then we select the parabolic contour as an optimal contour and use trapezoidal rule to approximate the inverse Laplace transform. Next, the performance of the numerical scheme is implemented for an example. Further, we obtain the absolute errors for various parameters by using our numerical scheme on parabolic contour and show that the proposed algorithm for the solution of inverse Laplace transform is a very well algorithm with high order accuracy. | ||
کلیدواژهها | ||
Laplace Transforms؛ Parabolic contour؛ Generalized fractional Volterra integro-differential equations | ||
آمار تعداد مشاهده مقاله: 89 تعداد دریافت فایل اصل مقاله: 69 |