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Abstract. This paper is devoted to the proof of the unique solv-
ability of the inverse problems for second-order differential opera-
tors with regular singularities. It is shown that the potential func-
tion can be determined from spectral data, also we prove a unique-
ness theorem in the inverse problem.
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1. Introduction and Preliminaries

We consider the eigenvalue problems generated by the differential
equation

`j(w) := −w′′ + qj(x)w = µw, x ∈ [0, T ], j = 1, 2, (1.1)
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and boundary conditions

Uj0(w) = 0, Uj1(w) = 0. (1.2)

Here µ = η2 is the eigenvalue parameter, the potential functions qj(x)
are real and have regular singularities.
Inverse spectral problems, in particularly self-adjoint ones, received ex-
tensive in last years such problems often appear in mathematics, me-
chanics, physics, electronics, geophysics, meteorology and other branches
of natural sciences (see [1],[2],[3]).
In 1952 and 1978, Marchenko and Levitan used the transformation to
show that the eigenvalues and norming constants uniquely determine
potential function [10],[8]. On the other hand, a finite number of eigen-
values in one spectrum is unknown, q(x) is not uniquely determined by
one full spectrum and one partial spectrum. This problem was inves-
tigated by Gesztesy and Simon in [6]. In later years, these problems
was studied for regular and singular problem by some authors, [7], [9],
[12], [13]. Freiling and yurko studied an inverse problem of synthesizing
parameters of differential systems having a finite number of arbitrary
order singularities and turning points, and established properties of the
spectral characteristics, also, by using the weyl-function method, they
proved a uniqueness theorem for the solution of the inverse problem
(see[4]).
In [5], the authors considered a second-order differential equation having
singularities at the end-points of the interval and gave formulations of
the inverse problems both for the case of separated and non-separated
singular boundary conditions. Also, some second-order differential op-
erators with arbitrary regular nonseparable boundary conditions were
studied in [5], and it is shown that the operator can be recovered from
three of its spectra. In [11], the authors studied differential systems hav-
ing a finite number of arbitrary order singularities and turning points,
and they fined the asymptotic approximation of the eigenvalues and the
infinite product representation of solutions of the Sturm-Liouville prob-
lem.
The main purpose of this paper is to study inverse spectral problems
for singular Sturm-Liouville expressions in the cases that the potential
function has a regular singularity at x = 0 or inside the interval (0, T ).
Sections 2,3 are devoted to inverse problems for the first case, and in
section 4, we study the inverse problems for boundary value problems
in the second case. For each class of these inverse problems we show
that the potential function can be determined from spectral data and
we prove uniqueness theorems in the inverse problems.
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2. Inverse problems I,II: Boundary value problems with
singularity inside the interval

Let us consider the boundary value problem L1 = L1(q1(x),H) de-
fined by equation

`1y ≡ −w′′ + q1(x)w = µw, x ∈ [0, T ], (2.1)

and the boundary conditions

w′(0, µ) + iηw(0, µ) = 0, w′(T, µ) + hw(T, µ) = 0. (2.2)

where µ = η2 is the spectral parameter, H is a real number, and the
potential function q1(x) is the form

q1(x) =
a

(x− x1)2
+ q0(x),

where a is a real. We assume that q0(x) ∈ L(0, T ). Denote

Ω := {(η, x) : |η(x− x1)| ≥ 1}.

Let F (x, η) be the solution of (3) under the initial conditions

F (0, η) = 1, F ′(0, η) = −iη. (2.3)

From [4], there are fundamental systems of solutions {Hk(x, µ)}k=1,2 of
equation (3), where for each x ∈ [0, T ]\{x1}, the functionsH(ν)(x, µ), ν =
0, 1, are entire in µ. Also for x ∈ [0, T ]\{x1}, (η, x) ∈ Ω, k,m =
1, 2, |η| → ∞

H
(m−1)
k (x, µ) =

1
2
(iη)m−k{exp(iηx)[[1]] + exp(−iηx)[[1]] (2.4)

+(−1)k2i cosπν exp(iη(x− 2x1))[[1]]},

Where [[1]] = 1 + O((η(x − x1))−1). Moreover, H(m−1)
k (0, µ) = δk,m

(δk,m is the Kronecker delta). We will call the functions Hk(x, µ) the
Bessel-type solutions for equation (3). Thus, according to (5) and (6)
we have the following theorem.

Theorem 2.1. Let F (x, η) be the solution of (3) under the initial con-
ditions (5). Then, for x ∈ [0, T ]\{x1}, (x, η) ∈ Ω, |η| → ∞, Imη ≥ 0
and m = 0, 1,

F (m)(x, η) = (−iη)m exp(−iηx)[[1]]− 2i(iη)m cosπν exp(iη(x− 2x1))[[1]],

The functions x 7−→ F (x, µ) are eigenfunctions of L1. The boundary
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value problem L1 has a countable set of eigenvalues {ηn(q, h)}n≥1. It
follows from (2) and theorem 1 that of the problem L1 in the from

ηn =
√
ηn(q, h) =

nπ + π
4

T − x1
+O(

1
n

). (2.5)

Now, we consider the boundary value problem L2 = L2(q1(x)) for equa-
tion (3) with the boundary conditions

w′(0, µ) + iηw(0, µ) = 0, w′(T, µ) = 0. (2.6)

Using theorem 1 and (8) we can calculate the spectrum {µ̃n(q1)}n≥1,
corresponding set of eigenvalues of the problem L2 . The spectrum
{µ̃n(q1)}n≥1 has the asymptotic

η̃n =
√
µ̃n(q1) =

nπ − 3π
4

T − x1
+O(

1
n

). (2.7)

3. Inverse problems and Uniqueness Theorem

In this section, it will be given that one potential q1(x) can be de-
termined from µn(q1, hk), where n is fixed and hk, k ≥ 1, are distinct.

Firstly, according to (7) and (9) we have the following lemma.

Lemma 3.1. Let h is a real number, then

µ̃n(q1) < µn(q, h) ≤ µ̃n+1(q1).

Now, we give the following lemma that required for proof of the
uniqueness theorem. This lemma is a statement of the inverse prob-
lem of the singular Sturm-Liouville operator.

Lemma 3.2. Let µn(q0i , hi), i = 1, 2, are eigenvalues of the problems

−w′′ + (q0i (x) +
a

(x− x1)2
)w = µw,

w′(0, µ) + iηw(0, µ) = 0, w′(T, µ) + hiw(T, µ) = 0.

If for n = 1, 2, 3, ... these eigenvalues satisfy

µn(q01, h1) = µn(q02, h1)
µn(q01, h2) = µn(q02, h2),

then q01 = q02.

The following uniqueness theorem is the main result of this section.
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Theorem 3.1. Let q01(x), q
0
2(x) ∈ L2(0, T ). Assume that hk for k =

1, 2, 3, ... are real distinct numbers and

µn(q01, hk) = µn(q02, hk),

then q01 = q02.

Proof. For each λ, let ψi(x) = ψ(x, q0i , µ), i = 1, 2, be the solution of
problem

− w′′ + (q0i (x) +
a

(x− x1)2
)w = µw, , (3.1)

with the conditions

w′(0, µ) + iηw(0, µ) = 0, w′(T, µ) = 0, (3.2)

Then, by using (11) it has been the Sturm identity for Sturm-Liouville
problem

ψ(x, q01, µ){ψ′′(x, q02, µ)− [q02(x) +
a

(x− x1)2
]ψ(x, q02, µ)} (3.3)

−ψ(x, q02, µ){ψ′′(x, q01, µ)− [q01(x) +
a

(x− x1)2
]ψ(x, q01, µ)}

= {q01(x)− q02(x)}ψ(x, q01, µ)ψ(x, q02, µ) + [ψ(x, q01, µ)ψ′(x, q02, µ)

− ψ(x, q02, µ)ψ′(x, q01, µ)]′ = 0.

Now, to facilitate some softwares , we use the simplified notation

λk = µn(q01,Hk) = µn(q02,Hk), k = 1, 2, ....

Inserting µ = λk in (11) and integrating from 0 to T , we get for k =
1, 2, ..., ∫ T

0
(q01 − q02)ψ(x, q01, λk)ψ(x, q02, λk)dx = 0.

For fixed x, it can be shown that

S(µ) :=
∫ T

0
(q01 − q02)ψ(x, q01, µ)ψ(x, q02, µ)dx

Is analytical function of µ then S(µ) ≡ 0. Now, we will show that all of
the eigenvalues of problem L1 and all of the eigenvalues of problem L2

are the same for the q0(x) = q0i (x), i.e., we will show that for n = 1, 2, ...,

η̃n(q01) = η̃n(q02), (3.4)

ηn(q01, 0) = ηn(q02, 0). (3.5)
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then from lemma 2 we would be able to conclude that q01 = q02. For
proving (14), (15),we return to the identity (11) and get that when
η = ηn(q01, 0), then ψ(1, q01, ηn(q01, 0)) 6= 0 while ψ′(1, q01, ηn(q01, 0)) = 0 .
Integrating (11) from 0 to T and using S(µ) ≡ 0 we must have
ψ′(1, q02, ηn(q01, 0)) = 0, n = 1, 2, ..., this implies that each ηn(q01, 0) is
an eigenvalue for L. Similarly set η = η̃n(q01) in the identity (11) and
doing the above process we conclude that (11) holds. Then, the proof is
complete.

4. Inverse problems III,IV: The inverse problem for the
singularity type A

x2

In this section we consider the eq.(3) in the case the potential func-
tions A

x2 + p1(x) where A is a real number and p1(x) ∈ L2(0, T ). In this
case from [?], for the interval (0, T ] there exist two linearly independent
solutions z1(x, η), z2(x, η) of the equation (3) satisfying

zk(x, η) = dkη
−µk(e−iπµk+iηx[1]0 + e−iηx[1]0), (4.1)

where µk := (−1)kν + 1
2 , k = 1, 2, d0

1d
0
2 = − 1

4i sin πν .

Let L3 = L3(p1(x), r1, ζ1) be the inverse problem of the from

`2y ≡ −y′′ + (p1(x) +
A

x2
)y = βy, (4.2)

with the conditions

y′(0, β)− r1y(0, β) = 0, y′(T, β) + ζ1y(T, β) = 0, (4.3)

where r1, ζ1 ∈ R. Now, we consider u(x, β) be the solution of (17) that

u(T, β) = 1, u′(T, β) = −ζ1. (4.4)

Theorem 4.1. Let u(x, τ) be the solution of (17) now, with the boundary
conditions u′(0)− r1u(0) = 0,

u(x, τ) =
d10τ

−µ10

2τ2(exp(−iπµ10)− exp(−iπµ20))
{(− exp(−iτx)− exp(iτx− iπµ10))(r1 + iτ)

+(exp(iτx)− exp(−iτx− iπµ20))(r1 − iτ)
+(exp(−iτx) + exp(iτx− iπµ20))(r1 + iτ)

+(exp(−iτx− iπµ10)− exp(iτx))(r1 − iτ)}.

Proof. For fixed x ∈ (0, T ], use (15) and (18) we determine the
connection coefficient a1, a2 with

u(x, τ) = a1z1(x, τ) + a2z2(x, τ), (4.5)

where β = τ2. Substituting the estimates of z1 and z2 from (15) we get
the solution u(x, τ) for x ∈ (0, T ].
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Now, let us consider L3 := L3(p1(x), r1, ζ1) with the boundary condition

u′(0, τ)− r1u
′(0, τ) = 0. (4.6)

Applying theorem 3 and (21), we obtain the following estimates for the
eigenvalues of inverse problem L3

τn =
√
βn(p1, r1, ζ1) =

nπ + π
4 + π

2 ν

T
+O(

1
n

).

Similarly, for the problem L4 := L4(p1, r2, ζ2), r2, ζ2 ∈ R, for the differ-
ential equation

− y′′ + (
A

x2
+ p1(x))y = β̃y, (4.7)

with the conditions

y′(0, β̃)− r2y(0, β̃) = 0, y′(T, β̃) + ζ2y(T, β̃) = 0, (4.8)

there exists a countable set of eigenvalues {β̃n}n≥1 of the from

τ̃n =
√
β̃n(p1, r2, ζ2) =

nπ + π
4 −

π
2 ν

T
+O(

1
n

).

Corollary 4.2. Let p1(x) ∈ L2(0, T ), then for all ζ2 ∈ R,

τ̃n(p1, r1, ζ1) < τn(p1, r2, ζ2) ≤ τ̃n+1(p1, r1, ζ1). (4.9)

Thus, we have the following theorem.

Theorem 4.3. Let ζk, k ∈ N , are real numbers and for p1
1(x), p

1
2(x) ∈

L2(0, T ),

βn(p1
1, r1, ζ

k
2 ) = βn(p1

2, r2, ζ
k
2 ), k ∈ N

then p1
1 = p1

2.

Proof. For each λ, let θi(x) = θ(x, p1
i , β), (i = 1, 2) be the solution

of problem

− y′′ + (p1
i (x) +

A

x2
)y = βy, (4.10)

y′(0, β)) = 0, y′(T, β) + ζ1y(T, β) = 0, (4.11)

then, we substitute for θi(x) = θ(x, p1
i , β), in (24) and (25), The calcu-

lations have

= {p1
1(x)− p1

2(x)}θ(x, p1
1, β)θ(x, p1

2, β) (4.12)

+[θ(x, p1
1, β)θ′(x, p1

2, β)− θ(x, p1
2, β)θ′(x, p1

1, β)]′ = 0.

Now, to facilitate some softwares , we use the simplified notation

ιk = βm(p1
1, Sk) = βm(p1

2, Sk), k = 1, 2, ... .
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Inserting β = ιk in (26) and integrating from 0 to T , we get for k =
1, 2, ..., ∫ T

0
(p1

1 − p1
2)θ(x, p

1
1, ιk)θ(x, p

1
2, ιk)dx = 0.

Now, we will show that all of the eigenvalues of problem L3 with r1 = 0
and all of the eigenvalues of problem L4 are the same for the p1 = p1

i ,
i.e., we will show that for m = 1, 2, ...,

τ̃m(p1
1) = τ̃m(p1

2), (4.13)

τm(p1
1, 0) = τm(p1

2, 0). (4.14)

we would be able to conclude that p1
1 = p1

2.

References

[1] K. Daho and H. Langer, Sturm-Liouville operators with an indefinite weight func-
tion, Proc. Roy. Soc. Edinburgh, 78A (1977), 161-191.

[2] A. A. Dorodnicyn, Asymptotic laws of distribution of the characteristic values
for certain special forms of differential equations of the second order, Tamsui
Oxford Journal of Mathematical Sciences., 25 (2009), 277-283.

[3] M. V. Fedoryuk, Asymptotic Analysis, Springer-Verlag, Berlin,1993.
[4] G. Freiling and V. Yurko, On the determination of differential equations with

singularityes and turning points, Results in Mathematics, 41 (2002) 275-290.
[5] G. Freiling and V. Yurko, Boundary value problems with regular singularities and

singular boundary conditions., Int. Journal. Math. Math. Sci, (2005), 1481-1495.
[6] F. Gesztesy and B. Simon, Uniqueness theorems in inverse spectral throry for

one dimensional Schrodinger operators, Trans. Amer. Math. Soc., 348(1996),
349-373.

[7] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications
of Fractional Differential Equations, North-Holland Mathematical Studies, Vol.
204, Elsevier (North-Holland) Science Publishers, Ameterdam, London and New
York, 2006.

[8] B. M. Levitan, On the determination of the Sturm-Liouville operator from one
and two spectra, Math. USSR Izvestija, 12 (1978), 179-193.

[9] S-D. Lin, W.-C. Ling, K. Nishimoto, and H. M. Srivastava, A simple fractional-
calculus approach to the solutions of the Bessel differential equation of general
order and some of its applications, Comput. Math. Appl., 49 (2005), 1487-1498.

[10] V. A. Marchenko, Certain problems of the theory of one dimensional linear dif-
ferential operators of the second order I, Trudy Mosk. Math Obshch., 1 (1952),
327-340.

[11] A. Neamaty and S. Mosazadeh, On the canonical solution of Sturm-Liouville
problem with singularity and turning point of even order,Canad. Math. Bull, 54
(2011), no. 3, 506-518.

[12] E. S. Panakhov and H. Koyunbakan, Inverse problem for singular Sturm-Liouville
operator, Proceeding of IMM of NAS of Azerbaijan, (2003), 113-126.

[13] P.-Y. Wang, S.-D. Lin, and H. M. Srivastava, Remarks on a simple fractional-
calculus approach to the solutions of the Bessel Dierential equation of general
order and some of its applications, Comput. Math. Appl., 51 (2006), 105-114.


	1. Introduction and Preliminaries
	2. Inverse problems I,II: Boundary value problems with singularity inside the interval
	3. Inverse problems and Uniqueness Theorem
	4. Inverse problems III,IV: The inverse problem for the singularity type Ax2
	References

