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Abstract. We show how Daubechies wavelets are used to solve
Kuramoto-Sivashinsky type equations with periodic boundary con-
dition. Wavelet bases are used for numerical solution of the Kuramoto-
Sivashinsky type equations by Galerkin method. The numerical re-
sults in comparison with the exact solution prove the efficiency and
accuracy of our method.
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1. INTRODUCTION

In this work, we consider the Kuramoto-Sivashinsky (KS) type equa-
tions

ut + uux + αuxx + βuxxx + γuxxxx = 0, a ≤ x ≤ b, t ≥ 0 (1.1)

where α, β and γ are real constants. KS equation was derived from Ku-
ramoto in order to study dissipative structure of reaction-diffusion[12].
This equation was originally derived from the context of plasma instabil-
ities, flame front propagation, and phase turbulence in reaction-diffusion
system [16]. It is one of the simplest partial differential equations which
is capable of exhibiting chaotic behavior. The chaotic behavior typically
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occurs when Eq.(1.1) is integrated over finite x-domain with a periodic
boundary condition.

Equation (1.1) is called Burgers equation if β = γ = 0. This equation
is often used to test numerical methods because an analytical expression
for its solution is available for different sets of boundary and initial
conditions. However, some researchers call it KdV-Burgers-Kuramoto
(KBK) equation[10, 14].

The KS equation has been studied numerically by many researchers,
see [9, 11, 13, 22]. Also many methods have been developed to construct
the exact solutions of KS equation. For more details readers are referred
to [20, 23].

Wavelet analysis is a numerical concept which allows one to represent
a function in terms of a set of basis functions, called wavelets, which are
localized both in location and scale. In wavelet applications to the solu-
tion of partial differential equations the most frequently used wavelets
are those with compact support introduced by Daubechies [6]. Several
studies explored the sage of Daubechies wavelets to solve partial differ-
ential equations such as [3, 8, 17, 18, 21].

The goal of this project is to find the numerical solution of Kuramoto-
Sivashinsky type equations by using Daubechies scaling functions as a
spatial approximation for derivatives of u. Many different methods could
be applied for time discretization most of which are based on a Taylor
series expansion in time such as backward Euler, Crank-Nicolson or Leap
frog methods. Here, we introduce a three-step method based on a Taylor
series proposed in [17] as follow



u(x, t+ ∆t
3 ) ' u(x, t) +

∆t

3

∂u

∂t
(x, t)

u(x, t+ ∆t
2 ) ' u(x, t) +

∆t

2

∂u

∂t
(x, t+ ∆t

3 )

u(x, t+ ∆t) ' u(x, t) + ∆t
∂u

∂t
(x, t+ ∆t

2 ).

(1.2)

So this scheme involves neither complicated expression nor higher order
derivatives.

The organization of the paper is as follows. In Section 2, as a back-
ground, fundamental properties of Daubechies wavelet functions and
connection coefficients are described. In Section 3, we show how wavelets
are used to solve KS type equations with periodic boundary condition.
Some noteworthy numerical examples are presented in Section 4. Fi-
nally, Section 5 provides conclusions of the study.
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2. Daubechies wavelets

2.1. Basic properties. In this section, the basic properties of Daubechies
scaling functions and wavelet functions are reviewed. Before that we
mention a basic definition in wavelet analysis which is called multires-
olution analysis and Daubechies wavelets conform to the properties of
multiresolution analysis. For details see [1].

A multiresolution analysis of L2(R) is defiend as a sequence of closed
subspaces [6] if the following conditions hold:

(1) . . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . . ⊂ L2(R)
(2) ∪jVj = L2(R)
(3) ∩jVj = {0}
(4) f(x) ∈ Vj ⇔ f(2−jx) ∈ V0

(5) there exists a φ(x) ∈ V0 such that {φ(x− k) : k ∈ Z} is an or-
thonormal basis in V0.

Daubechies wavelets have the remarkable properties that they are
closely supported, orthogonal under translation and dilation and contin-
uous. To define Daubechies wavelets, consider the two functions φ(x),
the scaling function, and ψ(x), the wavelet function. The scaling func-
tion is the solution of the dilation equation

φ(x) =
√

2

N−1∑
k=0

akφ(2x− k)

where N is an even positive integer and is called the wavelet genus and
φ(x) is normalized such that:

∫∞
−∞ φ(x)dx = 1. The wavelet ψ(x) is

defined in terms of the scaling function

ψ(x) =
√

2
N−1∑
k=0

bkφ(2x− k)

where bk = (−1)kaN−1−k for k = 0, 1, · · · , N − 1. The scaling function is
uniquely characterized by the numbers a0, a1, · · · , aN−1 which are called
filter coefficients. This choice of filter coefficients implies that

supp(φ) = supp(ψ) = [0, N − 1].

The translates of the scaling function and wavelet define orthogonal
subspaces

Vj = span{φj,k(x) = 2
j
2φ(2jx− k) : k ∈ Z}

and
Wj = span{ψj,k(x) = 2

j
2ψ(2jx− k) : k ∈ Z}

such that Wj is the orthogonal complement of Vj in Vj+1, i.e.,

Vj+1 = Vj
⊕

Wj . (2.1)
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Relation (2.1) implies that

V0 ⊂ V1 ⊂ · · · ⊂ Vj+1.

Now consider two spaces VJ0 and VJ , where J > J0. Applying (2.1)
recursively we find that

VJ = VJ0
⊕

(

J−1⊕
j=J0

Wj). (2.2)

Since we have defined VJ for J < 0, we can keep going the decomposition
in (2.2) for J0 −→ −∞ and J −→∞ and obtain [1]

L2(R) =
⊕
j∈Z

Wj .

According to the multiresolution analysis definition (part 1 and 2),
any function f ∈ L2(R) can be expanded in terms of scaling functions.
PVjf , projection of f into the subspace Vj , has the following expansion

(PVjf)(x) =

∞∑
l=−∞

cj,lφj,l(x)

where

cj,l = 〈f, φj,l〉 (2.3)

and (PVjf) −→ f as j −→∞ [7].

In addition, if the projection of f onto the subspace Wj is denoted by
PWj , then from Eq. (2.2), it follows

PVJf = PVJ0f +
J−1∑
j=J0

PWjf, J > J0. (2.4)

The decomposition (2.4) is orthogonal, as, by construction [8],

〈φj,k, φj,l〉 = δk,l, (2.5)

〈ψj,k, ψi,l〉 = δj,iδk,l,

〈ψj,k, φi,l〉 = 0, j ≥ i.

Another important property of the Daubechies scaling functions is its
ability to represent polynomials exactly up to degree N

2 − 1. More pre-
cisely, it is required that [5]

xp =

∞∑
k=−∞

Mp
kφ(x− k), x ∈ R and p = 0, 1, · · · , N

2
− 1 (2.6)
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where

Mp
k =

∫ ∞
−∞

xpφ(x− k)dx, k ∈ Z and p = 0, 1, · · · , N
2
− 1

Mp
k denotes the pth moment of φ(x − k) and Eq. (2.6) is called mo-

ment equation. This property has been used numerously in computing
connection coefficients.

Lemma 2.1. Let f ∈ L2(R) be the periodic function with period p.
Then periodicity in f induces periodicity in the wavelet coefficients in
(2.3) with period 2j, i.e.,

cj,l+2jp = cj,l.

Hence there are only 2j distinct periodized wavelets coefficients. The
proof of this lemma is found in [15].

2.2. Connection coefficients. In general form, an n-term connection
coefficient is defined as

Γd1,d2,··· ,dnj,l1,l2,··· ,ln =

∫ ∞
−∞

n∏
i=1

φ
(di)
j,li

(x)dx.

Since the Daubechies wavelet functions can not be represented in closed
form for N > 2, analytic calculation of the integrals is not an option.
Latto, Resnikoff and Tenenbaum described an exact method for evalu-
ating connection coefficients [4]. In this paper two and three term con-
nection coefficients are used such that, respectively, have representation
as follow

Γ0,d
0,0,l = Γdl =

∫ ∞
−∞

φ(x)φ
(d)
l (x)dx, l ∈ [2−N ,N − 2] (2.7)

and

Γd1,d20,0,l,m = Γd1,d2l,m =

∫ ∞
−∞

φ(x)φ
(d1)
l (x)φ(d2)

m (x), (2.8)

where

l = 2−N, · · · , N−2, m = max(2−N, 2−N+l), · · · ,min(N−2, N−2+l).

Since Daubechies wavelets have compact support, there are finite
nonzero terms for both two and three term connection coefficients. So
the shift parameters, l and m, in (2.7) and (2.8) are restricted. Con-
nection coefficients, their properties and computational algorithms are
described in [4, 5].
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3. Numerical solutions of the KS type equations

3.1. Discretization in time. Consider Eq. (1.1) with initial value

u(x, 0) = u0(x)

and periodic boundary condition

u(x, t) = u(x+ L, t).

Assume that n ≥ 0, ∆t denote the time step such that tn = n∆t and
u(x, tn) = un, the numerical method begins with discretization of the
time by the three-step method as in Eq. (1.2),

un+ 1
3 = un +

∆t

3
[−ununx − αunxx − βunxxx − γunxxxx],

un+ 1
2 = un +

∆t

2
[−un+ 1

3u
n+ 1

3
x − αun+ 1

3
xx − βun+ 1

3
xxx − γu

n+ 1
3

xxxx], (3.1)

un+1 = un + ∆t[−un+ 1
2u

n+ 1
2

x − αun+ 1
2

xx − βun+ 1
2

xxx − γu
n+ 1

2
xxxx].

3.2. Discretization in space. After time discretization, the spatial
derivatives of u is approximated by Daubechies scaling functions. Actu-
ally Galerkin method utilizes in this part. In Galerkin method a finite
number of functions called basis functions are chosen to approximate the
exact solution. Here Galerkin bases are constructed from Daubechies
functions. For more details about Galerkin method see [19].

Let the solution uJ(x, tn) of the problem be approximated by its J th

level wavelet series at time tn, i.e.,

uJ(x, tn) =

∞∑
k=−∞

(cu)J,k(tn)φJ,k(x) =

∞∑
k=−∞

(cu)nJ,kφJ,k(x). (3.2)

Substituting the wavelet series approximation uJ in Eq. (3.2) with its
necessary spatial derivatives for u, ux, uxx,uxxx and uxxxx in first equa-
tion of (3.1), yields
∞∑

k=−∞
(cu)

n+ 1
3

J,k φJ,k(x) =
∞∑

k=−∞
(cu)nJ,kφJ,k(x)

+
∆t

3

(
−

∞∑
k=−∞

(cu)nJ,kφJ,k(x)

∞∑
m=−∞

(cu)nJ,mφ
(1)
J,m(x)

− α
∞∑

k=−∞
(cu)nJ,kφ

(2)
J,k(x)− β

∞∑
k=−∞

(cu)nJ,kφ
(3)
J,k(x)

− γ
∞∑

k=−∞
(cu)nJ,kφ

(4)
J,k(x)

)
(3.3)
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For completing Galerkin method, take the inner product from both sides

of Eq. (3.3) with {φJ,l(x)}2J−1
l=0

(cu)
n+ 1

3
J,l = (cu)nJ,l +

∆t

3

(
−

∞∑
k=−∞

∞∑
m=−∞

(cu)nJ,k(cu)nJ,mΓ0,0,1
J,l,k,m

− α
∞∑

k=−∞
(cu)nJ,kΓ

0,2
J,l,k − β

∞∑
k=−∞

(cu)nJ,kΓ
0,3
J,l,k

− γ
∞∑

k=−∞
(cu)nJ,kΓ

0,4
J,l,k

)
. (3.4)

Using the change of variable (2jx − l) → x, n1 = k − l and n2 = m − l
in Eq. (3.4) and by using the properties of connection coefficients, this
equation can be written

(cu)
n+ 1

3
J,l = (cu)nJ,l +

∆t

3

(
− 2

3J
2

N−2∑
n1=2−N

η2∑
n2=η1

(cu)nJ,n1+l(cu)nJ,n2+lΓ
0,0,1
n1,n2

− 22Jα

N−2∑
n1=2−N

(cu)nJ,n1+lΓ
0,2
n1

− 23Jβ

N−2∑
n1=2−N

(cu)nJ,n1+lΓ
0,3
n1

− 24Jγ

N−2∑
n1=2−N

(cu)nJ,n1+lΓ
0,4
n1

)
(3.5)

where
η1 = max(2−N ,n1 + 2−N)

and
η2 = min(N − 2 , N − 2 + n1).

A matrix vector form of Eq. (3.5) is

c
n+ 1

3
u = cnu+

∆t

3

(
−(cnu)TH(cnu)−αD(2)cnu−βD(3)cnu−γD(4)cnu

)
(3.6)

where

[H]<n1+l>
2J
,<n2+l>

2J
= 2

3J
2 Γ0,0,1

n1,n2
, l = 0, 1, · · · , 2J − 1,

[Dd]l,<n1+l>
2J

= 2JdΓ0,d
n1
, n1 = 2−N, · · · , N − 2,

[cnu] = [(cu)nJ,0 , · · · , (cu)nJ,2J−1]

and

n2 = max(2−N ,n1 + 2−N), · · · ,min(N − 2 , N − 2 + n1).
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Here < n >p is the modulus operator [2] which is defined as

< n >p= n− pbn
p
c, n, p ∈ Z.

We can obtain vector coefficients c
n+ 1

3
u of the approximate solution from

Eq. (3.6). To determine the vector coefficients c
n+ 1

2
u , cn+1

u the same
manner should be taken for the second and third equations in Eq. (3.1).
The solution cnu gives the coefficients in the approximation uJ(x, tn) of
u(x, tn).

4. Numerical examples

Exercise 4.1. In this example, we consider the KS equation with pe-
riodic boundary condition, represented by α = γ = 1 and β = 4. The
exact solution is [22]

u(x, t) = c0 + 9− 15
(

tanh θ + tanh2 θ − tanh3 θ
)

;

with θ = k(x− x0 − ct). This solution is evaluated at t = 0, as the ini-
tial condition. The L∞ error is obtained in Table (1) for the presented
method in different values of J and time with ∆t = 0.002.

Table 1. Accuracy for Example 4.1

c = 6, k = 1
2
, x0 = −10, N = 6, [a, b] = [−100, 100]

J t L∞
4 0.02 0.0856

0.14 0.4316

0.26 0.5351

5 0.02 0.0006
0.14 0.0031

0.26 0.0043

6 0.02 3.2× 10−5

0.14 1.7× 10−4

0.26 2.4× 10−4

Exercise 4.2. Consider Eq.(1.1) with α = γ = 0 and β = 0.0013. The
exact solution is [18]

u(x, t) = 3c sech2(

√
c

4β
(x− ct)).

The L∞ and L2 errors are obtained in Table (2) for the presented method
in different values of t and J .
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Table 2. Accuracy for Example 4.2

c = 1
3
, a = −2, b = 2, ∆t = .001 , N = 6.

J t L∞ L2

4 0.02 10−4 2× 10−4

0.14 8× 10−4 18× 10−4

0.26 11× 10−4 26× 10−4

5 0.02 3.74× 10−5 7.16× 10−5

0.14 2.75× 10−4 5.104× 10−4

0.26 5.2630× 10−4 9.461× 10−4

5. CONCLUSIONS

In this paper we presented a numerical scheme for solving the Kuramoto-
Sivashinsky type equations. The method employed to find the numerical
solutions of these equations is based on the Daubechies scaling functions.
This method was applied on two test problems from the literature. The
computational results are found to be in good agreement with the exact
solutions.
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