- Vahedi, M., Khoshnoudian, F., Fallahian, M., & Shadan, F. (2021). Structural damage identification incorporating uncertain boundary flexibility by ensemble couple sparse coding classification method. European Journal of Environmental and Civil Engineering, 25(6), 1093–1118. doi:10.1080/19648189.2019.1570346.
- Taghavi, B., Shadan, F., Mahmoudabadi, M., & Fakharian, A. (2024). Damage Identification Of structures Based on Frequency Response Function (FRF) By Bayesian Method. Journal of Structural and Construction Engineering, 11(5).
- Hassani, S., & Shadan, F. (2022). Using incomplete FRF measurements for damage detection of structures with closely-spaced eigenvalues. Measurement: Journal of the International Measurement Confederation, 188(110388). doi:10.1016/j.measurement.2021.110388.
- Fallahian, M., Khoshnoudian, F., Talaei, S., Meruane, V., & Shadan, F. (2018). Experimental validation of a deep neural network—Sparse representation classification ensemble method. Structural Design of Tall and Special Buildings, 27(15). doi:10.1002/tal.1504.
- Yang, J. Y., Xia, B. H., Chen, Z., Li, T. L., & Liu, R. (2020). Vibration-based structural damage identification: A review. International Journal of Robotics and Automation, 35(2), 123–131. doi:10.2316/J.2020.206-0259.
- Shadan, F., Khoshnoudian, F., & Esfandiari, A. (2018). Structural Damage Identification Based on Strain Frequency Response Functions. International Journal of Structural Stability and Dynamics, 18(12), 1850159. doi:10.1142/s0219455418501596.
- Wolff, T., & Richardson, M. (1989). Fault detection in structures from changes in their modal parameters. Proceedings of the 7th international modal analysis conference, 30 January- 2 February, 1989, Las Vegas, United States.
- Pandey, A. K., Biswas, M., & Samman, M. M. (1991). Damage detection from changes in curvature mode shapes. Journal of Sound and Vibration, 145(2), 321–332. doi:10.1016/0022-460X(91)90595-B.
- Kim, J. T., & Stubbs, N. (2002). Improved damage identification method based on modal information. Journal of Sound and Vibration, 252(2), 223–238. doi:10.1006/jsvi.2001.3749.
- Salawu, O. S. (1997). Detection of structural damage through changes in frequency: a review. Engineering Structures, 19(9), 718–723. doi:10.1016/s0141-0296(96)00149-6.
- Lin, R. M., & Ewins, D. J. (1994). Analytical model improvement using frequency response functions. Mechanical Systems and Signal Processing, 8(4), 437–458. doi:10.1006/mssp.1994.1032.
- Shadan, F., Khoshnoudian, F., & Esfandiari, A. (2015). A frequency response-based structural damage identification using model updating method. Structural Control and Health Monitoring, 23(2), 286–302. doi:10.1002/stc.1768.
- Shadan, F., Khoshnoudian, F., Inman, D. J., & Esfandiari, A. (2016). Experimental validation of a FRF-based model updating method. Journal of Vibration and Control, 24(8), 1570–1583. doi:10.1177/1077546316664675.
- Avci, O., Abdeljaber, O., & Kiranyaz, S. (2021). An Overview of Deep Learning Methods Used in Vibration-Based Damage Detection in Civil Engineering. Dynamics of Civil Structures, Volume 2, 93–98. doi:10.1007/978-3-030-77143-0_10.
- Delgadillo, R. M., Tenelema, F. J., & Casas, J. R. (2023). Bridge damage analysis under joint environmental and operational variability. Structure and Infrastructure Engineering, 1–19. doi:10.1080/15732479.2023.2243248.
- Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Gabbouj, M., & Inman, D. J. (2021). A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications. Mechanical Systems and Signal Processing, 147(107077). doi:10.1016/j.ymssp.2020.107077.
- Mehrjoo, M., Khaji, N., Moharrami, H., & Bahreininejad, A. (2008). Damage detection of truss bridge joints using Artificial Neural Networks. Expert Systems with Applications, 35(3), 1122–1131. doi:10.1016/j.eswa.2007.08.008.
- Yuen, K. V., & Lam, H. F. (2006). On the complexity of artificial neural networks for smart structures monitoring. Engineering Structures, 28(7), 977–984. doi:10.1016/j.engstruct.2005.11.002.
- Devin, A., & Fanning, P. (2011). Non-load bearing elements and their contribution to a structure’s dynamic response. Experimental Vibration Analysis for Civil Engineering Structures (EVACES 2011), 3-5 October, Lake Como, Italy.
- Skolnik, D., Lei, Y., Yu, E., & Wallace, J. W. (2006). Identification, model updating, and response prediction of an instrumented 15-story steel-frame building. Earthquake Spectra, 22(3), 781–802. doi:10.1193/1.2219487.
- Kurent, B., Ao, W. K., Pavic, A., Pérez, F., & Brank, B. (2023). Modal testing and finite element model updating of full-scale hybrid timber-concrete building. Engineering Structures, 289(116250). doi:10.1016/j.engstruct.2023.116250.
- Skolnik, D., Yu, E., Wallace, J., & Taciroglu, E. (2007). Modal system identification and finite element model updating of a 15-story building using earthquake and ambient vibration data. Structural Engineering Research Frontiers, 1–14. doi:10.1061/40944(249)74.
- Hadianfard, M. A., Jahangiri, M., & Shojaei, S. (2022). The effects of non-structural components on the dynamic characteristics and vulnerability of concrete structures using ambient vibration tests and Nakamura’s criterion. Soil Dynamics and Earthquake Engineering, 162(107492). doi:10.1016/j.soildyn.2022.107492.
- Jahangiri, M., Hadianfard, M. A., & Shojaei, S. (2022). Microtremor measurements for assessing the influences of non-structural components on the modal properties and vulnerability of steel structures. Measurement, 201, 111750. doi:10.1016/j.measurement.2022.111750.
- Devin, A., & Fanning, P. J. (2012). The evolving dynamic response of a four storey reinforced concrete structure during construction. Shock and Vibration, 19(5), 1051–1059. doi:10.1155/2012/260926.
- Ventura, C. E., Lord, J. F., & Simpson, R. D. (2002, June). Effective use of ambient vibration measurements for modal updating of a 48 storey building in Vancouver, Canada. International Conference on “Structural Dynamics Modeling–Test, Analysis, Correlation and Validation, 3-5 June, 2002, Madeira Island, Portugal.
- Ventura, C., Laverick, B., Brincker, R., & Andersen, P. (2003). Comparison of dynamic characteristics of two instrumented tall buildings. The International Modal Analysis Conference, 3-6 February, 2003, Kissimmee, United States.
- Turek, M., Thibert, K., Ventura, C., & Kuan, S. (2006). Ambient vibration testing of three unreinforced brick masonry buildings in Vancouver, Canada. Proceedings of the 24th International Modal Analysis Conference (IMAC), 30 January-2 February, Saint Louis, USA.
- Li, Q. S., Yang, K., Zhang, N., Wong, C. K., & Jeary, A. P. (2002). Field measurements of amplitude-dependent damping in a 79-storey tall building and its effects on the structural dynamic responses. Structural Design of Tall Buildings, 11(2), 129–153. doi:10.1002/tal.195.
- Shirazi, H., Shadan, F., & Fouladi, M. Q. (2024). Studying the effect of the weight of non-structural components on the dynamic behavior of truss bridges. The 12th national conference of structure and steel and the first conference of steel rolling mills of Iran, 11 december, 2023, Tehran, Iran. (In Persian).
- Fausett, L. V. (2006). Fundamentals of neural networks: architectures, algorithms and applications. Pearson Education India, Noida, India.
- Seibi, A., & Al-Alawi, S. M. (1997). Prediction of fracture toughness using artificial neural networks (ANNs). Engineering Fracture Mechanics, 56(3), 311–319. doi:10.1016/s0013-7944(96)00076-8.
|