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On quasi-catenary modules
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Abstract. We call a module M , quasi-catenary if for each pair of
quasi-prime submodules K and L of M with K ⊂ L all saturated
chains of quasi-prime submodules of M from K to L have a common
finite length. We show that any homomorphic image of a quasi-
catenary module is quasi-catenary. We prove that if M is a module
with following properties:
(i) Every quasi-prime submodule of M has finite quasi-height;
(ii) For every pair of K ⊂ L of quasi-prime submodules of M ,
q − height(L/K) = q − height(L) − q − height(K);
then M is quasi-catenary.

Keywords: Catenary module; quasi-prime submodule; quasi-catenary
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1. INTRODUCTION

In this paper all rings are commutative with identity and all modules
are unitary. A strictly increasing (or decreasing) chain K0 ⊂ K1 ⊂ . . . ⊂
Kn of (quasi-)prime (ideals) submodules of (a) an (ring) R-module M
is said to be saturated if there does not exist any (quasi-)prime (ideal)
submodule strictly contained between any two consecutive terms. Recall
that a ring R is catenary if the following condition is satisfied: for any
prime ideals p and p′ of R with p ⊂ p′, there exists a saturated chain
of prime ideals starting from p and ending with p′ and all such chains
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have the same finite length. A proper ideal I of R is called quasi-
prime, provided J ∩ L ⊆ I for ideals J, L of R, implies that J ⊆ I or
L ⊆ I(see [2] and [4]). In this work, we call a ring R, quasi-catenary,
if for each quasi-prime ideals p and q of R with p ⊂ q, there exists a
saturated chain of quasi-prime ideals starting from p and ending at q
and all such chains have the same finite length. Let R be a ring and M
an R-module. A proper submodule K of M is called prime if am ∈ K
implies m ∈ K or aM ⊂ K, for a ∈ R, m ∈ M . S. Namazi and H.
Sharif generalized the concept of catenary rings to catenary modules
(see [6] and [7]). A module M is called (quasi-)catenary if for each pair
of (quasi-)prime submodules K and L of M with K ⊂ L all saturated
chains of (quasi-)prime submodules of M from K to L have a common
finite length. They investigated some properties of such modules. We
say that a (quasi-)prime submodule K of M has (q-)height n, if there
exists a chain K0 ⊂ K1 ⊂ . . . ⊂ Kn = K of (quasi-)prime submodules
Ki (0 ≤ i ≤ n) of M , but no such longer chain exists. Otherwise, we say
that it has an infinite (quasi-)height. We shall denote the (quasi-height)
height of K by (qht(K)) ht(K). It is defined that h−dim(M) to be the
supremum of the heights of all prime submodules of M . If M has no
prime submodule, it is defined to be h − dim(M) = −1. Based on this
definition we use the notion qh − dim(M) for the supremum of the q-
heights of all quasi-prime submodules of M and if M has no quasi-prime
submodule we set qh− dim(M) = −1.

2. QUASI-PRIME IDEALS AND SUBMODULES

In this section we will study quasi-prime ideals and submodules which
are a generalization of prime ideals and submodules. A proper ideal I
of a ring R is said to be quasi-prime if for each pair of ideals A and B
of R, A ∩ B ⊆ I yields either A ⊆ I or B ⊆ I (see [2] and [4]). Clearly
every prime ideal is a quasi-prime ideal.

A ring R is Laskerian, if each ideal has a finite primary decomposition.
Let R be a ring with just one prime ideal m such that mn = 0. Then R
is Laskerian. In particular, every Noetherian ring is Laskerian.

Some properties of quasi-prime ideals of a ring are listed below.

Proposition 2.1. ([4, Lemma 2.2] and [1, Remark 2.2]) Let I be an
ideal in a ring R. Then
(1) If I is quasi-prime, then I is irreducible (I is not the intersection of
two ideals of R that properly contain it);
(2) If R is a Laskerian ring, then every quasi-prime ideal is a primary
ideal;
(3) If I is a prime ideal, then I is quasi-prime;
(4) Every proper ideal of a serial ring is quasi-prime;
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(5) If R is an arithmetical ring, I is irreducible if and only if I is quasi-
prime;
(6) If R is a Dedekind domain, then I is quasi-prime if and only if I is
a primary ideal.
(7) Every primary principal ideal of a UFD, is quasi-prime.

Definition 2.2. A proper submodule N of an R-module M is called
quasi-prime if (N :R M) is a quasi-prime ideal of R. (see [1])

We define the quasi-prime spectrum of an R-module M to be the set
of all quasi-prime submodules of M and denote it by qSpec(M). Recall
from [5], the set of prime submodules of a module M is called spectrom
of M denoted by Spec(M). Also, the set of maximal submodules of M
is denoted by Max(M).

Remark 2.3. Let M be an R-module.
(1) By [6, Proposition 4], every maximal submodule of an R-module M is
prime, so that every prime submodule of M is a quasi-prime submodule.
Therefore, Max(M) ⊆ Spec(M) ⊆ qSpec(M).
(2) Consider M = Z⊕Z as a Z-module and N = (2, 0)Z a submodule of
M . Then (N : M) = (0) ∈ Spec(Z), i.e., N ∈ qSpec(M) though N is not
a (0)-prime submodule of M . Thus in general, Spec(M) 6= qSpec(M).

We say that R is a uniserial ring if the set of all ideals of R is linearly
ordered and a ring R is serial, if it is a direct sum of uniserial rings.
Recall that a ring R is said to be arithmetical, if for any maximal ideal
P of R, RP is a serial ring. Recall that a module M is said to be
a Laskerian module, if every proper submodule of M has a primary
decomposition.

Lemma 2.4. ([1, Lemma 2.4]) Let M be an R-module and let S be a
multiplicatively closed subset of R.
(1) If {Nλ}λ∈Λ is a family of quasi-prime submodules with (Nλ :R M) =
J for each λ, then N =

⋂
λ∈ΛNλ is a quasi-prime submodule of M such

that (N :R M) = J ;
(2) If M is a fully prime module (every proper submodule of M is prime),
then every proper submodule of M is quasi-prime. In particular, every
proper subspace of a vector space over a field is quasi-prime;
(3) If R is a uniserial ring, then every proper submodule of M is quasi-
prime;
(4) Let N be a quasi-prime submodule of the RS-module MS. Then
N ∩M is a quasi-prime submodule of M ;
(5) Let R be an arithmetical ring. Then every primary submodule of M
is quasi-prime.

A quasi-prime submodule need not be prime as following example
shows.
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Example 2.5. (1) Every proper submodule of the Z-module M = Z(p∞)

is a quasi-prime submodule, in which p is a prime integer. We note that
Spec(M) = ∅.

(2) It is known that (pn) is a primary ideal of Z. So by Proposition
2.1(7), (pn) is quasi-prime. But it is not prime.

3. QUASI-CATENARY RINGS AND MODULES

In this section we define and study quasi-catenary rings and modules.
We investigate some properties of these new classes of rings and modules.

Definition 3.1. We call a ring R, quasi-catenary, if for each quasi-prime
ideals p and q of R with p ⊂ q, there exists a saturated chain of quasi-
prime ideals starting from p and ending at q and all such chains have
the same finite length.

Clearly every quasi-catenary ring is catenary since every prime ideal
is quasi-prime.

Recall from [5, Theorem 11.2], that a ring R is a discrete valuation
ring (DV R for short) if and only if R is local principal ideal domain
which is not a field.

Example 3.2. If the ideals of R are linearly ordered, then each ideal in
R is quasi-prime. So, for example, if R is either a DV R or a homomor-
phic image of a DV R, then each ideal in R is quasi-prime. In particular,
if F is a field, X is an indeterminate, and n is a positive integer, then
each ideal in R = F [[X]] = (Xn) is quasi-prime. Now let p ⊂ q be two
ideals of a DV R, R. Since each ideal of R, is a power of m, unique
maximal ideal of R, there exists a unique saturated chain of ideals of
R, p = mr ⊂ mr+1 ⊂ . . . ⊂ ms−1 ⊂ ms = q and since R is Noetherian,
its length is finite. So R is quasi-catenary. In particular, every field is a
quasi-catenary ring.

Definition 3.3. We call a module M , quasi-catenary (q-catenary for
short) if for each pair of quasi-prime submodules K and L of M with
K ⊂ L, all saturated chains of quasi-prime submodules of M from K to
L have a common finite length.

Since every prime submodule is a quasi-prime submodule, every quasi-
catenary module is catenary.

Example 3.4. It is easy to check that any vector space is q-catenary if
and only if it is a finite dimension.

Proof. Let V be a q-catenary vector space over a field F . Then V is a
catenary vector space. By [6, Example 2.1(ii)], V is a finite dimension.
In contrast, let V be a finite dimensional vector space over F such that
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K and L are (quasi-prime) submodules of V with K ⊂ L. Since V is ar-
tinian and noetherian, by Jordan-Holder Theorem, every two saturated
chains of (quasi-prime) submodules of V has equal finite lengths. �

Remark 3.5. Let M be an R-module and N ⊂ K be submodules of
M , then K is a quasi-prime submodule of M if and only if K/N is a
quasi-prime submodule of the R-module M/N .

Proof. Let K ≤ M be quasi-prime. Since (K/N :R M/N) = (K :R
M), then (K/N :R M/N) is a quasi-prime ideal of R. The converse is
similar. �

We call a module M , homogeneous semisimple if M =
⊕

i∈IMi where
each Mi

∼= N is a simple R-module.

Proposition 3.6. Let M be a module such that every submodule of M
is quasi-prime. If M is Artinian and Noetherian, Then M is q-catenary.
In particular every finitely generated homogeneous semisimple (e.g. ev-
ery finitely generated semisimple module over a local ring) module is
q-catenary.

Proof. Let M be a module such that every submodule of M is quasi-
prime. Now let K ⊂ L be two submodules of M . Since every saturated
chain of quasi-prime submodules of M between K and L is a saturated
chain of quasi-prime submodules of M/K by Remark 3.5 and M/K is
Noetherian and Artinian, by Jordan-Holder Theorem, every two satu-
rated chains of quasi-prime submodules has a finite common length. For
the second part, let M = M1⊕. . .⊕Mn, where all M1, . . . ,Mn are simple
and isomorphic to each other. Then Ann(M) = m is a maximal ideal of
R. By [3, Porposition 1.10], every submodule of M is quasi-prime. The
rest is similar. �

In [6, Lemma 2.2], it is shown that any homomorphic image of a
catenary module is catenary. We have the similar result for q-catenary
modules.

Lemma 3.7. Any homomorphic image of a q-catenary module is q-
catenary.

Proof. This follows from the fact that for any R-module M with N ⊂
K ⊂M , (K :R M) = (K/N :R M/N) and Remark 3.5. �

Recall that a moduleM has a distributive set of submodules or is called
a distributive module, in case for every submodules L,K,N ofM we have
N + (K ∩L) = (N +K)∩ (N +L) or N ∩ (L+K) = (N ∩L) + (N ∩K).

The following lemma gives us a sufficient condition for a module to
be q-catenary over a distributive ring.
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Lemma 3.8. Let R be a ring such that RR has a distributive lattice
of ideals and M be a q-catenary R-module. Then for each quasi-prime
submodule K of M with (K :R M) = p, the R/p-module M/K is q-
catenary.

Proof. Let L/K ⊂ L1/K ⊂ . . . ⊂ T/K be a saturated chain of quasi-
prime submodules of R/p-module M/K. Since RR is distributive, each
Li is a quasi-prime submodule of M . Hence we have a saturated chain
of quasi-prime submodules of M namely, L ⊂ L1 ⊂ . . . ⊂ T . Since M is
q-catenary all these chains have common finite length. Therefore, M/K
is q-catenary as a R/p-module. �

Proposition 3.9. Let M be an R-module and 0 ≤ qh − dim(M) ≤ 2,
then M is q-catenary.

Proof. For the case qh − dim(M) = 0 or 1 the proof is obvious. Let
qh − dim(M) = 2 and K ⊂ L be quasi-prime submodules of M . Then
there can be just one quasi-prime submodule between K and L. Hence
all saturated chains of quasi-prime submodules of M from K to L have
length 2. So in this case also M is q-catenary. �

In the above proposition every simple R-module is q-catenary.

Proposition 3.10. Let M be an R-module such that every quasi-prime
submodule of M has a finite q-height. If K ⊂ L of quasi-prime submod-
ules of M , we have qht(L/K) = qht(L)− qht(K) for each pair, then M
is q-catenary.

Proof. LetK ⊂ L be quasi-prime submodules ofM . Since n = qht(L/K) <
∞, there exists a saturated chain of quasi-prime submodules of M from
K to L of length n. Now let K = K0 ⊂ K1 ⊂ . . . ⊂ Km = L be
any saturated chain of quasi-prime submodules of M . We show that
m = n. Since there is no quasi-prime submodule of M between Ki and
Ki+1, we have qht(Ki+1/Ki) = 1 and hence qht(Ki+1) = qht(Ki) + 1,
for i = 0, 1, . . . ,m − 1. So qht(L) = qht(K) + m. Thus m = qht(L) −
qht(K) = qht(L/K) = n. �

It is easy to see that if M is an R-module with qh− dim(M) ≥ 0 and
for each pair K ⊂ L of quasi-prime submodules of M with qht(K) ≤
qht(L)−2, there exists a quasi-prime submodule N such that K ⊂ N ⊂
L, then M is q-catenary.

Lemma 3.11. Let ϕ : R→ R′ be a ring epimorphism. Let M be an R-
module such that (kerϕ)M = 0. Then M is an R′-module and we have
M is a q-catenary R-module if and only if M is a q-catenary R′-module.

Proof. It is clear since K is a quasi-prime R-submodule of M if and only
if K is a quasi-prime R′-submodule of M . �
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Corollary 3.12. Let M be an R-module and I be an ideal of R such
that IM = 0. Then M is a q-catenary R/I-module if and only if M is
a q-catenary R-module.

Example 3.13. Let R be a Noetherian ring and m be a maximal ideal
of R. Then M = m/m2 is a q-catenary R/m-module, hence M is a
q-catenary R-module.

Proof. Since M is a finite dimensional vector space over the field R/m,
it is q-catenary by Example 3.4. So the result supports Lemma 3.11. �
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