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 Abstract: 

Sea surface temperature fronts, narrow strips on the ocean's surface with significant temperature 

changes, play a crucial role in marine ecosystems and climate regulation. This study compares 

the Single Images Edge Detection (SIED) and Canny algorithms in detecting sea surface 

temperature fronts in the Caspian Sea using MODIS satellite images from 2015 to 2019. The 

SIED algorithm, a population-based method, identified fronts by statistically analyzing 

temperature histograms within a 32×32-pixel window. In contrast, the Canny algorithm, a 

gradient-based method, detected fronts by calculating temperature gradients at each pixel. Both 

algorithms revealed seasonal and spatial variations in temperature fronts, with the highest 

presence of fronts detected during the winter months. The SIED algorithm found the lowest 

presence of stable fronts in the northern Caspian in September and April and the southern Caspian 

in November, March, and April. The Canny algorithm showed the lowest presence in June, 

March, and August. SIED detected the highest presence of stable fronts in November and 

December in the northern Caspian Sea and in January in the southern Caspian Sea. The Canny 

algorithm identified the highest presence during the first three months of the winter monsoon. 

Both algorithms consistently detected fronts along the eastern coasts of the Middle and South 

Caspian, with significant fronts near the Garabogazköl Basin and Turkmenbashi Gulf. Despite 

differences in detection, both methods revealed similar general patterns of temperature fronts. 
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1. Introduction 

A temperature front is a narrow strip on the ocean's surface 

where significant changes in surface temperature occur [1]. 

These fronts separate two bodies of water with different 

temperatures [2]. Recent studies indicate that ocean surface 

temperature fronts impact Earth's climate by influencing the 

stability of the atmospheric boundary layer, pressure fields, 

and atmospheric baroclinicity [3]. Additionally, these fronts 

trap suspended sediments and nutrients, creating an ideal 

environment for phytoplankton growth. Consequently, 

these areas are biodiversity hotspots [4]. 

Various physical processes in the oceans create different 

types of fronts, such as those formed by river water entering 

the sea [2], merging tidal currents [5], coastal and open sea 

upwelling [6], boundary currents [7, 8], and bathymetry [9]. 

Detecting temperature fronts is crucial for marine sciences, 

as they are critical indicators for meteorological studies, 

sea-atmosphere interactions, and marine ecosystems. These 

fronts also support biological productivity, attracting fish, 

birds, and marine mammals, which is essential for fisheries 

and biology. Understanding temperature fronts is essential 

for studying marine ecosystems and sea hydrodynamics [2]. 

The Caspian Sea, the world's largest enclosed water body, 

spans approximately 1160 km from north to south. It is 

divided into three parts: North Caspian, Middle Caspian, 

and South Caspian, based on its physical and geographical 

conditions. Global warming and human activities, such as 

indiscriminate river harvesting, have significantly altered 

the Caspian Sea's hydrodynamic regime and climate [10, 

11]. These long-term changes highlight the need to monitor 

the Caspian Sea's oceanographic features, including 

temperature fronts. Without field measurement data, 

satellite data is a valuable alternative [11]. 

Remote sensing has become an efficient, cost-effective, 

and accessible tool for marine studies, providing valuable 

long-term data. One of the most critical marine parameters 

measured by remote sensing is ocean surface temperature, 

which is crucial for understanding climate change and 

Earth's ecosystem. Various sensors, such as the MODIS 

sensor on NASA's Aqua satellite, measure water 
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temperature at the ocean's surface and are excellent for 

detecting sea surface temperature fronts [12]. 

Algorithms for detecting temperature fronts are generally 

categorized into population-based and gradient-based 

methods. The population-based algorithm identifies a front 

as a line separating two or more clusters within a region, 

typically spanning 16 pixels in each direction. In contrast, 

the gradient-based method uses changes in the gradient over 

a smaller range (1 to 3 pixels) to detect fronts. The SIED 

method, which is based on the population-based algorithm, 

identifies and extracts temperature fronts by statistically 

analyzing the histogram of water surface temperature values 

within a 32×32-pixel window. This method compares the 

average water surface temperature in different regions to 

identify two distinct water masses. The coherence between 

these masses is then checked to confirm the presence of a 

front, indicating two separate water bodies on either side 

[13]. 

One of the gradient-based algorithms for detecting fronts 

is the Canny algorithm. These algorithms calculate the 

gradient of sea surface temperature (SST) data, highlighting 

areas with significant temperature changes. The gradient 

magnitude is computed at each pixel, and regions with high 

gradient values are identified as potential fronts. This 

method effectively detects thermal fronts associated with 

various oceanographic phenomena such as upwelling, 

eddies, and boundary currents [14]. 

Kostianoy et al. [11] utilized remote sensing to study the 

seasonal and annual changes in the water surface 

temperature of the Caspian Sea, focusing on the North, 

South, and Middle Caspian regions, as well as the 

Garabogazköl Basin. The study revealed an average annual 

water temperature increase in the Middle and South Caspian 

regions across all seasons. From 1982 to 2015, the warming 

rates were 0.05°C and 0.04°C per year for the Middle and 

South Caspian, respectively, significantly higher than the 

previous twenty-year period's rate of 0.01°C per year. 

Despite the challenges posed by freezing the North Caspian 

Sea, similar warming trends are inferred due to temperature 

correlations across the Caspian Sea. This warming is 

attributed to global climate change. The study also explored 

other features observable via remote sensing, such as the 

temperature fronts in the Caspian Sea, particularly during 

the cold season. Mesoscale eddies in the Middle Caspian 

Sea, influenced by the warm waters from the South Caspian, 

move northward during the cold period. Conversely, 

southward currents spread cold, fresh waters from the North 

Caspian to the Middle Caspian. These interactions create 

temperature fronts in the Middle Caspian. Upwelling, 

another phenomenon affecting temperature fronts, varies 

between the western and eastern parts of the Caspian Sea. 

Satellite images show that upwelling is influenced by 

factors like depth, coastline features, prevailing winds, and 

current directions, as well as seasonal thermoclines, water 

mixing, and local eddies [11]. 

The SIED algorithm, developed by Cayula and Cornillon 

[15], was initially designed to identify fronts in sea surface 

temperature (SST) images and was first applied to study the 

Gulf Stream using AVHRR and NOAA-7 satellite images 

[15]. This algorithm has since been utilized in studies 

involving various sensors, including the NOAA sensor [16], 

the AVHRR Pathfinder sensor [1], and the Terra and Aqua 

sensors from the MODIS satellite [17]. Nieto et al. [18] 

evaluated different methods for detecting fronts in satellite 

images and highlighted the advantages of the SIED 

algorithm, particularly its superior detection of weaker 

temperature fronts [18]. Using SST data from the AVHRR 

satellite, Ullman and Cornillon [16] compared the SIED 

algorithm with MIED and gradient methods. Their findings 

indicated that the SIED algorithm was more efficient 

regarding error rate and success in identifying fronts [16]. 

The SIED algorithm's use of a variable-sized window 

enhances its adaptability to coastlines, making it an 

excellent choice for extracting temperature fronts in coastal 

areas. This adaptability is key to its effectiveness and 

widespread application in various remote sensing studies 

[19]. 

Ren et al. [20] developed a gradient-based algorithm to 

identify sea surface temperature (SST) fronts within the 

high-resolution South China Sea Operational Forecasting 

System (SCSOFS). This algorithm enhances the Canny 

edge detection method with post-processing to extract 

primary ocean fronts accurately. The study revealed that 

most fronts are situated near the coast, extending from the 

Taiwan Strait to the coasts of Vietnam, with strong seasonal 

signals influencing their variability [20]. Karami et al. [21] 

conducted a study titled "Detection of the Coastal 

Temperature Fronts of the Persian Gulf and the Sea of Oman 

Using MODIS Images." Their research demonstrated that 

most temperature fronts formed in dynamic regions aligned 

with ocean currents. They identified five stable temperature 

front areas far from the coast and eight near the coast. 

Additionally, the study determined the times of the year 

with the highest and lowest presence of temperature fronts 

in these waters [21]. 

The present study focused on extracting and comparing the 

temperature fronts of the Caspian Sea across its northern, 

middle, and southern regions. Applying the SIED and 

CANNY algorithms to five years of MODIS satellite 

images, the fronts were extracted and analyzed spatially and 

temporally. Finally, the fronts extracted by SIED and Canny 

methods were compared. 

2. Material and methods 

The current research focuses on the Caspian Sea, between 

latitudes 37-47°N and longitudes 47-55°E. Covering an area 

of 436,400 square kilometers, the Caspian Sea is the largest 

lake in the world. Five countries—Iran, Azerbaijan, Russia, 

Kazakhstan, and Turkmenistan—have access to the Caspian 

Sea [10]. Figure 1 illustrates the location of the Caspian Sea 

and its bordering countries and bathymetric contour. 
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Figure 1. Location of the study area (Caspian Sea) 

This study utilized images from the MODIS sensor, 

renowned for measuring ocean surface temperatures. The 

sensor's spectral range spans 0.4-14.4 μm, making it highly 

valuable for environmental science applications. MODIS 

offers spatial resolutions of 250 meters for bands 1 and 2, 

500 meters for bands 3 to 7, and 1000 meters for the 

remaining 29 bands. Its imaging width of 2330 km allows 

for global coverage within 1-2 days. Key features include 

12-bit radiometric sensitivity, 36 spectral bands, and 

advanced geometric correction. The presence of multiple 

thermal bands makes MODIS ideal for studying 

temperature fronts [22]. The Caspian Sea's surface 

temperature was analyzed monthly from 2015 to 2019, 

identifying temperature fronts using the SIED and Canny 

methods. In addition to spatial surveys, the temporal 

analysis involved comparing images from three periods 

each year. 

The SIED algorithm employs statistical analysis of 

temperature distribution (water surface temperature 

histogram) to identify different water masses and their 

boundaries, known as temperature fronts. 32 x 32 pixels 

moving window scans the image, detecting bimodal 

temperature distributions. When a bimodal distribution is 

found, the average temperatures of the two water masses are 

calculated and compared to a predefined threshold. A front 

is confirmed if the temperature difference exceeds the 

threshold; otherwise, the window moves to the next section. 

The threshold value varies based on window size and image 

noise level, optimized to reduce false and missed detections 

[23]. 

The SIED algorithm involves several steps: 1) Filtering out 

cloudy or invalid pixels using a cloud filtering algorithm, 2) 

Applying a median filter with a 3x3 moving window to 

remove noise, 3) Using a histogram algorithm to detect 

bimodal distributions within a 32x32 moving window in 16 

steps, 4) Applying a spatial correlation algorithm to 

determine if two populations are spatially separated, 5) 

Identifying front pixels in windows where water masses are 

sufficiently separated, and 6) Using a counter-following 

algorithm to extend recognized fronts to adjacent pixels 

with similar conditions [24]. The SIED algorithm, 

developed by Cayula and Cornillon [15], operates in three 

main stages: image, window, and pixel. The image stage is 

influenced by cloud cover. In the window stage, histogram 

analysis is conducted on square windows, and the resulting 

data is used in the pixel stage to identify front pixels through 

minimization. Initially, the algorithm assesses whether each 

window contains a single mass or body. If masses are 

detected, a threshold is chosen to separate these bodies [15]. 

When a binomial distribution is identified within a 

window, a correlation algorithm is employed to verify if the 

pixels of the two clusters are adequately separated. This 

correlation coefficient is utilized in two phases: first, for a 

single water mass, and second, for the correlation between 

two adjacent water masses. The correlation coefficient for 

the water mass W1 is calculated as C1=R1⁄T1, where (R1) 

represents the total correlation value between the central 

pixel of W1 and its neighboring pixels, and (T1) is the total 

correlation value within W1. The optimal correlation 

coefficients are dependent on the histogram window size. 

The minimum correlation between two water masses, W1 

and W2, is calculated as C=(R1+R2) ⁄ (T1+T2). For a 32×32 

histogram window, Cayula and Cornillon [15] determined 

this value to be 0.92. This calculation is crucial for 

distinguishing between different water masses in satellite 

imagery [15, 25]. 

The Canny algorithm is a method for detecting edges and 

analyzing their features based on differentiation, which is 

particularly useful in coastal areas [26]. This algorithm is 

susceptible to image noise, necessitating noise removal 

from the initial image before edge extraction. Typically, a 

simple mask or Gaussian filter is used for this purpose. The 

mask size (Gaussian width) affects edge detection accuracy, 

requiring an appropriate size selection. A threshold (T), a 

real number between zero and one, is considered, and for 

points with Gaussian values less than (T), the equation 𝑇 =
exp(𝑋2(2 × 𝜎2)) is applied. The smoothing degree is 

determined by sigma [20, 27, 28]. 

After noise removal, edge strength (gradient) can be 

obtained using the Sobel algorithm in both X and Y 

directions. For each block, the gradient magnitude is 

calculated using the formula |𝐺| = √𝐺𝑥
2 + 𝐺𝑦

2, where the 

magnitude (G) indicates edge strength [20, 27]. The edge 

direction for each block is determined using the formula 𝜃 =

𝑇𝑎𝑛−1(𝐺𝑥 𝐺𝑦⁄ ). Only angles of 0, 45, 90, and 135 degrees are 

considered edge directions. 

To prevent errors, two thresholds, high (T2) and low (T1), 

are used for edge detection. Pixels with values less than T1 

are not considered edges, while those with values greater 

than T2 are considered edges. If a pixel's value is between 

T1 and T2, it can be viewed as an edge under specific 

conditions, such as connectivity to edge pixels [20, 28]. 

This study leveraged the practical capabilities of the Canny 

and SIED algorithms to analyze MODIS sensor images over 
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a five-year period (2015-2019). Both algorithms were 

applied to extract temperature fronts in the Caspian Sea. A 

primary objective of this research was to compare the results 

obtained from the Canny and SIED methods. The 

temperature fronts were extracted and analyzed on a 

monthly basis, providing insights into the temporal 

variations and patterns in the Caspian Sea. 

3. Result 

This section presents the monthly temperature fronts 

obtained from satellite images using the SIED and Canny 

algorithms. These temperature fronts are categorized into 

three distinct time periods: summer (June to September), 

winter (October to January), and pre-summer (February to 

May). The results are compared chronologically within 

these periods. Additionally, by zoning the Caspian Sea and 

analyzing the characteristics of the fronts in each region, we 

provide a spatial comparison of the temperature fronts. This 

approach allows for a detailed examination of regional 

variations and patterns in the Caspian Sea's temperature 

fronts. 

3.1. SIED Method 

An analysis of the number of temperature fronts detected 

in the Caspian Sea revealed that the summer period (June to 

September) had the fewest fronts over the five-year research 

period. During this time, temperature fronts primarily 

formed along the coasts of Russia, Kazakhstan, and 

Turkmenistan, with no fronts observed along the coasts of 

Iran and Azerbaijan. The fronts that did form during the 

summer were mostly small and coastal. The largest front 

during this period, measuring 230 km, changed shape in 

September 2016. Additionally, a consistent front of about 

200 km was observed annually along the Russian coast, and 

a stable front was noted along the Turkmenistan coast. 

The highest number of temperature fronts detected 

throughout the research period occurred during the winter 

(October to January). The most and largest fronts were 

observed in 2018, with the largest front measuring nearly 

400 km off the coast of Russia. Generally, fewer fronts 

formed in October, but their number and size increased in 

November, December, and January. A relatively large and 

stable front was consistently present along the coast of 

Kazakhstan during these months. The Turkmenistan front 

was one of the most frequent. It sometimes extended from 

the Garabogazköl Basin to the southern shores of the 

Caspian Sea, occasionally reaching the coast of Iran, 

particularly in December. The Azerbaijan fronts typically 

formed during the warmer months of this period, while the 

Russian coasts saw fronts of varying numbers and sizes. 

During the pre-summer season (February to May), long, 

coherent, branched, and scattered fronts were occasionally 

observed. February had the highest number of fronts, with a 

general decline in front formation as the season progressed. 

Although most fronts from previous months disappeared 

during the pre-summer period, some fronts in Kazakhstan, 

Turkmenistan, and Russia persisted. For example, the 

Azerbaijan front in 2017 extended from 220 km in January 

to 400 km in February, reaching the coast of Iran. Fronts 

detected in March and April were extremely limited, with 

no significant fronts observed in March 2016 and 2019, 

except for a few small fronts in the northern Caspian Sea. 

Figure 2 shows the SIED-detected fronts in the Caspian Sea 

from December 2015 to 2019. 

 

 

Figure 2. Temperature fronts detected in December from 

2015 to 2019 

For spatial analysis, the temperature fronts of the Caspian 

Sea over five years (2015-2019) were identified using the 

SIED algorithm and divided into five spatial regions, as 

shown in Figure 3. In Region One, temperature fronts were 

observed in most months of the study period, except 

September. In Region Two, temperature fronts remained 

stable in most months except for February and March. 

Throughout the five years, fronts were consistently present 

in the Garabogazköl Basin and Turkmenbashi Gulf in June. 

September had the fewest temperature fronts across all five 

regions. In October, temperature fronts began to form 

gradually, with those in Region Two advancing towards the 

southern shores of the Caspian Sea. By November, these 

fronts extended to the coasts of Golestan province in Iran. 

In January, the fronts became more coherent and moved 

closer to the coast. During this month, the fronts in Regions 

Three and Four, which appeared in three of the five years, 
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extended significantly, with Region Three's front reaching 

380 km and Region Four's front reaching 360 km in 2018. 

The temperature fronts in Region Four, which were not 

observed before November, formed this month, reaching a 

length of 280 km in 2018. Over the years, the fronts in all 

five regions showed little consistency, being detected 

mainly in June and July in several years and weakly in 

August, September, and November. Figure 4 illustrates the 

monthly temperature fronts extracted using the SIED 

algorithm across the five regions and years. 

 

 

Figure 3. The main regions of stable temperature fronts 

identified by the SIED algorithm 

 

June July August 

   
September October November 

   
December January February 

   
March April May 
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Figure 4. Monthly interpretation of temperature fronts detected by the SIED algorithm in different years 

3.2. Canny Algorithm 

During summer, several temperature fronts were identified 

using the Canny algorithm. The formation of these fronts 

was more pronounced in June and July, but their number 

gradually decreased towards the end of July and September. 

The fronts formed in the southern Caspian Sea during this 

period were more coherent and extended towards the coastal 

areas. In August, most fronts were observed along the coasts 

of Kazakhstan, Turkmenistan, and Iran, with almost no 

fronts detected along the coast of Azerbaijan. Although the 

fronts off the coast of Russia were generally short and 

scattered, a significant front over 350 km long was detected 

in September 2017. 

In the winter period (October to January), more fronts, 

mostly in clusters, began to form. Coastal fronts along 

Kazakhstan and Turkmenistan were consistently detected in 

October throughout the five-year study period. In 

November, several fronts formed, but their locations varied. 

In December 2017, a unique front approximately 300 km 

long formed 60 km off the coast of Turkmenistan. Similarly, 

in December 2016, a front about 200 km long was detected 

30 km off the coast of Iran (Mazandaran province). 

During the pre-summer period (February to May), various 

types of long, coherent, branched, and discrete fronts were 

observed. The fronts along the coast of Azerbaijan in 

February were among the most stable and frequent during 

the five-year study period. In March, fronts off the coast of 

Russia were observed consistently, being more coherent in 

2015-2016 and more scattered in 2017-2019. Several fronts 

also formed along the southern shores of the Caspian Sea in 

May. Figure 5 shows the Canny-detected fronts in the 

Caspian Sea from November 2015 to 2019. 

 
 

Figure 5. Sea surface temperature fronts detected by Canny 

algorithm in November from 2015 to 2019 

The analysis of temperature fronts detected by the Canny 

algorithm identified six main regions with monthly stable 

fronts, as shown in Figure 6. In Region 1, temperature fronts 

form in most months except January, remaining stable as 

coastal fronts throughout the year. In Region 2, temperature 

fronts generally do not remain continuous throughout the 

year; they form in May and persist until December, 

appearing sporadically. Region 3 only shows a continuous 
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presence of fronts in March. In Region 4, temperature fronts 

are detected consistently, except in August. In Region 5, 

fronts form in September and are consistently observed in 

October and November. Region 6 exhibits a stable presence 

of temperature fronts during two three-month periods: 

September to November and March to May. For the rest of 

the year, fronts are detected sporadically. Figure 7 illustrates 

the monthly temperature fronts extracted by the Canny 

algorithm across the six regions and years. 

 

Figure 6. Zoning of sea surface temperature fronts detected 

by Canny algorithm 
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Figure 7. Sea surface temperature fronts separated by year and region 

4. Discussion and Results 

The SIED algorithm indicated that the lowest presence of 

stable fronts in the northern half of the Caspian Sea occurs 

in September and April, while in the southern half, it is in 

November, March, and April. In contrast, the Canny 

algorithm showed that the lowest presence of stable fronts 

in the Caspian Sea is in June, March, and August. 

The SIED algorithm revealed that the highest presence of 

stable fronts in the northern half of the Caspian Sea is in 

November and December (summer monsoon). In the 

southern half, it is in January (the last month of the winter 

monsoon). According to the Canny algorithm, the highest 

presence of fronts in the Caspian Sea is during the first three 

months of the winter monsoon. Both algorithms identified a 

relatively stable front in most months along the eastern coast 

of the Caspian in the middle and northern regions. 

Both algorithms showed significant fronts for the Middle 

Caspian eastern coasts, particularly near the Garabogazköl 

Basin and Turkmenbashi Gulf. Relatively stable fronts were 

detected throughout the year on the eastern coast of the 

South Caspian. The SIED algorithm revealed unstable but 

sometimes very long fronts on the western coast of the 

South Caspian, whereas the Canny algorithm showed stable 

fronts in this region. 

The fronts detected on the eastern coast of the northern half 

of the Caspian Sea were unstable with both methods and 

were only present for several months after the warm season. 

However, the timing of these fronts' formation differed 

slightly between the two methods. Both algorithms detected 

the highest presence of fronts during the warm season and 

very weak and unstable fronts for the rest of the year in the 

northern regions of the Caspian. The stable presence of 

fronts lasted longer in the Canny algorithm compared to the 

SIED algorithm. 

Despite differences in the formation time, size, shape, 

extent, and duration of the fronts identified by the two 

methods, the general pattern of the fronts was very similar. 

By comparing the results and examining the time and 

location of the fronts, it was observed that most fronts 

identified by both methods occurred in specific areas of the 

Caspian Sea. One such area is the eastern coast of the 

Middle Caspian, where the possibility of the upwelling 

phenomenon is high, according to Mansoury and 

Sadrinasab [29] and Shiea and Bidokhti [30]. Another area 

corresponds to the steep regions of the seabed (Figure 1), 

particularly in the South Caspian, which has the greatest 

depth changes. Both methods also showed a high number of 

temperature fronts along the eastern and western coasts of 

the Middle Caspian, where numerous surface gyres are 

present [31]. 

5. Conclusion 

By comparing the results obtained from the SIED and 

Canny methods, it becomes evident that the Canny 

algorithm detects a significantly higher number of fronts 

compared to the SIED method. This difference is 

particularly pronounced in coastal fronts and the southern 

Caspian fronts. Despite temporal and spatial discrepancies 

between the fronts detected by these two methods, certain 

dominant patterns emerge. First, the locations of the largest 

and strongest fronts identified by both methods largely 

coincide. Second, the most prominent and intense fronts 

detected by both methods are aligned with bathymetric 

lines. Third, both methods consistently revealed significant 

fronts in the eastern and western regions of the Middle 

Caspian. Overall, the findings indicate that the Canny 

algorithm is more effective in identifying local and transient 

fronts, especially in coastal areas, whereas the SIED method 

is better suited for detecting dominant and stable fronts. 
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