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Abstract: 

In this study, an Active tendon control system is employed to reduce the dynamic responses of a 

two-dimensional frame. Different placement or arrangement of active tendons generates different 

structural responses. By means of optimization methods, the best placement and arrangement of 

controllers would be found, which leads to minimum dynamic responses and, eventually, the least 

cost of fabrication. To determine the number and arrangement of controllers in the two-

dimensional frame that was considered both shear and non-shear manner, the genetic algorithm 

has been used, hence; to measure the controller force, four different algorithms, including Classic, 

Instantaneous, modal, and pole assignment has been applied, and a comparison has been carried 

out about the influence of these algorithms as the control algorithms. Furthermore, the time delay 

effect of the control force on the optimized number and locations of the controllers has been 

explored. Moreover, the effect of different responses of the structure, for instance, peak inter-

story drift, absolute peak acceleration, or peak displacement as the variable of optimization 

equations, has been demonstrated. Besides, by examining different earthquake time histories and 

various levels of peak ground acceleration, in the structure case study, the influence of different 

dynamic loads was surveyed. 
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1. Introduction 

Active control techniques have been developed to reduce 

structural damage and improve safety, meanwhile accepting 

design and performance restrictions under different seismic 

excitation or wind loads. A new approach has been opened 

to optimization problems by considering the construction 

and maintenance cost of building and installation as well as 

the cost of structure control. 

The number and placements of controllers and control 

forces are essential parameters in optimization problems. In 

this regard, some restrictions, such as maximum 

displacement or acceleration, are usually imported into this 

problem. Discreteness in the nature of the control 

environment, discreteness in the number and location of 

controllers and sensors, the robustness of control devices, 

the non-linear pattern of actively controlled structures, and 

the multi-modality of systems are the most significant 

features of this design problem that should be solved in 

multi-level. 

The problem of optimal number and placements of 

controllers has been studied by several researchers in 

different aspects such as optimization algorithm, variables, 

the objective function, the design constraints, active control 

algorithm, actively controlled structures, etc. Some of the 

most practical controllers are active tendon mechanisms 

(ATM), smart material, and active tuned mass damper 

(ATMD) [1]. Pantelides and Cheng [2] proposed two 

optimal location indices, including a control energy 

performance index and a response performance index, in 

order to find optimal placements of controllers in two-

dimensional (2D) frames. Li et al. [3] took into 

consideration the complicated optimal design problem of 

integrating the number of actuators and the configuration of 

the actuators by suggesting a multi-level genetic algorithm 

in conjunction with two control algorithms, linear quadratic 

regulator (LQR) and acceleration feedback control 

algorithm. This approach was detailed in the next study by 

formulating a three-level optimal design problem involving 

a two-level genetic algorithm conducted on 2D frames 

controlled by active tendon actuators [4]. In this regard, the 

integral mechanical energy of the system was minimized. 

Liu et al. [5] investigated the optimal position of actuators 

in tall buildings under different earthquake excitations using 

a genetic algorithm. A classified multi-step procedure has 

been repeated recently while solving this mixed Discrete-

continuous multi-objective programming. Gao et al. [6] 

https://cste.journals.umz.ac.ir/
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/
https://foreign.umz.ac.ir/
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applied a two-step method in the optimization of active bars 

placement of intelligent truss structures with maximization 

of dissipation energy due to control action. In addition to 

searching for the optimal number and locations of 

controllers, the optimization of the control force became a 

significant purpose [7]. Liu et al. [8] found the optimal 

locations of sensors and actuators in flexible controlled 

structures employing the proposed genetic algorithm and a 

developed spatial 𝐻2 norm-based computational scheme as 

a control algorithm. Rao et al. [1] surveyed the optimal 

placement problem on seismically excited High-rise 

buildings with a Multi-start Meta-heuristic algorithm 

combining simulated annealing and tabu search. Güney and 

Eşkinat [9] took into account the issue of the optimal 

location for actuators and sensors in flexible structures by 

applying a computationally simple 𝐻∞ controller and a 

Gradient-based unconstrained minimization. Nandy et al. 

[10] investigated optimal sensors/actuator placement in 

smart structures using an island model parallel genetic 

algorithm. Wang and Li [11] determined the optimal 

piezoelectric sensor/actuator placement of cable net 

structures by means of H2-norm measures. Vashist and 

Chhabra [12] studied the optimal placement of piezoelectric 

actuators on plate structures for active vibration control 

using a genetic algorithm. Bruant and Proslier [13] 

conducted research to find the optimal location of 

piezoelectric actuators for active vibration control of thin 

axially functionally graded beams.  

In the present study, different approaches have been 

considered for solving the optimization problem of the 

number and Locations of controllers in 2D frames. 

Moreover, the performance of different control algorithms, 

Classic, Instantaneous, modal, and pole assignment, in 

optimizing the number and placements of controllers are 

compared. Furthermore, the influence of peak inter-story 

drift, absolute peak acceleration, and peak displacement as 

the objective function has been investigated. In addition, the 

effect of different peak ground accelerations (PGA) of a 

series of scaled earthquakes and the time delay effect of 

controllers through an integral transformation method on 

the optimized number and placements of controllers are 

taken into consideration. In all cases, the optimization 

process is carried out by the discrete genetic algorithm on a 

structure that is actively controlled by the active tendon. 

2. Review of Active Control Algorithms 

2.1. The Classic Algorithm 

The governing equation of motion for a structure with n 

degrees of freedom subjected to dynamic loading 𝐹𝑑𝑦𝑛(𝑡) 

and counteracted by the control force 𝑢(𝑡) can be expressed 

as follows [14]. 

𝑀𝑥
..
(𝑡) + 𝐶𝑥

.
(𝑡) + 𝐾𝑥(𝑡) = 𝐹𝑑𝑦𝑛(𝑡) + 𝐷𝑢(𝑡)           

   𝑥 = [𝑥1, 𝑥2, … ,  𝑥𝑛]𝑇  
(1) 

where M, C, and K are n×n mass, damping, and stiffness 

matrices, respectively. Also, 𝑥(𝑡) represents n×1 

displacement vector and D states n×m matrix describing the 

location of m controllers. The equation of motion is 

converted into the steady-space form as the following 

equation: 

�̇�(𝑡) = Az(𝑡) + Bu(𝑡) + 𝐻(𝑡)  

z(0) = 𝑧0  

 𝑧(𝑡) = [
𝑥(𝑡)

�̇�(𝑡)
] ,    

A = [
0 𝐼

−𝑀−1𝐾 −𝑀−1𝐶
] ,     

H(𝑡) = [
0

𝑀−1𝐹𝑑𝑦𝑛(𝑡)] ,     

B = [
0

𝑀−1𝐷
]  

(2) 

In which 𝑧(𝑡) is 2n×1 state vector and 𝐴, 𝐵, and 𝐻 declare 

2n×2n system matrix, 2n×m control matrix, and 2n×1 load 

vector, respectively. The optimal control force will be 

achieved as below if the quadratic objective function is 

minimized and Equation 2 is simultaneously satisfied. 

𝐽 = ∫ [𝑧𝑇(𝑡)𝑄𝑧(𝑡) + 𝑢𝑇(𝑡)𝑅𝑢(𝑡)]
𝑡𝑓

𝑡0
𝑑𝑡  (3) 

That 𝑡0 and 𝑡𝑓 are usually assumed zero and bigger than 

the duration of seismic excitation, respectively. Moreover, 

Q shows a 2n×2n positive semi-definite weighting matrix 

for the state variable and R is an m×m symmetric positive 

definite weighting matrix for the control force. Optimized 

preceding integral leads to the following control force. 

𝑢(𝑡) = Gz(𝑡) 𝐺 = −0.5𝑅−1𝐵𝑇Pz(𝑡) (4) 

where G is the gain matrix. Also, P expresses the Riccati 

matrix that can be obtained by solving the following Riccati 

matrix equation: 

PA − 0.5PBR−1𝐵𝑇𝑃 + 𝐴𝑇𝑃 + 2𝑄 = 0    (5) 

2.2. The Instantaneous Algorithm 

The Time-dependent performance index for the steady-

space equation (Equation 2) is defined as follows [15]: 

𝐽(𝑡) = 𝑧𝑇(𝑡)Qz(𝑡) + 𝑢𝑇(𝑡)Ru(𝑡)  (6) 

The governing equation of motion is gained as the 

following formula by transforming Equation 2, which was 

expressed in the real steady space, to modal space and 

solving this new equation using different numerical 

methods, such as the regular fourth-order Runge-Kutta 

method or the Simpson method. 

𝑧(𝑡) = Td(𝑡 − Δt) +
Δt

2
[Bu(𝑡) + 𝐻(𝑡)]  (7) 

𝑑(𝑡 − Δt) = 𝑒ΛΔt𝑇−1 {𝑧(𝑡 − Δt) +
Δt

2
[Bu(𝑡 −

Δt) + 𝐻(𝑡 − Δt)]}  
(8) 

𝛬 = 𝑇−1AT  (9) 

where T is a 2n×2n modal matrix whose columns comprise 

of eigenvectors of the A matrix. In addition, Λ is a diagonal 

matrix, including eigenvalues of the A matrix. Also, 𝑒𝛬𝛥𝑡 is 

a diagonal matrix consisting of 𝑒𝜆𝛥𝑡 in the case of 𝜆 is 
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supposed to be the eigenvalue of the A matrix. Moreover, 

d(t − Δt) describes all dynamic characteristics. If the 

closed-loop control algorithm is taken into account, the state 

variable and control force are achieved as below by 

minimizing the objective function (Equation 6), which is 

restricted to Equation 7. 

𝑧(𝑡) = [𝐼 +
𝛥𝑡

4

2
𝐵𝑅−1𝐵𝑇𝑄]−1 [𝑇𝑑(𝑡 − 𝛥𝑡) +

𝛥𝑡

2
𝐻(𝑡)]  

(10) 

𝑢(𝑡) = −
𝛥𝑡

2
𝑅−1𝐵𝑇𝑄𝑧(𝑡)  (11) 

2.3. The Optimal Modal Algorithm 

The governing equation of motion mentioned in Equation 

1 is converted to modal space through the following 

equation [16]: 

𝑥(𝑡) = 𝜙𝑞(𝑡)  (12) 

where 𝜙 and q are an n×n modal matrix and an n×1 modal 

displacement vector, respectively. By applying the 

preceding equation to Equation 1, the modal space equation 

can be extracted through the following relationships: 

𝑞
..
(𝑡) + diag(2𝜉𝑗𝜔𝑗)𝑞

.
(𝑡) + diag(𝜔𝑗

2)𝑞(𝑡) =
𝑉(𝑡) + 𝑊(𝑡)  

(13) 

diag(2𝜉𝑗𝜔𝑗) = 𝑀∗−1𝐶∗,   

diag(𝜔𝑗
2) = 𝑀∗−1𝐾∗  

(14) 

𝑀∗ = 𝜙𝑇𝑀𝜙 = diag(𝑚∗
𝑗),  

C∗ = 𝜙𝑇𝐶𝜙 = diag(𝑐∗
𝑗)  

(15) 

𝐾∗ = 𝜙𝑇𝐾𝜙 = diag(𝑘∗
𝑗),  

V(𝑡) = 𝑀∗−1𝜙𝑇Du(𝑡) = Lu(𝑡)  
(16) 

𝑊(𝑡) = 𝑀∗−1𝜙𝑇𝐹dyn(𝑡) = NFdyn(𝑡),  

L = 𝑀∗−1𝜙𝑇𝐷  
(17) 

𝑁 = 𝑀∗−1𝜙𝑇𝐼  (18) 

For practical considerations, only the first r modes are 

controlled. Then Equation 13 is rewritten as below: 

𝑞𝑐

..
(𝑡) + diag(2𝜉jc𝜔jc)𝑞𝑐

.
(𝑡) + diag(𝜔jc

2)𝑞𝑐(𝑡)  

= 𝑉𝑐(𝑡) + 𝑊𝑐(𝑡)  

j = 1,2, … 𝑟  

(19) 

𝑉𝑐(𝑡) = 𝐿𝑐𝑢(𝑡),  

W𝑐(𝑡) = 𝑁𝑐𝐹dyn(𝑡)𝐿𝑐 = 𝐿𝑟×𝑚,  

N𝑐 = 𝑁𝑟×𝑛  

(20) 

in which 𝑞𝑐 shows a modal displacement vector that is 

dimensionally much smaller than 𝑞. The above equation is 

converted to the steady state by the equation: 

�̇�𝑐(𝑡) = Az𝑐(𝑡) + Bu(𝑡) + 𝐻(𝑡)  

z𝑐(0) = 𝑧c0,  

 𝑧𝑐(𝑡) = [
𝑞𝑐(𝑡)

�̇�𝑐(𝑡)
], 

𝐴 = [
0 𝐼

−diag(𝜔jc
2) −diag(2𝜉jc𝜔jc)],  

𝐻 = [
0

𝑁𝑐
],  

𝐵 = [
0
𝐿𝑐

]  

(21) 

Consequently, the control force and the modal state 

variable can be acquired by the implementation of the 

optimal control theory that was formerly described. 

2.4. The Pole Assignment Optimal Algorithm 

The general formation of open-loop poles of a structural 

system can be written as below [17]: 

𝜆𝑖 = 𝜉𝑖𝜔𝑖 ± jω𝑖√1 − 𝜉𝑖
2
  

 i = √−1  

i = 1,2, … ,2n  

(22) 

In the pole assignment algorithm, open-loop poles shift to 

predetermined poles. Hence, in the first phase, the equation 

of motion transfers to modal space, and then the poles of 

each mode separately move to arbitrary regions. The state 

vector converts to modal space using the following 

transformation: 

𝑧𝑟(𝑡) = 𝑇𝑟
𝑇𝑧(𝑡)𝑇𝑇𝜖𝑅r*n,  

z𝑟(𝑡)𝜖𝑅𝑟 ,     

r < 𝑛  

(23) 

where matrix T consists of eigenvectors of a matrix. 

Besides, Tr declares the column of T associated with the two 

poles of λr which should be shifted. By implementing 

Equation 23 to Equation 2 and Equation 4, the steady-state 

and linear optimal control equations will be accessed as 

follows: 

�̇�𝑟(𝑡) = 𝐴𝑟𝑧𝑟(𝑡) + 𝐵𝑟𝑢(𝑡)  

𝑇𝑟
𝑇𝐴 = 𝐴𝑟𝑇𝑟

𝑇 ,     

𝐵𝑟 = 𝑇𝑟
𝑇𝐵  

(24) 

𝑢(𝑡) = 𝐺𝑟𝑧𝑟(𝑡) 𝐺 = 𝐺𝑟𝑇𝑟
𝑇

  (25) 

The performance index of the discrete system will change 

in the new modal space as below: 

𝐽𝑟 = ∫ [𝑧𝑇
𝑟(𝑡)𝑄𝑧𝑟(𝑡) + 𝑢𝑇(𝑡)𝑢(𝑡)]𝑑𝑡

𝑡𝑓

𝑡0
  

𝑄 = 𝑇𝑟𝑄𝑟𝑇𝑟
𝑇

  
(26) 

Now, the shifting process of each pole is described in 

modal space for both real pole and complex conjugate pairs. 

2.4.1.  Shifting One Eigenvalue to the Desired 

Location 
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An eigenvalue 𝜆 should be shifted to the desired location 

µ. Thus, Equation 28 should be rewritten as follows [17]: 

�̇�𝑟(𝑡) = λz𝑟(𝑡) + 𝐵𝑟𝑢(𝑡)  (27) 

The eigenvalue 𝜆 can be related to the desired location µ. 

According to the following relationship, matrix P is 

obtained by: 

µ = 𝜆 − 𝐵𝑟𝐵𝑟
𝑇P        𝑂𝑟      P =

(𝜆−µ)

𝐵𝑟𝐵𝑟
𝑇  (28) 

Moreover, the state weighting matrix will result by: 

𝑄𝑟 = −2λP + PB𝑟𝐵𝑟
𝑇𝑃  (29) 

2.4.2.  Shifting a Pair of Eigenvalues to the Desired 

Location 

A complex conjugate pair is shifted to another complex 

conjugate pair as well as a real pair is shifted to either a 

desired complex conjugate pair or another real pair. Here, 

Tr consists of two columns of T connected with the two 

poles of λr that should be shifted. The open-loop matrix and 

input matrix are defined below [17]: 

𝐴𝑟 = [
𝛼 𝛽

−𝛽 𝜂
],  

𝐵𝑟 = [
𝑎 𝑏
𝑐 𝑑

]  

(30) 

Afterward, two possibilities will happen. If 𝛼 ≠ 𝜂 then the 

open-loop pair are complex conjugate and if 𝛼 ≠ 𝜂 and 𝛽 =
0 then a real pair should be shifted. µ is assumed to be a 

complex conjugate as follows: 

µ = [𝛼 + 𝑖𝛽 ; 𝛼 − 𝑖𝛽]  (31) 

Through the Brogan algorithm, the gain matrix is 

calculated as: 

𝐺𝑟 = [(µ*I2 − 𝐴𝑟)−1*B𝑟]−1  (32) 

3. Review of the Time Delay Compensation 
Using an Optimal Control Procedure 

If the control force applies to a structure after a time delay, 

the general equation of motion is rewritten by considering 

the time delay effect as [18]: 

𝑀𝑥
..
(𝑡) + 𝐶𝑥

.
(𝑡) + Kx(𝑡)  

= 𝐹dyn(𝑡) + Du(𝑡 − 𝜆),  

x = [𝑥1, 𝑥2, … , x𝑛]𝑇  

(33) 

In the steady space, Equation 33 can be rewritten as below: 

�̇�(𝑡) = Az(𝑡) + Bu(𝑡 − 𝜆) + 𝐻(𝑡)  (34) 

By employing the following transformation to Equation 

34, the standard form of the first-order differential equation 

without any time delay term is obtained as Equation 36. 

𝑌(𝑡) = 𝑧(𝑡) +  ∫ 𝑒−𝐴(𝜂+𝜆)Bu(𝑡 + 𝜂)dη
0

−𝜆
  (35) 

�̇�(𝑡) = AY(𝑡) + 𝐵(𝐴)𝑢(𝑡) + 𝐻(𝑡)  

𝐵(𝐴) = 𝑒−Aλ𝐵  
(36) 

If the original steady-state is stable and controllable, the 

control system defined in Equation 34 will be stable and 

controllable. As a result of using different control 

algorithms mentioned in prior parts, the standard form of the 

steady state will be solved, and the control force 𝑢(𝑡) and 

the response of the structure 𝑌(𝑡) will be derived. To 

achieve to the real steady-state z(t), the integral term 

written in Equation 37 should be solved. 

𝑍0(𝑡) = ∫ 𝑒−𝐴(𝜂+𝜆)Bu(𝑡 + 𝜂)dη
0

−𝜆
  (37) 

This integral term can be calculated with the aid of the 

numerical equation written as follows: 

𝑍0(𝑡) = ∑ (𝒆(−𝑨∗𝜟𝒕∗(𝒋−1)) ∗
[

𝒅𝒆𝒍𝒂𝒚

𝒅𝒕
]+1

𝒋=1

∑
(−𝑨)𝒌−1𝝃𝒌

𝒌!
∗ 𝑩 ∗ 𝒖

(𝒕/𝒅𝒕−([
𝒅𝒆𝒍𝒂𝒚

𝒅𝒕
]+1−𝒋))

∞
𝒌=1 )  

(38) 

4. The Genetic Algorithm 

The Genetic Algorithm (GA) is a stochastic optimization 

technique based on the process of natural selection that 

belongs to the evolutionary algorithm. This algorithm 

consists of several subsections, including population 

selection, fitness function, parent selection, crossover, 

mutation, and termination. The population is a subset of 

solutions in the current generation, which can also be 

defined as a set of chromosomes. A predefined goal 

function, which combines the main goal parameter, such as 

maximum displacement in structural problems and all 

restrictions, is calculated and then sorted according to the 

best results. A major part of the worst population is removed 

and regenerated using the crossover operator. Throughout 

the crossover stage, more than one parent is determined by 

implementing proportionate fitness selection, some of 

which have been mentioned in technical books are Roulette 

Wheel Selection, Stochastic Universal Sampling (SUS), 

Tournament Selection, Rank Selection, and Random 

Selection, nominated and one or more off-springs are 

produced through the genetic material of the parents. 

Finally, the mutation is applied to the latest sorted 

population. Several mutation operators have been 

suggested, including Bit Flip Mutation, Random Resetting, 

Swap Mutation, Scramble Mutation, and Inversion 

Mutation. The crossover and mutation that will be followed 

by calculating and sorting the cost function is repeated 

unless convergence makes the algorithm a termination. 

Convergence occurs when there has been no improvement 

in the population, an absolute number of generations has 

been gained, or the objective function value has reached a 

predefined value [19]. 

5. Finding the Optimal Number and Locations 
on a 2D Frame 

https://en.wikipedia.org/wiki/Natural_selection
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5.1. Earthquakes Records 

Thirty records were selected to analyze different masonry 

structures. All records are for soil groups C and D, 

according to ASCE/SEI 7-16 [20]. The magnitude of all 

records is between 6.0 km and 7.0 km. The distance to the 

fault is within the range of 20 (km) - 40 (km). Besides, no 

near-fault motions with directivity effects are included. In 

the following table (Table 1), the characteristics of all 

records are provided. 

Table 1. 30 earthquake records characteristics 

No. Earthquake Name Year Station Name Magnitude Distance (km) Vs30 (m/sec) 

1 Imperial Valley-06 1979 Superstition Mtn Camera 6.53 24.61 362.38 (D) 

2 Imperial Valley-06 1979 Victoria 6.53 31.92 242.05 (D) 

3 Victoria_ Mexico 1980 SAHOP Casa Flores 6.33 39.1 259.59 (D) 

4 Irpinia_ Italy-01 1980 Rionero In Vulture 6.9 27.49 574.88 (C) 

5 Irpinia_ Italy-02 1980 Rionero In Vulture 6.2 22.68 574.88 (C) 

6 Coalinga-01 1983 Parkfield - Fault Zone 12 6.36 27.96 265.21 (D) 

7 Coalinga-01 1983 Parkfield - Fault Zone 15 6.36 28 307.59 (D) 

8 Coalinga-01 1983 Parkfield - Fault Zone 16 6.36 26.2 384.26 (C) 

9 Coalinga-01 1983 Parkfield - Fault Zone 2 6.36 37.92 294.26 (D) 

10 Coalinga-01 1983 Parkfield - Fault Zone 8 6.36 28.58 308.84 (D) 

11 Coalinga-01 1983 Parkfield - Gold Hill 2E 6.36 31.85 360.92 (D) 

12 Coalinga-01 1983 Parkfield - Gold Hill 3E 6.36 28.72 450.61 (C) 

13 Coalinga-01 1983 Parkfield - Gold Hill 3W 6.36 38.1 510.92 (C) 

14 Coalinga-01 1983 Parkfield - Stone Corral 2E 6.36 35.29 566.33 (C) 

15 Coalinga-01 1983 Parkfield - Stone Corral 3E 6.36 32.81 565.08 (C) 

16 Coalinga-01 1983 Parkfield - Vineyard Cany 1E 6.36 24.83 381.27 (C) 

17 Coalinga-01 1983 Parkfield - Vineyard Cany 1W 6.36 27.72 284.21 (D) 

18 Coalinga-01 1983 Parkfield - Vineyard Cany 2W 6.36 29.01 438.74 (C) 

19 Coalinga-01 1983 Parkfield - Vineyard Cany 3W 6.36 30.91 308.87 (D) 

20 Coalinga-01 1983 Parkfield - Vineyard Cany 4W 6.36 33.28 386.19 (C) 

21 Morgan Hill 1984 Capitola 6.19 39.08 288.62 (D) 

22 Morgan Hill 1984 Corralitos 6.19 23.23 462.24 (C) 

23 Morgan Hill 1984 San Juan Bautista_ 24 Polk St 6.19 27.15 335.5 (D) 

24 Morgan Hill 1984 San Justo Dam (R Abut) 6.19 31.88 543.63 (C) 

25 N. Palm Springs 1986 Indio 6.06 35.34 307.54 (D) 

26 N. Palm Springs 1986 Joshua Tree 6.06 23.2 379.32 (C) 

27 Chalfant Valley-02 1986 Benton 6.19 21.55 370.94 (C) 

28 Chalfant Valley-02 1986 Convict Creek 6.19 29.35 382.12 (C) 

29 Chalfant Valley-02 1986 Mammoth Lakes Sheriff Subst. 6.19 34.92 529.39 (C) 

30 San Fernando 1971 LA - Hollywood Stor FF 6.61 22.77 316.46 (D) 

 

These records are taken into account using different 

approaches. First of all, these records, which have been 

scaled by ASCE/SEI 7-16, are exerted to the 2D frame. 

Furthermore, each record has been separately exerted on the 

structure with different peak ground accelerations to 

comprehend the influence of various PGA. 

5.2. Features of the 2D Frame 

An Eight-story, Three-bay frame (Figure 1) designed 

according to ANSI/AISC 360-16 code [21] is considered a 

numerical example to be analyzed for the determination of 

optimal number and placements of controllers assuming 

both the shear building model and detailed finite element 

model. In the simple shear building model, each story is 

lumped as a single degree of freedom element. The 

structural parameters of this building are demonstrated in 

Table 2. The damping matrix derived from the Rayleigh 

technique [22] is presented in the following equation: 

𝐶 = 0.5585𝑀 + 0.0029𝐾  (39) 

In the detailed finite element model, both beams and 

columns are modeled employing a two-node six degrees of 

freedom planar beam element. Moreover, mass and stiffness 

matrices are extracted by analyzing structures using a 

matrix analysis. Also, the damping matrix, which is taken 

by Rayleigh’s technique, is shown as follows: 
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𝐶 = 0.2021𝑀 + 0.0011𝐾  (40) 
In the present study, it is supposed that just the linear range 

behavior of steel will be considered. The modulus of 

elasticity of steel is equal to 210 𝐺𝑃𝑎. 

 

Figure 1. An eight-story Three-bay frame (right figure) and its members' characteristics (left figure) 

Table 2. Structural matrices characteristics of the shear building model 

Story 1 2 3 4 5 6 7 8 

Mass (𝑡𝑜𝑛) 105.97 105.97 105.51 104.93 104.79 104.65 104.55 87.65 

Stiffness (1𝑒8 ∗ 𝐾𝑁/𝑚) 2.136 2.136 2.136 2.136 2.136 2.136 2.136 2.136 

 

5.3. Definition of the Optimization Problem 

Different formulations have been considered while 

studying effective parameters in the optimal number and 

placements of controllers. The optimization problem can be 

defined for actively controlled structures under earthquake 

excitation as follows: 

𝑚𝑖𝑛

𝐺𝑜𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑁𝑐 + 𝐶𝑜𝑒1 ∗ 𝑑𝑟𝑖𝑓𝑡𝑚𝑎𝑥

𝑔1 = 𝑑𝑟𝑖𝑓𝑡𝑚𝑎𝑥 − 𝑑𝑟𝑖𝑓𝑡𝑎𝑙𝑙 ≤ 0

𝑔2 = (𝐶𝑜𝑛. 𝑓)𝑚𝑎𝑥 − (𝐶𝑜𝑛. 𝑓)𝑎𝑙𝑙 ≤ 0
𝐶𝑜𝑒1 ≪ 1    (41) 

where 𝑁𝑐 is the number of controllers placed in the 

structure. In addition, 𝑑𝑟𝑖𝑓𝑡𝑚𝑎𝑥 and (𝐶𝑜𝑛. 𝑓)𝑚𝑎𝑥  state peak 

inter-story drift and control force, respectively. Moreover, 

𝑑𝑟𝑖𝑓𝑡𝑎𝑙𝑙  and (𝐶𝑜𝑛. 𝑓)𝑎𝑙𝑙  express allowable inter-story drift 

and control force, respectively. Also, 𝐶𝑜𝑒1 declares a 

penalty multiplier. Optimal placements of controllers for a 

definite number of controllers are gained under dynamic 

loadings as below: 

𝑚𝑖𝑛

𝐺𝑜𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑋𝑚𝑎𝑥

      𝑔1 = (𝐶𝑜𝑛. 𝑓)𝑚𝑎𝑥 − (𝐶𝑜𝑛. 𝑓)𝑎𝑙𝑙 ≤ 0
          𝑔2 = 𝑁𝑐 − 𝑁𝑎 = 0

   (42) 

in which 𝑋𝑚𝑎𝑥  represents peak response, which is assumed 

to be displacement, absolute acceleration, and inter-story 

drift. Besides, 𝑁𝑎 shows a predetermined number of 

controllers. It should be mentioned that in Equation 41, both 

the placements and the number of controllers are indefinite; 

however, in Equation 42, the number of controllers is 

definite, and the placements of controllers are desired. 

In the current study, the both above formulations are taken 

into consideration. The number of variables and their 

possible quantities depends directly on the building 

behavior, which was classified as shear and non-shear 

buildings in subsection 5.2. As previously mentioned, the 

optimization procedure is conducted by the genetic 

algorithm. It is noteworthy to remember that the number of 

columns in the population matrix is equal to the number of 

variables. Also, the number of rows is supposed to be 15 

times the variable’s number. Moreover, the number of 

variables is equal to the number of controllers, which is 

calculated based on all positions that a controller can be 

located. Consequently, for the shear frame, the number of 

variables is the same as the number of stories. Also, the non-

shear frame is obtained from the number of stories 

multiplied by the number of bays. Additionally, for the shear 

frame, each variable changes from zero to the number of 

bays, and for the non-shear frame, it is either zero or one. In 

the crossover stage, firstly, 50 percent of the worst 

population is discarded and simultaneously regenerated 

among 50 percent of the best population. Parent selection is 

established based on the Roulette wheel selection 

procedure. Furthermore, the mutation coefficient is 

assumed to be 0.2. 

5.4. Numerical Evaluation 

In this subsection of the study, the results of the 

optimization process will be assessed and presented using 

different approaches. In all cases, 30 records presented in 

Table 1 are simultaneously exerted on the frame. However, 
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for studying the influence of earthquake records, each 

record is separately applied. Also, under all circumstances, 

the classic algorithm (LQR) is conducted as the active 

control algorithm. However, for surveying the influence of 

different control algorithms, four algorithms explained in 

Subsection 2 will be considered.  

Table 3 presents the optimal positioning of controllers for 

various numbers of controllers in the four control 

algorithms. In this case, by employing Equation 42 and 

supposing the peak inter-story drift as the cost function, the 

optimization problem for a specified number of controllers, 

which is assumed to be 3, 6, 9, 12, 15, and 18, would be 

solved. It should be mentioned that the peak inter-story drift 

is the average of peak inter-story drifts achieved by exerting 

30 time-histories, demonstrated in Table 1, on the structure. 

From the above table, it can be comprehended that the 

optimized arrangement of controllers, while using different 

control algorithms, is just slightly different and, in most 

cases, is negligible. Besides, in all cases, the number of 

assigned controllers in the lower half of the structure is more 

than in the upper half of it. The only exception generated in 

the instantaneous algorithm is that, in the case of using less 

than nine controllers, the controllers have been scattered 

almost equally between two halves of the structure. The 

other noticeable difference happens in the pole assignment 

algorithm. The number of controllers assigned to the lower 

half of the structure by using the pole assignment algorithm 

is considerably more than the respective achieved content 

by using other algorithms. Eventually, by ignoring these 

differences, it can be expressed that the optimized 

arrangement of the controllers is almost independent of the 

control algorithm. 

In Table 4, the optimized number and arrangement of 

controllers by using different control algorithms and 

different peak ground accelerations of exerted time-

histories are presented. It should be reminded that in this 

part, Equation 41 is conducted as the equation of 

optimization. 

Based on Table 4, it is comprehensible that, by using modal 

and instantaneous algorithms, the least number of 

controllers is needed. Therefore, the best result is achieved 

by using these algorithms as the control algorithm, and by 

using the classic algorithm, the greatest number of 

controllers is allocated. Pondering on the results, it is 

comprehensible that the modal algorithm has better results 

in PGA’s less than 1.2 g, and the instantaneous algorithm 

has better results in PGA’s more than 1.2 g. 

Furthermore, as implied before in Table 3, almost the 

balanced arrangement of controllers between the upper and 

lower half of the structure, by using the instantaneous 

algorithm, has the same pattern as this algorithm in this part. 

It must be useful for the investigators to imply that during 

the process of the analysis, the processing time of the modal 

algorithm was considerably less than other algorithms. 

Hence, considering two significant issues, presenting the 

best results and the processing speed, the modal algorithm 

would be a perfect choice for the investigators to use, 

compared to the other three algorithms. 

Tables 5 to 7 are showing the effect of the different cost 

functions. In this part, Equation 42 is used and the cost 

function (The x variable) is assumed to be peak inter-story 

drift, absolute peak acceleration and peak displacement, 

respectively. 

Three proceeding Tables postulate that three variables, 

previously mentioned, have such similar results, especially, 

in the case that the number of possible controller increases. 

Furthermore, a pattern of filling the controllers in the 

structure is comprehensible. Initially, a controller will be 

located in a special bay from down to up and after filling the 

special bay, other bays respectively will be filled.  

Table 8 demonstrates the effect of time delay on the 

optimal placements of controllers. Here, Equation 42 is 

taken into account, and the cost function is assumed to peak 

inter-story drift as well. 

The results show that controllers are shifted to upper 

stories when time delay increases. The process of the 

positioning of controllers is similar to recent results.  

Two following Tables show the effect of different records 

in optimal placements of controllers for 5 and 10 

controllers. In this study, thirty earthquake records having 

equal PGA are separately exerted on the 2D frame and for 

determination of optimal placements of controllers, inter-

story drift as a cost function should be minimized. 

Tables 9 and 10 show that if different earthquake records 

that have equal PGA are exerted on the structure, the result 

of each record will be about equal. Perhaps this equality 

occurs in the range of earthquake records scaled following 

a specified code. Consequently, any general statement can 

be expressed by neglecting the frequency content and 

duration of the earthquake’s occurrence.

Table 3. The optimal placements of controllers for different control algorithms 

Story 

Algorithm Number 1 2 3 4 5 6 7 8 

Classic 

3 0 1 0 1 0 0 1 0 

6 1 1 1 1 0 1 0 1 

9 2 1 1 1 1 1 1 1 

12 2 2 2 2 1 1 1 1 

15 3 2 2 2 2 2 1 1 

18 3 3 2 2 2 2 2 2 



Mehdipour /Contrib. Sci. & Tech Eng, 2024, 1(2) 

38 
 

Instantaneous 

3 0 0 0 1 1 0 1 0 

6 1 1 0 1 1 1 1 0 

9 2 1 1 1 1 1 1 1 

12 2 2 2 2 1 1 1 1 

15 3 2 3 3 1 1 1 1 

18 3 2 3 2 3 2 2 1 

Modal 

3 1 1 0 1 0 0 0 0 

6 1 1 0 1 1 1 1 0 

9 1 2 2 1 1 1 1 0 

12 2 2 2 1 1 1 1 2 

15 2 2 3 2 2 2 1 1 

18 2 2 3 2 2 2 3 2 

Pole assignment 

3 0 1 0 1 0 1 0 0 

6 2 1 0 1 1 0 1 0 

9 2 1 1 1 1 1 1 1 

12 2 2 2 2 1 1 1 1 

15 3 3 3 2 1 1 1 1 

18 3 3 3 3 1 1 1 3 

Table 4. The optimal number of controllers for different control algorithms 

Story 

Algorithm PGA 1 2 3 4 5 6 7 8 Total number 

Classic 

0.6g 1 0 0 0 0 0 0 0 1 

0.8g 1 1 1 0 0 0 0 0 3 

1g 1 0 1 1 1 1 0 0 5 

1.2g 1 1 1 1 1 1 0 0 6 

1.4g 2 1 2 1 1 1 1 0 9 

1.6g 2 2 1 2 1 1 1 0 10 

1.8g 2 2 2 2 1 1 1 0 11 

2g 2 3 2 2 2 1 1 0 13 

Instantaneous 

0.6g 0 0 0 1 1 0 1 0 3 

0.8g 0 0 0 1 1 0 1 0 3 

1g 0 0 0 1 1 1 1 0 4 

1.2g 1 0 0 1 1 1 1 0 5 

1.4g 1 1 1 1 1 0 1 0 6 

1.6g 2 1 0 2 1 1 1 0 8 

1.8g 2 2 2 2 1 1 1 0 11 

2g 3 2 1 3 2 1 1 0 13 

Modal 

0.6g 0 0 0 1 0 0 0 0 1 

0.8g 1 0 0 1 0 0 0 0 2 

1g 0 1 0 1 1 0 1 0 4 

1.2g 1 1 0 1 1 0 1 0 5 

1.4g 2 1 1 1 1 1 1 0 8 

1.6g 1 2 1 2 1 1 1 0 9 

1.8g 2 2 2 2 1 1 1 0 11 

2g 2 3 2 2 2 1 1 0 13 

Pole assignment 

0.6g 1 0 0 0 0 0 0 0 1 

0.8g 1 0 0 1 0 0 1 0 3 

1g 0 0 1 1 1 0 1 0 4 

1.2g 1 1 0 1 1 0 1 0 5 
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1.4g 1 1 1 1 1 1 1 0 7 

1.6g 2 1 1 2 1 1 1 1 10 

1.8g 2 2 2 2 1 1 1 1 12 

2g 2 2 2 2 2 1 1 1 13 

Table 5. The optimal placements of controllers by using peak inter-story drift as a cost function 

Number of controllers Story 1 Story 2 Story 3 Story 4 Story 5 Story 6 Story 7 Story 8 

1 0 0 0 0 0 1 0 0 

2 1 0 1 0 0 0 0 0 

3 1 0 2 0 0 0 0 0 

4 1 0 1 1 1 0 0 0 

5 1 0 1 1 1 1 0 0 

6 1 1 1 1 1 0 1 0 

7 1 1 1 1 1 1 1 0 

8 2 1 1 1 1 1 1 0 

9 2 1 1 1 1 1 1 1 

10 2 2 1 1 1 1 1 1 

11 2 2 2 1 1 1 1 1 

12 2 2 2 2 1 1 1 1 

13 3 2 2 2 1 1 1 1 

14 3 2 2 2 1 1 1 2 

15 3 2 2 2 1 1 1 3 

16 3 2 2 2 1 1 2 3 

17 3 2 2 2 1 3 1 3 

18 3 2 2 2 1 2 3 3 

Table 6. The optimal placements of controllers by using absolute peak acceleration as a cost function 

Number of controllers Story 1 Story 2 Story 3 Story 4 Story 5 Story 6 Story 7 Story 8 

1 0 0 0 0 0 0 1 0 

2 0 0 0 1 0 0 1 0 

3 0 1 0 1 0 0 1 0 

4 0 1 1 1 0 1 0 0 

5 0 1 1 1 1 0 1 0 

6 1 1 1 1 0 1 0 1 

7 1 1 1 1 1 1 1 0 

8 1 1 1 1 1 1 1 1 

9 2 1 1 1 1 1 1 1 

10 2 2 1 1 1 1 1 1 

11 2 2 2 1 1 1 1 1 

12 2 2 2 2 1 1 1 1 

13 2 2 2 2 2 1 1 1 

14 2 2 2 2 2 2 1 1 

15 3 2 2 2 2 2 1 1 

16 3 3 2 2 2 2 1 1 

17 3 3 2 2 2 2 2 1 

18 3 3 2 2 2 2 2 2 

Table 7. The optimal placements of controllers by using peak displacement as a cost function 

Number of controllers Story 1 Story 2 Story 3 Story 4 Story 5 Story 6 Story 7 Story 8 

1 0 0 0 0 0 0 1 0 
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2 0 0 0 0 0 0 2 0 

3 0 0 0 2 0 0 1 0 

4 1 0 0 2 0 0 1 0 

5 1 1 0 2 0 0 1 0 

6 1 1 1 1 1 0 1 0 

7 2 1 1 1 1 0 1 0 

8 2 1 1 1 1 1 1 0 

9 2 2 1 1 1 1 1 0 

10 2 2 1 1 1 1 1 1 

11 2 2 2 1 1 1 1 1 

12 2 2 2 2 1 1 1 1 

13 2 2 2 2 2 1 1 1 

14 2 2 2 2 2 2 1 1 

15 3 2 2 2 2 2 1 1 

16 3 3 2 2 2 2 1 1 

17 3 3 2 2 2 2 2 1 

18 3 3 3 2 2 2 2 1 

Table 8. The optimal placements of controllers for different time delays 

Time delay (s) Story 1 Story 2 Story 3 Story 4 Story 5 Story 6 Story 7 Story 8 Total number 

0.05 0 1 0 1 0 1 0 0 3 

0.05 1 1 0 1 1 1 1 0 6 

0.05 2 2 1 1 1 1 1 0 9 

0.05 2 2 2 2 1 1 1 1 12 

0.1 0 0 0 1 1 0 1 0 3 

0.1 0 0 1 2 1 1 1 0 6 

0.1 1 1 2 1 2 1 1 0 9 

0.1 1 3 2 1 2 1 1 1 12 

0.15 0 0 0 0 1 2 0 0 3 

0.15 0 0 1 1 1 1 1 1 6 

0.15 2 0 1 2 1 1 1 1 9 

0.15 2 2 2 2 2 1 1 0 12 

0.2 0 0 0 1 1 1 0 0 3 

0.2 0 0 1 1 2 1 1 0 6 

0.2 0 0 1 3 3 1 1 0 9 

0.2 1 3 2 1 2 1 1 1 12 

Table 9. The optimal placements of 5 controllers for different earthquake records 

Record number Story 1 Story 2 Story 3 Story 4 Story 5 Story 6 Story 7 Story 8 

1 1 1 0 1 1 1 0 0 

2 1 1 0 1 1 1 0 0 

3 1 1 0 1 1 1 0 0 

4 1 0 0 1 1 1 1 0 

5 1 1 0 1 1 1 0 0 

6 1 1 0 1 1 1 0 0 

7 1 1 0 1 1 1 0 0 

8 1 1 0 1 1 1 0 0 

9 1 1 0 1 1 1 0 0 

10 1 1 0 1 1 1 0 0 

11 1 1 0 1 1 1 0 0 
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12 1 1 0 1 1 1 0 0 

13 1 1 0 1 1 1 0 0 

14 1 1 0 1 1 1 0 0 

15 1 1 0 0 1 1 1 0 

16 1 1 0 1 1 1 0 0 

17 1 1 0 1 1 1 0 0 

18 1 1 0 1 1 1 0 0 

19 1 1 0 1 1 0 1 0 

20 1 1 0 1 1 1 0 0 

21 1 1 0 1 1 1 0 0 

22 1 1 0 1 1 1 0 0 

23 1 1 0 1 1 1 0 0 

24 1 0 0 1 1 1 1 0 

25 1 1 0 1 1 1 0 0 

26 1 1 0 1 1 1 0 0 

27 1 1 0 1 1 1 0 0 

28 1 1 0 1 1 1 0 0 

29 1 1 0 1 1 1 0 0 

30 1 1 0 1 1 1 0 0 

Table 10. The optimal placements of 10 controllers for different earthquake records 

Record number Story 1 Story 2 Story 3 Story 4 Story 5 Story 6 Story 7 Story 8 

1 2 2 1 2 1 1 1 0 

2 2 2 2 1 1 1 1 0 

3 2 1 1 1 2 2 1 0 

4 2 2 1 2 1 1 1 0 

5 2 2 1 1 1 1 1 1 

6 2 2 1 1 1 2 1 0 

7 2 2 1 1 1 1 1 1 

8 2 2 1 1 1 1 1 1 

9 2 2 1 1 1 1 1 1 

10 2 1 1 1 2 2 1 0 

11 2 1 1 1 2 2 1 0 

12 2 2 2 1 1 1 1 0 

13 2 2 1 1 1 2 1 0 

14 2 2 1 1 1 1 1 1 

15 2 2 1 2 1 1 1 0 

16 2 2 1 1 1 1 1 1 

17 2 2 1 2 1 1 1 0 

18 2 2 1 1 1 2 1 0 

19 2 2 1 1 1 2 1 0 

20 2 2 1 2 1 1 1 0 

21 2 2 1 1 1 1 1 1 

22 2 2 1 2 1 1 1 0 

23 2 2 1 2 1 1 1 0 

24 2 2 1 1 1 2 1 0 

25 2 2 1 1 1 1 1 1 

26 2 1 1 1 2 2 1 0 

27 2 1 1 1 2 2 1 0 

28 2 1 1 1 2 2 1 0 
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29 2 2 1 2 1 1 1 0 

30 2 2 2 1 1 1 1 0 

6. Conclusions 

In this paper, by using the genetic algorithm, the 

optimization problem of integrating the number and 

locations of the actuators in an 8-story and 3-span case study 

structure was studied with the trend of comparing the 

efficiency of four different control algorithms, including the 

classic algorithm, the modal algorithm, the instantaneous 

algorithm, and the pole assignment algorithm. Furthermore, 

the effect of the time delay of control forces, peak ground 

acceleration of exerted dynamic loads, and the elected 

response of the structure, as the variable of control 

equations, have been surveyed. 

From the results of this study, the following conclusions 

are drawn: 

i. The optimized arrangement of the controllers is 

almost independent of the control algorithm 

ii. The optimized number of the allocated controllers by 

using the modal and instantaneous algorithms had the 

best results, and the classic algorithm had the worst 

results on this issue. If the processing time of the 

analysis is a matter of fact for researchers, the modal 

algorithm had the least process time compared to 

others. Thus, with regard to the best results in 

optimizing the number of controllers and less process 

time, the modal algorithm would be the best choice as 

the control algorithm. 

iii. Election of the desired variable of the optimization 

equation (peak inter-story drift, absolute peak 

acceleration, peak displacement) will not significantly 

influence the optimized arrangement of controllers. 

iv. The distribution of controllers at the height of the 

structure had better results under horizontal 

distribution in each story. 

v. Vertical distribution of the controllers is mostly 

allotted to the lower levels of the structure, except in 

the instantaneous algorithm, where the controllers had 

been distributed almost equally in all stories. 

vi. By increasing the time delay of the control force, the 

number of predicted controllers would increase, and 

more controllers would be assigned to the higher level 

of the structure. 

vii. Earthquake time histories that have been normalized 

in the same pattern affect almost similarly to the 

optimized arrangement of the controllers. 
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