Caspian Journal of Mathematical Sciences (CJMS)

University of Mazandaran, Iran

http://cjms.journals.umz.ac.ir ISSN: 1735-0611

CJMS. 1(2)(2012), 104-108

Comments on Multiparameter Estimation in Truncated Power Series Distributions under the Stein's Loss

 $\begin{array}{c} {\rm Riyadh~R.~Al\text{-}Mosawi~^1} \\ {\rm Department~of~Mathematics,~Thiqar~University,~Iraq} \end{array}$

ABSTRACT. This comment is to show that Theorem 3.3 of Dey and Chung (1991) (Multiparameter estimation in truncated power series distributions under the Stein's loss. *Commun. Statist.-Theory Meth.*, **20**, 309-326) may give us misleading results. Analytically and through simulation, we show that the Theorem does not improve the given estimator.

Keywords: Left-Truncated power series distributions, Stein loss function.

1. Introduction

Let $X=(X_1,\cdots,X_p)$ where X_1,\cdots,X_p are p independent random variables, X_i having the following left-truncated power series distribution

$$P_{\theta_i}(x_i) = \begin{cases} g_i(\theta_i)t_i(x_i)\theta_i^{x_i}, & x_i = a_i, a_i + 1, \dots; \\ 0, & \text{otherwise,} \end{cases}$$

where a_i is nonzero positive integer and $g_i(\theta_i)$ is a normalizing constant, given as

$$g_i^{-1}(\theta_i) = \sum_{x_i = a_i}^{\infty} t_i(x_i)\theta_i^{x_i}, \ \theta_i > 0, i = 1, \dots, p.$$

¹ Received: 15 May 2012 Revised: 12 June 2012 Accepted: 20 June 2012

Consider the loss function (Stein loss) is given by

$$L(\theta, \delta) = \sum_{i=1}^{p} \left(\frac{\delta_i}{\theta_i} - \log \left(\frac{\delta_i}{\theta_i} \right) - 1 \right)$$
 (1.1)

where $\delta = (\delta_1, \dots, \delta_p)$ is an estimate of $\theta = (\theta_1, \dots, \theta_p)$ and \log denotes the natural logarithm. For the loss function (1.1), the best multiple estimator of θ (which is also the best unbiased estimator) is given by $\delta^0(X) = (\delta_1^0(X), \dots, \delta_p^0(X))$ where

$$\delta_i^0(X) = \begin{cases} \frac{t_i(X_i - 1)}{t_i(X_i)}, & X_i = a_i + 1, a_i + 1, \cdots; \\ 0, & \text{elsewhere.} \end{cases}$$

and $t_i(a_i - 1)$ is defined zero.

Suppose the rival estimator of θ as

$$\delta(X) = \delta(X) + \phi(X)$$

= $(\delta_1^0(X) + \phi_1(X), \dots, \delta_p^0(X) + \phi_p(X))$

where $\phi(X) = (\phi_1(X), \dots, \phi_p(X)), \phi_i(X) > 0$ and $\phi_i(X) = 0$ if $X_i < a_i + 1, i = 1, \dots, p$. Assume $\delta_i^0(X), i = 1, \dots, p$, be an increasing function of X.

The following theorem and corollary are from Dey and Chung (1991).

Theorem 1.1. Suppose that $\delta(X) = \delta^0(X)(1 + \psi(X))$ where $\psi(X) = (\psi_1(X), \dots, \psi_p(X))$ and $\psi_i(X) = \phi_i(X)/\delta_i^0(X)$, $i = 1, \dots, p$ with

$$\psi_i(X) = \frac{d(X)e^{-X_i}}{b+s_2}, \ s_2 = \sum_{j=1}^p e^{-2X_j}, i = 1, \dots, p$$

and the following additional conditions hold

- $(1) \ b \ge 1/4$
- (2) 0 < d(X) < 1/2
- (3) d(X) is a decreasing function in each coordinate
- (4) $d(X + e_i) \le e^{-2}d(X), i = 1, \dots, p.$

Then $\delta(X)$ will dominate $\delta^0(X)$ in terms of risk if p > 2.

Corollary 1.2. Suppose that $\delta(X) = \delta^0(X)(1 + \psi(X))$ where $\psi(X) = (\psi_1(X), \dots, \psi_p(X))$ with

$$\psi_i(X) = \frac{0.5e^{-2s}e^{-X_i}}{b + s_2}$$

where $s = \sum_{j=1}^{p} X_j$, $s_2 = \sum_{j=1}^{p} e^{-2X_j}$ and $b \ge 1/4$. Then for $p \ge 2$, $\delta(X)$ dominates $\delta^0(X)$ in terms of risk.

Now borrowing an idea of Liang (2009), we show that δ given in corollary

3.3.1 in fact is not better than δ^0 in terms of risk. For simplicity, consider $a_i=1$ for all $i=1,\cdots,p$ and let $\alpha=\min(\delta_1^0(2),\cdots,\delta_p^0(2))$. Suppose that the parameter space is given by $\Omega=\{\theta;\theta_i>0,i=1,\cdots,p\}$ and define the subspace $\Omega_0\subset\Omega$ such that $\Omega_0=\{\theta;\theta_i<\alpha,i=1,\cdots,p\}$. The risk difference of $\delta(X)$ and $\delta^0(X)$ is given by

$$\begin{split} \Delta(\theta) = & R(\theta, \delta) - R(\theta, \delta^0) \\ = & R(\theta, \delta^0 + \phi) - R(\theta, \delta^0) \\ = & \sum_{i=1}^p E\bigg(\frac{\phi_i(X)}{\theta_i} - \log\bigg(1 + \frac{\phi_i(X)}{\delta_i^0(X)}\bigg)\bigg). \end{split}$$

Since $\phi_i > 0$ and $\theta_i < \alpha$ for $i = 1, \dots, p$ and $\theta \in \Omega_0$ and also for all x such that $x_i \geq 2, i = 1, \dots, p$ we have

$$\delta_i^0(X) \ge \min(\delta_1^0(X), \cdots, \delta_p^0(X))$$

$$\ge \min(\delta_1^0(2), \cdots, \delta_p^0(2))$$

$$= \alpha,$$

then we get

$$\Delta(\theta) \ge \sum_{i=1}^{p} E\left(\frac{\phi_i(X)}{\alpha} - \log\left(1 + \frac{\phi_i(X)}{\alpha}\right)\right)$$
$$= \sum_{i=1}^{p} E\left(\eta_i(X) - \log(1 + \eta_i(X))\right),$$

where $\eta_i(X) = \phi_i(X)/\alpha$. It is known that $\eta_i(X) - \log(1 + \eta_i(X)) > 0$ for X such that $X_i \geq 2$ so that $\Delta(\theta) > 0$ for $\theta \in \Omega_0$.

Another way to show that the estimator δ is not better than δ^0 is by simulation. A Monti Carlo simulation is carried out to generate random variables from zero-truncated Poisson distribution using Matlab 7.4. For a particular set of parameters, the risks of the estimators δ^0 and δ are computed and reported in Table 1. From Table 1, we observe that the risk of δ is slightly higher than the risk of δ^0 for the a specific set of parameters and hence δ is not an improved estimator of δ^0 .

Table 1. R_1 is the risk of δ^0 and R_2 is the risk of δ .

p	Parameters							R_1	R_2			
2	.01	.07									5.5768	5.5782
3	.01	.07	.003								5.6621	5.6634
4	.01	.07	.003	.05							5.4648	5.4662
5	.01	.07	.003	.05	.00001						5.6188	5.6202
10	.01	.07	.003	.05	.00001	.001	.000015	.002	.001	.04	5.0567	5.0580

2. Main results

The following is an example of a definition.

Definition 2.1. Let X be a real Banach space. A non-empty closed set $P \subset X$ is called a cone of X if it satisfies the following conditions:

- (1) $x \in P, \mu \geq 0$ implies $\mu x \in P$,
- (2) $x \in P, -x \in P$ implies x = 0.

Here is an example of a table.

Table 2.

1	2	3		
f(x)	g(x)	h(x)		
a	b	c		

The following is an example of an example.

Example 2.2. Consider the following boundary value problem system:

$$\begin{cases} u^{(4)}(t) = f(t, u(t), u''(t)) & 0 \le t \le 1, \\ u(0) = u(1) = 0, & u''(0) - u'''(0) = 0, & u''(1) - \frac{1}{2}u''(\frac{1}{2}) = 0, \end{cases}$$
where $f(t, u(t), u''(t)) = \frac{1}{2}u''(t) = \frac{1}{2}u''(t) = \frac{1}{2}u''(t) = \frac{1}{2}u''(t) = 0,$ (2.1)

where $f(t, u(t), u''(t)) = \frac{1}{\sqrt{1+u}} - (u'')^{-3} + \sin \pi t$. Clearly,

$$0 < \int_0^1 (s + \frac{1}{2})(1 - s)ds < +\infty, \quad \min f_0 = +\infty, \quad \max f_\infty = 0.$$

System (2.1) has at least one positive solution.

The following is an example of a theorem and a proof [?, ?].

Theorem 2.3. If B is an open ball of a real inner product space \mathcal{X} of dimension greater than ...

Proof. First note that if f is a generalized Jensen mapping with parameters t = s > r, then

$$f(\lambda(x+y)) = \lambda f(x) + \lambda f(y)$$

$$\leq \lambda (f(x) + f(y))$$

$$= f(x) + f(y)$$
(2.2)

for some $\lambda \geq 1$... in the proof of Theorem 2.3, one can show that $f(x) = f(y_0) \dots$

The following is an example of a remark.

Remark 2.4. One can easily conclude that q is continuous by using Theorem 2.3.

ACKNOWLEDGMENTS

The author is very grateful to the referee for his/her valuable suggestions and comments.

References

- Dey, D. K. and Chung, Y. (1991). Multiparameter estimation in truncated power series distributions under the Stein's loss. Commun. Statist.-Theory Meth., 20, 309-326
- [2] Liang, T. (2009). Comments on "Estimating the parameter of the population selected from discrete exponential family". *Statistics and Probability Letters*, **79**, 2208-2211.