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Comments on Multiparameter Estimation in Truncated
Power Series Distributions under the Stein’s Loss
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Abstract. This comment is to show that Theorem 3.3 of Dey and
Chung (1991) (Multiparameter estimation in truncated power se-
ries distributions under the Stein’s loss. Commun. Statist.-Theory
Meth., 20, 309-326) may give us misleading results. Analytically
and through simulation, we show that the Theorem does not im-
prove the given estimator.
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1. Introduction

Let X = (X1, · · · , Xp) where X1, · · · , Xp are p independent random
variables, Xi having the following left-truncated power series distribu-
tion

Pθi(xi) =

{
gi(θi)ti(xi)θ

xi
i , xi = ai, ai + 1, · · · ;

0, otherwise,

where ai is nonzero positive integer and gi(θi) is a normalizing constant,
given as

g−1
i (θi) =

∞∑
xi=ai

ti(xi)θ
xi
i , θi > 0, i = 1, · · · , p.
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Consider the loss function (Stein loss) is given by

L(θ, δ) =

p∑
i=1

(
δi
θi

− log

(
δi
θi

)
− 1

)
(1.1)

where δ = (δ1, · · · , δp) is an estimate of θ = (θ1, · · · , θp) and log denotes
the natural logarithm. For the loss function (1.1), the best multiple
estimator of θ (which is also the best unbiased estimator) is given by
δ0(X) = (δ01(X), · · · , δ0p(X)) where

δ0i (X) =


ti(Xi − 1)

ti(Xi)
, Xi = ai + 1, ai + 1, · · · ;

0, elsewhere.

and ti(ai − 1) is defined zero.
Suppose the rival estimator of θ as

δ(X) =δ(X) + ϕ(X)

=(δ01(X) + ϕ1(X), · · · , δ0p(X) + ϕp(X))

where ϕ(X) = (ϕ1(X), · · · , ϕp(X)), ϕi(X) > 0 and ϕi(X) = 0 if Xi <
ai+1, i = 1, · · · , p. Assume δ0i (X), i = 1, · · · , p, be an increasing function
of X.
The following theorem and corollary are from Dey and Chung (1991).

Theorem 1.1. Suppose that δ(X) = δ0(X)(1 + ψ(X)) where ψ(X) =
(ψ1(X), · · · , ψp(X)) and ψi(X) = ϕi(X)/δ0i (X), i = 1, · · · , p with

ψi(X) =
d(X)e−Xi

b+ s2
, s2 =

p∑
j=1

e−2Xj , i = 1, · · · , p

and the following additional conditions hold

(1) b ≥ 1/4
(2) 0 < d(X) < 1/2
(3) d(X) is a decreasing function in each coordinate
(4) d(X + ei) ≤ e−2d(X), i = 1, · · · , p.

Then δ(X) will dominate δ0(X) in terms of risk if p ≥ 2.

Corollary 1.2. Suppose that δ(X) = δ0(X)(1 + ψ(X)) where ψ(X) =
(ψ1(X), · · · , ψp(X)) with

ψi(X) =
0.5e−2se−Xi

b+ s2

where s =
∑p

j=1Xj , s2 =
∑p

j=1 e
−2Xj and b ≥ 1/4. Then for p ≥ 2,

δ(X) dominates δ0(X) in terms of risk.
Now borrowing an idea of Liang (2009), we show that δ given in corollary
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3.3.1 in fact is not better than δ0 in terms of risk. For simplicity, consider
ai = 1 for all i = 1, · · · , p and let α = min(δ01(2), · · · , δ0p(2)). Suppose
that the parameter space is given by Ω = {θ; θi > 0, i = 1, · · · , p} and
define the subspace Ω0 ⊂ Ω such that Ω0 = {θ; θi < α, i = 1, · · · , p}.
The risk difference of δ(X) and δ0(X) is given by

∆(θ) =R(θ, δ)−R(θ, δ0)

=R(θ, δ0 + ϕ)−R(θ, δ0)

=

p∑
i=1

E

(
ϕi(X)

θi
− log

(
1 +

ϕi(X)

δ0i (X)

))
.

Since ϕi > 0 and θi < α for i = 1, · · · , p and θ ∈ Ω0 and also for all x
such that xi ≥ 2, i = 1, · · · , p we have

δ0i (X) ≥min(δ01(X), · · · , δ0p(X))

≥min(δ01(2), · · · , δ0p(2))
=α,

then we get

∆(θ) ≥
p∑

i=1

E

(
ϕi(X)

α
− log

(
1 +

ϕi(X)

α

))

=

p∑
i=1

E

(
ηi(X)− log(1 + ηi(X))

)
,

where ηi(X) = ϕi(X)/α. It is known that ηi(X) − log(1 + ηi(X)) > 0
for X such that Xi ≥ 2 so that ∆(θ) > 0 for θ ∈ Ω0.
Another way to show that the estimator δ is not better than δ0 is by
simulation. A Monti Carlo simulation is carried out to generate random
variables from zero-truncated Poisson distribution using Matlab 7.4. For
a particular set of parameters, the risks of the estimators δ0 and δ are
computed and reported in Table 1. From Table 1, we observe that the
risk of δ is slightly higher than the risk of δ0 for the a specific set of
parameters and hence δ is not an improved estimator of δ0.

Table 1. R1 is the risk of δ0 and R2 is the risk of δ.

p Parameters R1 R2

2 .01 .07 5.5768 5.5782
3 .01 .07 .003 5.6621 5.6634
4 .01 .07 .003 .05 5.4648 5.4662
5 .01 .07 .003 .05 .00001 5.6188 5.6202
10 .01 .07 .003 .05 .00001 .001 .000015 .002 .001 .04 5.0567 5.0580
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2. Main results

The following is an example of a definition.

Definition 2.1. Let X be a real Banach space. A non-empty closed set
P ⊂ X is called a cone of X if it satisfies the following conditions:
(1) x ∈ P, µ ≥ 0 implies µx ∈ P ,
(2) x ∈ P,−x ∈ P implies x = 0.

Here is an example of a table.

Table 2.

1 2 3

f(x) g(x) h(x)

a b c

The following is an example of an example.

Example 2.2. Consider the following boundary value problem system:{
u(4)(t) = f(t, u(t), u′′(t)) 0 ≤ t ≤ 1,
u(0) = u(1) = 0, u′′(0)− u′′′(0) = 0, u′′(1)− 1

2u
′′(12) = 0,

,(2.1)

where f(t, u(t), u′′(t)) = 1√
1+u

− (u′′)−3 + sinπt. Clearly,

0 <

∫ 1

0
(s+

1

2
)(1− s)ds < +∞, min f0 = +∞, max f∞ = 0.

System (2.1) has at least one positive solution.

The following is an example of a theorem and a proof [?, ?].

Theorem 2.3. If B is an open ball of a real inner product space X of
dimension greater than ...

Proof. First note that if f is a generalized Jensen mapping with param-
eters t = s ≥ r, then

f(λ(x+ y)) = λf(x) + λf(y)

≤ λ(f(x) + f(y))

= f(x) + f(y)

(2.2)

for some λ ≥ 1 ... in the proof of Theorem 2.3, one can show that
f(x) = f(y0) ... □

The following is an example of a remark.

Remark 2.4. One can easily conclude that g is continuous by using The-
orem 2.3.
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