تعداد نشریات | 30 |
تعداد شمارهها | 467 |
تعداد مقالات | 4,522 |
تعداد مشاهده مقاله | 7,145,290 |
تعداد دریافت فایل اصل مقاله | 5,334,968 |
نوآوری داده محور و مدیریت منابع انسانی: ارائه چارچوب بکارگیری تحلیل منابع انسانی | ||
مدیریت منابع انسانی پایدار | ||
دوره 6، شماره 11، مهر 1403، صفحه 241-215 اصل مقاله (1.22 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22080/shrm.2024.5101 | ||
نویسندگان | ||
مونا کاردانی ملکی نژاد1؛ فریبرز رحیم نیا* 2؛ قاسم اسلامی3؛ محمد مهدی فراحی1 | ||
1دانشکده علوم اداری و اقتصادی؛ دانشگاه فردوسی مشهد؛ مشهد، ایران | ||
2استاد گروه مدیریت، دانشکده علوم اداری و اقتصادی؛ دانشگاه فردوسی مشهد؛ مشهد، ایران. | ||
3استادیار گروه مدیریت، دانشکده علوم اداری و اقتصادی ، دانشگاه فردوسی مشهد | ||
تاریخ دریافت: 22 مهر 1403، تاریخ پذیرش: 22 مهر 1403 | ||
چکیده | ||
تحلیل داده ها در مدیریت منابع انسانی به دلیل توانایی آن در ارائه بینش بر اساس فرآیندهای تصمیم گیری مبتنی بر داده اهمیت یافته است. با این حال، ادغام یک رویکرد مبتنی بر تحلیل در مدیریت منابع انسانی یک فرآیند پیچیده است. از این رو، بسیاری از سازمانها قادر به به کارگیری تحلیل منابع انسانی نیستند. مطالعه حاضر با استفاده از رویکرد سنتز چارچوب در مورد نقش نوآوری داده محور (تحلیل منابع انسانی) در مدیریت منابع انسانی به شناسایی و تجزیه و تحلیل مضامین مهم و نهایتا پیشنهاد یک چارچوب یکپارچه پرداخته است. بر اساس تجزیه و تحلیل و ترکیب مقالات بررسی شده، این مطالعه تلاش اولیه ای را برای ادغام به کارگیری نوآوری داده محور و مدیریت منابع انسانی با توسعه مدل انتشار نوآوری با دو فرآیند اصلی (پیش از به کارگیری و پس از به کارگیری) انجام می دهد، که در آن 29 زیر مولفه که میتوانند در سه دسته شروع/محرک، انتشار/به کارگیری و تاثیرات دستهبندی شوند، شناسایی شدند. در نهایت، بــه روش گلوله برفــی، داده های مستخرج از سنتز چارچوب در اختیار خبرگانی از متخصصان حوزه مدیریت منابع انسانی و علم داده قرار گرفت و اعتبار داده ها با استفاده از روش اعتبارسـنجی لاوشه مورد تجزیه و تحلیل قرار گرفته شد. در نتیجه، بر اساس مقادیر قابل قبول ضرایب لاوشه بر اساس تعداد خبرگان، اعتبار مدل پیشنهادی مورد تایید خبرگان واقع گردید. | ||
کلیدواژهها | ||
بکارگیری نوآوری؛ تحلیل منابع انسانی؛ سنتز چارچوب؛ مدیریت منابع انسانی؛ نوآوری داده محور | ||
عنوان مقاله [English] | ||
Data-driven innovation and human resource management: proposing a human resource analytics adoption framework | ||
نویسندگان [English] | ||
Mona Kardani Malekinezhad1؛ Fariborz Rahim Niya2؛ ghasem eslami3؛ Mohammad Mahdi Farahi1 | ||
1Management Department, Faculty of Economics & Administrative Sciences, Ferdowsi University of Mashhad, Mashhad, Iran | ||
2Professor of the Department of Management, Faculty of Administrative and Economic Sciences; Ferdowsi University of Mashhad; Mashhad, Iran. | ||
3Assistant Professor, Department of Management, Faculty of Administrative and Economic Sciences, Ferdowsi University of Mashhad | ||
چکیده [English] | ||
Data analytics has become important in human resource management due to its ability to provide insight based on data-based decision making. However, integrating an analytics-based approach into human resource management is a complex process.Therefore, many organizations are unable to adopt human resource analytics. Using the framework synthesis approach, the present study has identified and analyzed important themes about the role of data-driven innovation (human resource analytics) in human resource management and finally proposed an integrated framework. Based on the analysis and synthesis of the reviewed articles, this study makes an initial attempt to integrate data-driven innovation adoption and human resource management by developing a diffusion of innovation model with two main processes (pre-adoption and post-adoption) in which 29 sub-components were identified which can be classified into three categories: initiation/driver, diffusion/adoption and effects. Finally, using the snowball method, the data extracted from the synthesis of the framework was provided to experts from the field of human resource management and data science, and the validity of the data was analyzed using the Lawshe validation method. As a result, based on the acceptable values of Lawshe's coefficients based on the number of experts, the validity of the proposed model was approved by the experts. | ||
کلیدواژهها [English] | ||
Innovation adoption, Human resource analytics, Framework synthesis, Human resource management, Data-driven innovation | ||
مراجع | ||
Ahmed, M. (2019, January 16). HR analytics is a high priority in APAC, but the adoption is sluggish. Retrieved January 25, 2019, from. https://www.peoplemattersglobal.com/article/talent-analytics/hr-analytics-is-a-high-priority-in-apac-but-the-adoption-is-sluggish-20532. Angrave, D., Charlwood, A., Kirkpatrick, I., Lawrence, M., & Stuart, M. (2016). HR and analytics: Why HR is set to fail the big data challenge. Human Resource Management Journal, 26(1), 1–11. Agarwal, Ritu, & Dhar, Vasant (2014). Editorial—Big Data, Data Science, and Analytics: The Opportunity and Challenge for IS Research. Information Systems Research, 25(3), 443–448. Aiken, M., & Hage, J. (1971). The organic organization and innovation. Sociology, 5(1), 63-82. Aral, S., Brynjolfsson, E., & Wu, L. (2012). Three-way complementarities: Performance pay, human resource analytics, and information technology. Management Science, 58(5), 913-931. Babu, M. M., Rahman, M., Alam, A., & Dey, B. L. (2021). Exploring big data-driven innovation in the manufacturing sector: evidence from UK firms. Annals of Operations Research, 1-28. Barney, J. B. (1991). Firm resources and sustained competitive advantage. Journal of Management, 17(1), 99–120. Barton, D., & Court, D. (2012). Making advanced analytics work for you. Harvard business review, 90(10), 78-83. Barrett, M., Davidson, E., Prabhu, J., & Vargo, S. L. (2015). Service innovation in the digital age: Key contributions and future directions. MIS Quarterly, 39(1), 135–154. Bassi, L. (2011). Raging debates in HR analytics. People and Strategy, 34(2), 14. Becker, G. (1964). Human capital: A theoretical and empirical analysis, with special reference to education. New York: Columbia University Press. Becker, B. E., Huselid, M. A., & Ulrich, D. (2001). The HR scorecard: Linking people, strategy, and performance. Harvard Business Press. Brunton, G., Oliver, S., & Thomas, J. (2020). Innovations in framework synthesis as a systematic review method. Research synthesis methods, 11(3), 316-330. Cappelli, Peter. (2017). There’s No Such Thing as Big Data in HR. Available online: www.hbr.org (accessed on 16 April 2018). Cascio, W. F. (2000). Costing human resources (4th Ed.). Cincinnati, OH: South-Western. Chalutz Ben-Gal, H. (2019). An ROI-based review of HR analytics: practical implementation tools. Personnel Review, 48(6), 1429-1448. Chau, P. Y., & Hui, K. L. (2001). Determinants of small business EDI adoption: An empirical investigation. Journal of Organizational Computing and Electronic Commerce, 11(4), 229–252. Chwelos, P., Benbasat, I., & Dexter, A. S. (2001). Empirical Test of an EDI Adoption Model. Information Systems Research, 12(3), 304–321. Coco, C. T. (2011). Connecting people investments and business outcomes at Lowe's: using value linkage analytics to link employee engagement to business performance. People and Strategy, 34(2), 28. Corea, F. (2016). Big data analytics: A management perspective. Studies Series in Big Data, 21. Springer International Publishing. Cronholm, S., & Andersson, L. (2020). Towards a process model for data-driven innovation using a grounded theory approach. E-Service Journal, 12(2), 35-64. Deloitte. (2016). the value of DDI (Data Driven Innovation). G. Israel. https://www.pdffiller.com/jsfillerdesk16/?requestHash=1fbf6126ec436813a79067fd1f23703fab2578e76fc67dcced8a5ec7c2986891&projectId=939942089&loader=tips&replace_gtm=false#b155f9c0bd3249f5a3aeeb91408206db. Dezin, N.K. Lincoln, Y.S. (2005). The SAGE Handbook of Qualitative Research. SAGE Publications. Davenport, T. H. (2013). Analytics 3.0. Harvard Business Review, 91(12), 64–72. Davenport, T. H., Harris, J., & Shapiro, J. (2010). Competing on talent analytics. Harvard business review, 88(10), 52-58. Ejaz, S., Akbar, W., & Shaikh, M. (2020). Slow adoption of HR analytics: Understanding from the lens of innovation diffusion theory. International Journal of Management (IJM), 11(11), 2090-2101. Ekka, S., & Singh, P. (2022). Predicting HR professionals’ adoption of HR analytics: An extension of Utaut Model. Organizacija, 55(1), 77-93. Esteves, J., & Curto, J. (2013). A risk and benefits behavioral model to assess intentions to adopt big data. Journal of Intelligence Studies in Business, 3(1), 37–46. Falletta, S. (2014). In search of HR intelligence: evidence-based HR analytics practices in high performing companies. People and Strategy, 36(4), 28. Farahi, M. M., & Kardani Malekinezhad, M. (2020). Enterprise Architecture and Cloud Computing: Developing a Cloud-Based HRM Architecture Framework with Emphasis on the Role of Actors. Iranian Journal of Information Processing and Management, 36(1), 181-210. Farazkish, M., Azadi, G., & Abdi, S. (2022). Designing a Mission-based Evaluation Model for Policy Research Institutes. Journal of Science and Technology Policy, 15(4), 91-110. (In Presian). Fernandez, V., & Gallardo-Gallardo, E. (2021). Tackling the HR digitalization challenge: key factors and barriers to HR analytics adoption. Competitiveness Review: An International Business Journal, 31(1), 162-187. Fichman, R. G., Dos Santos, B. L., & Zheng, Z. (2014). Digital innovation as a fundamental and powerful concept in the information systems curriculum. MIS quarterly, 38(2), 329-A15. Fitz-Enz, J. (2009), the ROI of Human Capital: Measuring the Economic Value of Employee Performance, AMACOM. Fitz-enz, J. (1984). How to measure human resources management. New York, NY: McGraw-Hill. Gandomi, A., & Haider, M. (2015). Beyond the hype: big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137–144. Garud, R., Berends, H. and Tuertscher, P. (2018), Qualitative Approaches for Studying Innovation as Process. The Routledge Companion to Qualitative Research in Organization Studies, Routledge, London, 226-247. George, G. and Lin, Y. (2017), Analytics, innovation, and organizational adaptation, Innovation, 19 (1), 16-22. George, L., & Kamalanabhan, T. J. (2016). A study on the acceptance of HR analytics in organisations. International Journal of Innovative Research and Development, 5(2), 357-360. Giacumo, L. A., & Bremen, J. (2016). Emerging evidence on the use of big data and analytics in workplace learning: a systematic literature review. Quarterly Review of Distance Education, 17(4), 21. Gordon, S. (2020). Organizational support versus supervisor support: The impact on hospitality managers’ psychological contract and work engagement. International Journal of Hospitality Management, 87, 102374. Grover, V. (1993). An empirically derived model for the adoption of customer-based Inter organizational systems. Decision Sciences, 24(3), 603–640. Gurusinghe, R. N., Arachchige, B. J., & Dayarathna, D. (2021). Predictive HR analytics and talent management: a conceptual framework. Journal of Management Analytics, 8(2), 195-221. Halper, F., & Stodder, D. (2014). TDWI analytics maturity model guide. TDWI research, 1-20. Hameed, M. A., Counsell, S., & Swift, S. (2012). A conceptual model for the process of IT innovation adoption in organizations. Journal of Engineering and Technology Management, 29(3), 358-390. Hamilton, R., & Sodeman, W. A. (2020). The questions we ask: Opportunities and challenges for using big data analytics to strategically manage human capital resources. Business Horizons, 63(1), 85–95. HANDA, D. (2014). Human resource (HR) analytics: Emerging trend in HRM (HRM). CLEAR International Journal of Research in Commerce & Management, 5(6). Harris, J. G., Craig, E., & Light, D. A. (2011). Talent and analytics: new approaches, higher ROI. Journal of Business Strategy, 32(6), 4-13. Huselid, M. A. (2018). The science and practice of workforce analytics: Introduction to the HRM special issue. Human Resource Management, 57(3), 679-684. Houghton, C., Murphy, K., Meehan, B., Thomas, J., Brooker, D., & Casey, D. (2017). From screening to synthesis: Using nvivo to enhance transparency in qualitative evidence synthesis. Journal of Clinical Nursing, 26(5–6), 873–881. Hossain, M. A., Quaddus, M., Hossain, M. M., & Gopakumar, G. (2022). Data-driven innovation development: an empirical analysis of the antecedents using PLS-SEM and fsQCA. Annals of Operations Research, 1-43. Hupperz, M. J., Gür, I., Möller, F., & Otto, B. (2021). What is a data-driven organization? In AMCIS. Isson, J., & Harriott, J. (2016). People analytics in the era of big data. Hoboken, New Jersey: Wiley. Ioakeimidou, D., Chatzoudes, D., Symeonidis, S., & Chatzoglou, P. (2023). HRA adoption via organizational analytics maturity: examining the role of institutional theory, resource-based view and diffusion of innovation. International Journal of Manpower. Jaturanonda, C., & Nanthavanij, S. (2011). ANALYTIC-BASED DECISION ANALYSIS TOOL FOR EMPLOYEE-JOB ASSIGNMENTS BASED ON COMPETENCY AND JOB PREFERENCE. International Journal of Industrial Engineering, 18(2). Jana, B., & Kaushik, T. (2022). Application of technology-organization-environment model in HR analytics adoption. Journal of Information and Optimization Sciences, 43(6), 1387-1395. Jeyaraj, A., Rottman, J. W., & Lacity, M. C. (2006). A review of the predictors, linkages, and biases in IT innovation adoption research. Journal of Information Technology, 21 (1), 1–23. Jiang, Y., & Akdere, M. (2022). An operational conceptualization of human resource analytics: implications for in human resource development. Industrial and Commercial Training, 54(1), 183-200. Kapoor, K. K., Dwivedi, Y. K., & Williams, M. D. (2014a). Rogers’ innovation adoption attributes: A systematic review and synthesis of existing research. Information Systems Management, 31(1), 74–91. Klein, K. J., & Sora, J. S. (1996). The challenge of implementaion innovation. The Academy of Management Review, 21(4), 1055-1080. Kohli, R., & Melville, N. P. (2019). Digital innovation: A review and synthesis. Information Systems Journal, 29(1), 200-223. Kremer, K. (2018). HR analytics and its moderating factors. Vezetéstudomány / Budapest Management Review, 49(11), 62-68. Lawler III, E. E., Levenson, A., & Boudreau, J. W. (2004). HR metrics and analytics–uses and impacts. Human Resource Planning Journal, 27(4), 27-35. Lawler, E. E., & Mohrman, S. A. (2003). HR as a strategic partner: what does it take to make it happen? Human Resource Planning, 26(3), 15-29. Lawshe, C. H. (1975). A Quantitative Approach to Content Validity. Personnel psychology/Berrett-Koehler Publishers. Lee, J. (2004). Discriminant Analysis of Technology Adoption Behavior: A Case of Internet Technologies in Small Businesses. Journal of Computer Information Systems, 44(4), 57–66. Levenburg, N. M., & Klein, H. A. (2006). Delivering customer services online: Identifying best practices of medium-sized enterprises. Information Systems Journal, 16(2), 135–155. Levenson, A., & Fink, A. (2017). Human capital analytics: too much data and analysis, not enough models and business insights. Journal of Organizational Effectiveness: People and Performance, 4(2), 145-156. Lydgate, X. K. M. (2018). Human Resource Analytics: Implications for Strategy Realization and Organizational Performance. McIver, D., Lengnick-Hall, M. L., & Lengnick-Hall, C. A. (2018). A strategic approach to workforce analytics: Integrating science and agility. Business Horizons, 61(3), 397-407. Maduku, D. K., Mpinganjira, M., & Duh, H. (2016). Understanding mobile marketing adoption intention by South African SMEs: A multi-perspective framework. International Journal of Information Management, 36(5), 711–723. Makinen, S. J., Kanniainen, J., & Dedehayir, O. (2013). Adoption dynamics of increasingreturn technologies in systemic contexts. Technological Forecasting and Social Change, 80(6), 1140–1146. Margherita, A. (2022). Human resources analytics: A systematization of research topics and directions for future research. Human Resource Management Review, 32(2), 100795. Marler, J., & Boudreau, J. (2017). An evidence-based review of HR analytics. The International Journal of Human Resource Management, 28(1), 3–26. Mayo, A. (2018). Applying HR analytics to talent management. Strategic HR Review, 17(5), 247-254. Meyer, A. D., & Goes, J. B. (1988). Organizational assimilation of innovations: A multilevel contextual analysis. Academy of management journal, 31(4), 897-923. Miczek, K. A., Thompson, M. L., & Tornatzky, W. (1990). Short and long term physiological and neurochemical adaptations to social conflict. Psychobiology of stress, 15-30. Minbaeva, D. B. (2017). Building credible human capital analytics for organizational competitive advantage. Human Resource Management, 57(3), 701–713. Mondore, S., Douthitt, S., & Carson, M. (2011). Maximizing the impact and effectiveness of HR analytics to drive business outcomes. People and Strategy, 34(2), 20. Musawa, M. S., & Wahab, E. (2012). The adoption of electronic data interchange (EDI) technology by Nigerian SMEs: A conceptual framework. Journal of Business Management and Economics, 3(2), 055–068. Nam, D., Lee, J., & Lee, H. (2019). Business analytics adoption process: An innovation diffusion perspective. International Journal of Information Management, 49, 411-423. Nambisan, S., Lyytinen, K., Majchrzak, A., & Song, M. (2017). Digital innovation management. MIS quarterly, 41(1), 223-238. Olufemi, A. (2019). Considerations for the Adoption of Cloud-based Big Data Analytics in Small Business Enterprises, Electron. J. Inf. Syst. Eval., 21(2), 63–79. Park, H., & Choi, S. O. (2019). Digital innovation adoption and its economic impact focused on path analysis at national level. Journal of open innovation: Technology, market, and complexity, 5(3), 56. Peeters, T., Paauwe, J., & Van De Voorde, K. (2020). People analytics effectiveness: developing a framework. Journal of organizational effectiveness: people and performance, 7(2), 203-219. Piccoli, G. (2012). Information systems for managers – text and cases (2nd Ed.). Wiley. Piyasena, K. G. C. C. (2022). Technological Organizational Environmental Determinants of Human Resource Analytics Adoption. Science, 4(2), 56-68. Premkumar, G., & Roberts, M. (1999). Adoption of new information technologies in rural small businesses. Omega, 27(4), 467–484. Provost, F., & Fawcett, T. (2013). Data Science for Business: What you need to know about data mining and data-analytic thinking. “O’Reilly Media, Inc.” Ramachandran, R., Babu, V., & Murugesan, V. P. (2023). Human resource analytics revisited: a systematic literature review of its adoption, global acceptance and implementation. Benchmarking: An International Journal, (ahead-of-print). Rasmussen, T., & Ulrich, D. (2015). Learning from practice: How HR analytics avoids being a management fad. Organizational Dynamics, 44(3), 236–242. Reena, R., Ansari, M. M., & Jayakrishnan, S. S. (2019). Emerging trends in human resource analytics in upcoming decade. International Journal of Engineering Applied Sciences and Technology, 4(8), 260-264. Rizk, A., StAahlbröst, A., & Elragal, A. (2022). Data-driven innovation processes within federated networks. European Journal of Innovation Management, 25(6), 498-526. Rogers, E.M. (2003) Diffusion of Innovations. Free Press, New York. Rogers, E. M. (1995). Lessons for guidelines from the diffusion of innovations. The Joint Commission journal on quality improvement, 21(7), 324-328. Saxena, M., Bagga, T., Gupta, S., & Mittal, A. (2022). Employees’ Experiences of Accepting and Adopting HR Analytics: A Phenomenology Study. The Open Psychology Journal, 15(1). Schiemann, W. A., Seibert, J. H., & Blankenship, M. H. (2018). Putting human capital analytics to work: Predicting and driving business success. Human Resource Management, 57(3), 795-807. Sharma, A., & Sharma, T. (2017). HR analytics and performance appraisal system: A conceptual framework for employee performance improvement. Management Research Review, 40(6), 684-697. Schiemann, W. A., Seibert, J. H., & Blankenship, M. H. (2018). Putting human capital analytics to work: Predicting and driving business success. Human Resource Management, 57(3), 795-807. Schwarz, J. L., & Murphy, T. E. (2008). Human capital metrics: an approach to teaching using data and metrics to design and evaluate management practices. Journal of management education, 32(2), 164-182. Sheehan, M., & Anderson, V. (2015). Talent management and organizational diversity: A call for research. Human Resource Development Quarterly, 26(4), 349-358. Shet, S. V., Patil, S. V., & Chandawarkar, M. R. (2019). Competency based superior performance and organizational effectiveness. International Journal of Productivity and Performance Management, 68(4), 753-773. Shet, S. V., Poddar, T., Samuel, F. W., & Dwivedi, Y. K. (2021). Examining the determinants of successful adoption of data analytics in human resource management–A framework for implications. Journal of Business Research, 131, 311-326. Shrivastava, S., Nagdev, K., & Rajesh, A. (2018). Redefining HR using people analytics: the case of Google. Human Resource Management International Digest, 26(2), 3-6. Singh, P., Upadhyay, R.K. & Srivastava, M. (2017), the role of HR analytics in higher education institution, International Journal of Engineering Sciences & Research Technology. 6, (7), 92-100. Stone, D. L., Deadrick, D. L., Lukaszewski, K. M., & Johnson, R. (2015). The influence of technology on the future of human resource management. Human Resource Management Review, 25(2), 216–231. Stone, D., & Wang, R. (2014). Deciding with data – How data-driven innovation is fuelling Australia’s economic growth. PricewaterhouseCoopers (PwC). http://www.pwc.com.au/consulting/assets/publications/Data-drive-innovation-Sep14.pdf Sweeney, J. (2010), UnitedHealth Group leverages predictive analytics for enhanced staffing and retention, in Fitz-enz, J. (Ed.), The New HR Analytics: Predicting the Economic Value of Your Company’s Human Capital Investments, AMACOM. 265-270. Thong, J. Y. L., Yap, C. S., & Raman, K. S. (1996). Top management support, external expertise and information systems implementation in small businesses. Information Systems Research, 7(2), 248–267. Tong, A., Flemming, K., McInnes, E., Oliver, S., & Craig, J. (2012). Enhancing transparency in reporting the synthesis of qualitative research: ENTREQ. BMC Medical Research Methodology, 12(1). Tornatzky, L. G., Fleischer, M., and Chakrabarti, A. K. (1990). Processes of technological innovation. Lexington Books. Toulson, P. K., & Dewe, P. (2004). HR accounting as a measurement tool. Human Resource Management Journal, 14(2), 75-90. Tursunbayeva, A., Di Lauro, S., & Pagliari, C. (2018). People analytics—a scoping review of conceptual boundaries and value propositions. International Journal of Information Management, 43, 224-247. Van den Heuvel, S., & Bondarouk, T. (2017). The rise (and fall?) of HR analytics: A study into the future application, value, structure, and system support. Journal of Organizational Effectiveness: People and Performance, 4(2), 157-178. Van de Ven, A. H. (2017). The innovation journey: you can't control it, but you can learn to maneuver it. Innovation, 19(1), 39-42. Van de Ven, A. H., Angle, H. L., & Poole, M. S. (Eds.). (2000). Research on the management of innovation: The Minnesota studies. Oxford University Press, USA. Vargas, R. (2015). Adoption factors impacting human resource analytics among human resource professionals. Nova Southeastern University. Vargas, R., Yurova, Y. V., Ruppel, C. P., Tworoger, L. C., & Greenwood, R. (2018). Individual adoption of HR analytics: a fine-grained view of the early stages leading to adoption. The International Journal of Human Resource Management, 29(22), 3046-3067. Venkatesh, V., & Bala, H. (2012). Adoption and impacts of interorganizational business process standards: Role of partnering synergy. Information systems research, 23(4), 1131-1157 Victor, V., & Maria, F. F. (2018). Prospects of big data driven innovation in enterprises. IBIMA 2018, 4503-4510. Walker, R. S., & Brown, I. (2019). Big data analytics adoption: A case study in a large South African telecommunications organisation. South African Journal of Information Management, 21(1), 1-10. Wamba, S., Gunasekaran, A., Akter, S., Ren, S., Dubey, R., & Childe, S. (2017). Big data analytics and firm performance: Effects of dynamic capabilities. Journal of Business Research, 70, 356–365. Wang, Y., & Hajli, N. (2017). Exploring the path to big data analytics success in healthcare. Journal of Business Research, 70, 287–299. Xiao, X., Califf, C. B., Sarker, S., & Sarker, S. (2013). ICT innovation in emerging economies: a review of the existing literature and a framework for future research. Journal of Information Technology, 28, 264-278. Yeung, J. H., Shim, J. P., & Lai, A. Y. (2003). Current progress of e-Commerce adoption. Communications of the ACM, 46(9), 226–232. Yin, Y. (2015). Developing an adoption process framework for Big Data Analytics by OEM companies. Yoo, Y., Henfridsson, O., & Lyytinen, K. (2010). Research commentary—the new organizing logic of digital innovation: an agenda for information systems research. Information systems research, 21(4), 724-735. Zeidan, S., & Itani, N. (2020). HR analytics and organizational effectiveness. International Journal on Emerging Technologies, 11(2), 683-688. Zhou, Y., Wang, L., Sanders, K., & Marler, J. (2022). Determinants of Effective Hr Analytics Implementation: An In-Depth Review and a Dynamic Model for Future Research. | ||
آمار تعداد مشاهده مقاله: 280 تعداد دریافت فایل اصل مقاله: 68 |