- Vamvatsikos, D., & Cornell, C. A. (2001). Incremental dynamic analysis. Earthquake Engineering & Structural Dynamics, 31(3), 491–514. doi:10.1002/eqe.141.
- Park, Y., & Ang, A. H. ‐S. (1985). Mechanistic Seismic Damage Model for Reinforced Concrete. Journal of Structural Engineering, 111(4), 722–739. doi:10.1061/(asce)0733-9445(1985)111:4(722).
- Chopra, A. K., & Goel, R. K. (2002). A modal pushover analysis procedure for estimating seismic demands for buildings. Earthquake Engineering and Structural Dynamics, 31(3), 561–582. doi:10.1002/eqe.144.
- Mofid, M., Zarfam, P., & Fard, B. R. (2005). On the modal incremental dynamic analysis. Structural Design of Tall and Special Buildings, 14(4), 315–329. doi:10.1002/tal.271.
- Zarfam, P., & Mofid, M. (2011). On the modal incremental dynamic analysis of reinforced concrete structures, using a trilinear idealization model. Engineering Structures, 33(4), 1117–1122. doi:10.1016/j.engstruct.2010.12.029.
- Han, S. W., & Chopra, A. K. (2006). Approximate incremental dynamic analysis using the modal pushover analysis procedure. Earthquake Engineering and Structural Dynamics, 35(15), 1853–1873. doi:10.1002/eqe.605.
- Zafarkhah, E., & Dehkordi, M. R. (2017). Extending the modal incremental dynamic analysis method for structures equipped with viscoelastic dampers. Journal of Vibroengineering, 19(2), 783–800. doi:10.21595/jve.2016.17181.
- Zarfam, P., & Mofid, M. (2009). Evaluation of modal incremental dynamic analysis, using input energy intensity and modified bilinear curve. Structural Design of Tall and Special Buildings, 18(5), 573–586. doi:10.1002/tal.461.
- Xiang, Y., Luo, Y. feng, & Shen, Z. yan. (2017). An extended modal pushover procedure for estimating the in-plane seismic responses of latticed arches. Soil Dynamics and Earthquake Engineering, 93, 42–60. doi:10.1016/j.soildyn.2016.12.005.
- Polyakov, S. V. (1960). On the interaction between masonry filler walls and enclosing frame when loaded in the plane of the wall. Translations in earthquake engineering, 2(3), 36-42.
- Holmes, M. (1961). Steel Frames With Brickwork and Concrete Infilling. Proceedings of the Institution of Civil Engineers, 19(4), 473–478. doi:10.1680/iicep.1961.11305.
- Stafford Smith, B. (1967). Methods for predicting the lateral stiffness and strength of multi-storey infilled frames. Building Science, 2(3), 247–257. doi:10.1016/0007-3628(67)90027-8.
- Hetényi, M., & Hetbenyi, M. I. (1946). Beams on elastic foundation: theory with applications in the fields of civil and mechanical engineering. University of Michigan Press, Ann Arbor, United States.
- Reflak, J., & Fajfar, P. (1991). Elastic analysis of infilled frames using substructures. Earthquake Engineering, 285–292. doi:10.3138/9781487583217-037.
- Hamburger, R. O., & Chakradeo, A. S. (1993). Methodology for seismic capacity evaluation of steel-frame buildings with infill unreinforced masonry. Mitigation and damage to the built environment, Central United States Earthquake Consortium (CUSEC), Memphis, United States.
- Skafida, S., Koutas, L., & Bousias, S. N. (2014). Analytical Modeling of Masonry Infilled RC Frames and Verification with Experimental Data. Journal of Structures, 2014, 1–17. doi:10.1155/2014/216549.
- Roca, P., Molins, C., & Marí, A. R. (2005). Strength Capacity of Masonry Wall Structures by the Equivalent Frame Method. Journal of Structural Engineering, 131(10), 1601–1610. doi:10.1061/(asce)0733-9445(2005)131:10(1601).
- Magenes, G. (2000, January). A method for pushover analysis in seismic assessment of masonry buildings. Proceedings of the12th world conference on earthquake engineering, 30 January-4 February, Auckland, New Zealand.
- Lagomarsino, S., Penna, A., Galasco, A., & Cattari, S. (2013). TREMURI program: An equivalent frame model for the nonlinear seismic analysis of masonry buildings. Engineering Structures, 56, 1787–1799. doi:10.1016/j.engstruct.2013.08.002.
- Rots, J. G., & Blaauwendraad, J. (1995). Two approaches for the analysis of masonry structures: micro and macro-modeling. Heron, 40(4).
- Lourenço, P. B. (1997). Computational strategies for masonry structures. PhD Thesis, Delft University of Technology, Delft, Netherlands.
- Lourenço, P. B. (1994). Analysis of masonry structures with interface elements: Theory and applications. Faculteit der Civiele Techniek, TU Delft,, Delft, Netherlands.
- Zucchini, A., & Lourenço, P. B. (2004). A coupled homogenisation-damage model for masonry cracking. Computers and Structures, 82(11–12), 917–929. doi:10.1016/j.compstruc.2004.02.020.
- Lourenço, P. B. (1997). An anisotropic macro-model for masonry plates and shells: Implementation and validation. Faculty of Civil Engineering, Mechanics and Structures, Computational Mechanics, Delft University of Technology, Delft, Netherlands.
- Bhattacharya, S., Nayak, S., & Dutta, S. C. (2014). A critical review of retrofitting methods for unreinforced masonry structures. International Journal of Disaster Risk Reduction, 7, 51–67. doi:10.1016/j.ijdrr.2013.12.004.
- Lin, Y. W., Wotherspoon, L., Scott, A., & Ingham, J. M. (2014). In-plane strengthening of clay brick unreinforced masonry wallettes using ECC shotcrete. Engineering Structures, 66, 57–65. doi:10.1016/j.engstruct.2014.01.043.
- Khan, H. A., Roy, P., & Nanda, R. P. (2016). Retrofitting of Brick Masonry Panels with Glass Fibre Reinforced Polymers. IOSR Journal of Mechanical and Civil Engineering, 16(053), 11–18. doi:10.9790/1684-16053011118.
- Sathiparan, N., Nissanka, N. A. A. C., & Priyankara, R. L. S. (2016). A Comparative Study of Meshtype Retrofitting for Unreinforced Masonry Under In-plane Loading. Arabian Journal for Science and Engineering, 41(4), 1391–1401. doi:10.1007/s13369-015-1937-x.
- Moroz, J. G., Lissel, S. L., & Hagel, M. D. (2014). Performance of bamboo reinforced concrete masonry shear walls. Construction and Building Materials, 61, 125–137. doi:10.1016/j.conbuildmat.2014.02.006.
- Feo, L., Luciano, R., Misseri, G., & Rovero, L. (2016). Irregular stone masonries: Analysis and strengthening with glass fibre reinforced composites. Composites Part B: Engineering, 92, 84–93. doi:10.1016/j.compositesb.2016.02.038.
- Nayak, S., & Dutta, S. C. (2016). Improving Seismic Performance of Masonry Structures with Openings by Polypropylene Bands and L-Shaped Reinforcing Bars. Journal of Performance of Constructed Facilities, 30(2). doi:10.1061/(asce)cf.1943-5509.0000733.
- Kalliontzis, D., & Schultz, A. E. (2017). Improved estimation of the reverse-cyclic behavior of fully-grouted masonry shear walls with unbonded post-tensioning. Engineering Structures, 145, 83–96. doi:10.1016/j.engstruct.2017.05.011.
- Santandrea, M., Quartarone, G., Carloni, C., & Gu, X. (2017). Confinement of masonry columns with steel and basalt FRCM composites. Key Engineering Materials, 747 KEM, 342–349. doi:10.4028/www.scientific.net/KEM.747.342.
- Ismail, N., & Ingham, J. M. (2016). In-plane and out-of-plane testing of unreinforced masonry walls strengthened using polymer textile reinforced mortar. Engineering Structures, 118, 167–177. doi:10.1016/j.engstruct.2016.03.041.
- Sathiparan, N., Sakurai, K., Numada, M., & Meguro, K. (2014). Seismic evaluation of earthquake resistance and retrofitting measures for two story masonry houses. Bulletin of Earthquake Engineering, 12(4), 1805–1826. doi:10.1007/s10518-014-9587-z.
- Banerjee, S., Nayak, S., & Das, S. (2019). Enhancing the flexural behaviour of masonry wallet using PP band and steel wire mesh. Construction and Building Materials, 194, 179–191. doi:10.1016/j.conbuildmat.2018.11.001.
- Messali, F., Metelli, G., & Plizzari, G. (2017). Experimental results on the retrofitting of hollow brick masonry walls with reinforced high performance mortar coatings. Construction and Building Materials, 141, 619–630. doi:10.1016/j.conbuildmat.2017.03.112.
- Zienkiewicz, O. C., & Taylor, R. L. (2000). The finite element method: The basis. Butterworth-Heinemann, Oxford, United Kingdom.
- Zienkiewicz, O. C., & Taylor, R. L. (2000). The finite element method: solid mechanics. Butterworth-Heinemann, Oxford, United Kingdom.
- ASCE/SEI 7-10. (2010). Minimum Design Loads for Buildings and Other Structures. American Society of Civil Engineers (ASCE), Reston, United States. doi:10.1061/9780784412916
- Kent, D. C., & Park, R. (1971). Flexural Members with Confined Concrete. Journal of the Structural Division, 97(7), 1969–1990. doi:10.1061/jsdeag.0002957.
- Koiter, W. T. (1953). Stress-strain relations, uniqueness and variational theorems for elastic-plastic materials with a singular yield surface. Quarterly of Applied Mathematics, 11(3), 350–354. doi:10.1090/qam/59769.
- Page, A. (1981). The Biaxial Compressive Strength of Brick Masonry. Proceedings of the Institution of Civil Engineers, 71(3), 893–906. doi:10.1680/iicep.1981.1825.
- Asteris, P. G. (2008). Finite element micro-modeling of infilled frames. Electronic Journal of Structural Engineering, 8, 1–11.
- ACI 318-14. (2014). Building Code Requirements for Structural Concrete (ACI 318-14). American Concrete Institute (ACI), Michigan, United States.
|