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 Abstract: 

Motivated by a new interesting nonlinear electrodynamics (NLED) model known as 

Modification Maxwell (ModMax) theory, we obtain an exact analytic BTZ black hole solution 

in the presence of a new NLED model and the cosmological constant. Afterward, by 

considering the obtained solution, we Hawking temperature, entropy, electric charge, mass, 

and electric potential. We extract the first law of thermodynamics for the BTZ-ModMax black 

hole. We study thermal stability by evaluating the heat capacity (local stability) and Helmholtz 

free energy (global stability). By comparing the local and global stabilities, we find the 

common areas that simultaneously satisfy the local and global stabilities. 
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1. Introduction 

The nonlinear electrodynamics (NLED) theories are 

generalizations of Maxwell’s theory and describe some of 

the phenomena that Maxwell’s theory is unable to explain 

carefully. For example, NLED theories can explain the self-

interaction of virtual ee+ (i.e., electron-positron) pairs [1–3]. 

Moreover, NLED theories can affect the gravitational 

redshift around super-strong magnetized compact objects 

[4, 5]. By applying NLED in cosmology, we can eliminate 

the Big Bang’s singularity. For a black hole, the singularity 

of spacetime is removed using NLED (see Refs. [6–9], for 

more details). In this regard, a few NLED theories were 

introduced, such as Born-Infeld (BI) [10], Euler-Heisenberg 

(EH) [1], and Power-Law (PL) [11, 12]. BI-NLED preserves 

the electromagnetic duality invariance of Maxwell’s theory 

and solves the self-energy of point particles’ divergence 

[10]. However, BI-NLED theory is not conformally 

invariant.  EH-NLED theory explains the effect of vacuum 

polarization, but it is not conformal invariant and dual 

invariant [1]. PL-NLED is conformal invariance [11, 12] 

and also can remove the self-energy of a point particle’s 

divergence [13, 14]. Recently, Bandos et al. proposed an 

NLED theory with two fundamental symmetries, i.e., 

electromagnetic duality and conformal invariance [15]. This 

NLED theory had two types of solutions. One of them leads 

to Bialynicki-Birula electrodynamics, and the other one 

yields a generalization of Maxwell electrodynamics, which 

is known as a modification of Maxwell (ModMax) theory 

[15]. Notably, the ModMax NLED theory is characterized 

by a dimensionless parameter γ, and it turns to Maxwell’s 

theory for γ = 0 [15, 16] (see Refs. [17–19] for recent 

extensions of the ModMax NLED theory). By coupling the 

ModMax electrodynamics and gravity, different black hole 

solutions have been studied in some literature [20–34]. 

The first black hole solution was found by Banados, 

Teitelboim, and Zanelli in three-dimensional spacetime 

[35], which is known as BTZ black hole.  Then, the study of 

gravity in three-dimensional spacetime attracted a lot of 

attention due to different aspects of their physics; for 

example, there are relations between effective action in 

string theory and three-dimensional black holes [36–38]. 

Anti-Hawking phenomena [39, 40] provide a better 

understanding of gravitational systems in three-dimensional 

spacetime [41], AdS/CFT correspondence [42, 43], 

quantum aspect, entanglement, and quantum entropy [44–

47], and holographic aspects [48–50]. In this regard, 

different three-dimensional black holes have been obtained 

in Einstein’s gravity theory, and modified theories of gravity 

are coupled with linear and nonlinear matters [51–66]. 

https://cste.journals.umz.ac.ir/
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/
https://foreign.umz.ac.ir/
https://cste.journals.umz.ac.ir/
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In this paper, an analytic BTZ black hole solution is 

obtained by coupling Einstein’s gravity with the ModMax 

NLED field. Then, the Hawking temperature, entropy, 

electric charge, electric potential, and mass of the BTZ- 

ModMax black hole are calculated. Finally, to evaluate the 

thermal stability of this black hole, the heat capacity and 

Helmholtz free energy are studied. 

2. Field Equation and Black Hole Solution 

The action of Einstein’s theory of gravity coupled with the 

ModMax NLED and the cosmological constant in three-

dimensional spacetime is: 

ℑ =
1

16𝜋
∫ 𝑑3𝑥√−𝑔[𝑅 − 2Λ − 4ℒ]
𝜕ℳ

,  (1) 

where 𝑅 is the Ricci scalar, and Λ is the cosmological 

constant. In the above action, 𝑔 = det⁡(𝑔𝜇𝑣) is devoted to 

the determinant of the metric tensor (𝑔𝜇𝑣).  In addition, ℒ is 

the ModMax Lagrangian [15, 16]. Here, we assume that the 

ModMax Lagrangian in three-dimensional spacetime 

resembles the ModMax Lagrangian in four-dimensional 

spacetime. i.e., 

ℒ = 𝒮𝑐𝑜𝑠ℎ𝛾 − √𝒮2 +𝒫2𝑠𝑖𝑛ℎ𝛾,  (2) 

where 𝛾 is a dimensionless parameter known as the 

ModMax parameter.  In the ModMax Lagrangian, 𝒮 and 𝒫, 

respectively, are a true scalar, and a pseudoscalar. They are 

defined as: 

𝒮 =
ℱ

4
,  (3) 

𝒫 =
ℱ̃

4
,  (4) 

where ℱ = ℱ𝜇𝜐𝐹
𝜇𝜐 is the Maxwell invariant. Also, ℱ𝜇𝜐 is 

called the electromagnetic tensor field and is given as: 

ℱ𝜇𝜐 = 𝜕𝜇𝐴𝜐 − 𝜕𝑣𝐴𝜇,  

in which 𝐴𝜇 is the gauge potential.  In addition, ℱ̃ = ℱ𝜇𝜐�̃�
𝜇𝜐 

and �̃�𝜇𝜐 =
1

2
∈𝜇𝜐

𝜌𝜆 𝐹𝜌𝜆. Notably, the ModMax Lagrangian 

turns to linear Maxwell’s theory, i.e., ℒ =
ℱ

4
, when 𝛾 = 0. 

In this paper, we want to extract the electrically charged 

BTZ-ModMax black hole solutions in Einstein-Λ gravity, 

so 𝒫 = 0. The Einstein-Λ-ModMax equations are written in 

the following form: 

𝐺𝜇𝜐 + Λ𝑔𝜇𝜐 = 8𝜋𝑇𝜇𝜐 ,  (5) 

𝜕𝜇(√−𝑔�̃�
𝜇𝜐) = 0,  (6) 

where 

8𝜋𝑇𝜇𝜐 = 2(𝐹𝜇𝜎𝐹𝜐𝜎𝑒
−𝛾) − 2𝑒−𝛾𝒮𝑔𝜇𝜐 ,  (7) 

�̃�𝜇𝜐 =
𝜕ℒ

𝜕𝐹𝜇𝜐
= 2(ℒ𝒮𝐹𝜇𝜐),  (8) 

and ℒ𝒮 =
𝜕ℒ

𝜕𝒮
. For the charged case, the ModMax field 

equation (Eq. (6)) turns to: 

𝜕𝜇(√−𝑔𝑒
−𝛾𝐹𝜇𝜐) = 0.  (9) 

Notably, according to the physical restriction, we consider 

𝛾 ≥ 0 [15]. 

Here, we consider a three-dimensional static spacetime as 

𝑑𝑠2 = −𝜓(𝑟)𝑑𝑡2 +
𝑑𝑟2

𝜓(𝑟)
+ 𝑟2𝑑𝜑2,  (10) 

and 𝜓(𝑟) is a function (known as the metric function) that 

we want to find. 

To extract a radial electric field, we suppose 𝐴𝜇 in the 

following form: 

𝐴𝜇 = ℎ(𝑟)𝛿𝜇
𝑡 ,  (11) 

whereby considering the metric (10) and the MaxMax field 

Equation 9, we can get: 

ℎ′(𝑟) + 𝑟ℎ′′(𝑟) = 0,  (12) 

and the prime is related to the first derivative concerning r, 

and the double prime is devoted to the second derivative 

with respect to r. Using Eq. (12), we extract 

ℎ(𝑟) = 𝑞⁡𝑙𝑛 (
𝑟

𝑟0
),  (13) 

in which 𝑞 is an integration constant. This constant (𝑞) is 
related to the electric charge. Also, 𝑟0 is another constant 

with length dimension and confirms that the logarithmic 

argument is dimensionless. The obtained electric field of 

ModMax NLED in three-dimensional spacetime is: 

𝐸(𝑟) =
𝑞

𝑟
𝑒−𝛾 ,  (14) 

To get the metric function, i.e., 𝜓(𝑟), we use Equation 10 

with Eqs. (5), (7), and (13). We can extract the following 

differential equations: 

𝑒𝑞𝑡𝑡 = 𝑒𝑞𝑟𝑟 = 𝜓′(𝑟) + 2Λ𝑟 +
2𝑞2

𝑟
𝑒−𝛾 = 0,  (15) 

𝑒𝑞𝜑𝜑 = 𝜓′′(𝑟) + 2Λ −
2𝑞2

𝑟2
𝑒−𝛾 = 0,  (16) 

which 𝑒𝑞𝑡𝑡, 𝑒𝑞𝑟𝑟 , and 𝑒𝑞𝜑𝜑, respectively, belong to 𝑡𝑡, 𝑟𝑟, 

𝜑𝜑 components of the field equation of motion (Eq. (5)). 

Using Eqs. (15) and (16), we obtain the metric function as: 

𝜓(𝑟) = −𝑚0 − Λ𝑟2 − 2𝑞2𝑒−𝛾 ln (
𝑟

𝑟0
),  (17) 

where 𝑚0 is an integration constant. This constant is related 

to the total mass of black holes. Moreover, the obtained 

metric function (17) turns to BTZ black holes in Einstein-

Λ-Maxwell theory when the parameter of ModMax is zero, 

i.e. 𝛾 = 0. 

After finding the solution (17), we want to evaluate the 

existence of essential singularity(ies). For this purpose, we 

evaluate two well-known scalars which are the Ricci and 

Kretschmann scalars. These scalars, respectively, are: 
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𝑅 = 6Λ +
2𝑞2

𝑟2
𝑒−𝛾,  (18) 

𝑅𝛼𝛽𝛾𝛿𝑅
𝛼𝛽𝛾𝛿 = 12Λ2 +

8Λ𝑞2

𝑟2
𝑒−𝛾 +

12𝑞4

𝑟4
𝑒−2𝛾.  (19) 

The results indicate different behavior for the Ricci and 

Kretschmann scalars. These are: 

i. For the finite and small value of 𝛾, these quantities 

reveal that there is a curvature singularity at 𝑟 = 0. 

ii. In the limit of 𝑟 → ∞, the Ricci and Kretschmann 

scalars turn to 6Λ and 12Λ, respectively, which indicate 

that the asymptotical behavior of the solution is (𝐴)𝑑𝑆 

for Λ > 0 (Λ < 0). 

iii. For very large value of 𝛾 or in the limit 𝛾 → ∞, by 

considering 𝑟 → 0, we have 

lim
𝑟→0

𝑅 → 6Λ,  (20) 

lim
𝑟→0

𝑅𝛼𝛽𝛾𝛿𝑅
𝛼𝛽𝛾𝛿 → 12Λ2,  (21) 

where indicates that they cannot reveal a curvature 

singularity at 𝑟 = 0. 

To find a singularity of the obtained solution (17), we 

calculate some of the components of Ricci and Riemannian 

tensors, which are: 

𝑅𝜑𝜑 =
2Λ𝑟2+2𝑞2𝑒−𝛾

𝑟4
,  (22) 

𝑅𝑟𝜑𝑟𝜑 =
𝜓(𝑟)(Λ𝑟2+𝑞2𝑒−𝛾)

𝑟4
,  (23) 

and diverge in the limit 𝛾 → ∞, and 𝑟 → 0. Therefore, an 

essential curvature singularity exists at 𝑟 = 0, for different 

values of 𝛾. 

In order to get the real positive roots (or regular horizons) 

of the metric function, we have plotted Figure 1. We can 

find two horizons (event horizon and inner horizon), one 

extreme horizon, and also the naked singularity (without 

horizon) for the obtained solutions. In other words, the 

singularity is covered with at least one horizon (event 

horizon). So, we can interpret these solutions as black holes. 

The effects of various parameters reveal that i) by fixing 

the parameters of 𝑞, 𝑟0, 𝛾, and Λ, the massive black holes 

have two roots, one of which is related to the event horizon 

(see the up-left panel in Figure 1). ii) dS BTZ black hole 

does not include the event horizon (see the up-right panel in 

Figure 1). So, the obtained solution (17) cannot be a black 

hole when Λ > 0. iii) small electrical charge BTZ black 

holes include two roots, an inner horizon, and an outer 

(event) horizon (see the down-left panel in Figure 1). iv) the 

effect of the ModMax parameter indicates that by increasing 

𝛾, the number of roots increases when other parameters are 

fixed (see the down-right panel in Figure 1). 

As a result, small charged AdS BTZ black holes with large 

values of the ModMax parameter (𝛾) and mass (m0) have 

two roots, which are the inner root and event horizon, 

respectively. 

3. Thermodynamic Quantities 

We obtain the thermodynamic quantities of BTZ-ModMax 

black holes in this section. 

The Hawking temperature is defined as: 

𝑇 =
𝑘

2𝜋
=

√−
1

2
(∇𝜇𝜒𝑣)(∇

𝜇𝜒𝑣)

2𝜋
,  

(24) 

where 𝜒 = 𝜕𝑡 is the Killing vector, and also 𝑘 is the surface 

gravity. Using the metric (10), we can get the surface gravity 

𝑘, which is given by 𝑘 =
𝜓′(𝑟)

2
|
𝑟=𝑟+

, in which 𝑟+ is the outer 

(event) horizon. So, the Hawking temperature of BTZ-

ModMax black hole is: 

𝑇 =
𝜓′(𝑟)|

𝑟=𝑟+

4𝜋
= −

Λ𝑟+

2𝜋
−

𝑞2

2𝜋𝑟+
𝑒−𝛾.  (25) 

As one can see, the temperature depends on the 

cosmological constant (Λ), the electrical charge (q), and the 

parameter of ModMax (𝛾). The cosmological term has a 

positive effect on temperature due to the existence of black 

hole solutions for the AdS case (i.e.,⁡Λ < 0). Therefore, the 

Hawking temperature is an increasing function of the 

cosmological constant. In addition, by increasing q, the 

temperature decreases because the electrical charge has a 

negative effect on T. By increasing 𝛾, the effect of the 

electrical charge disappears, and the temperature will be 

independent of q. On the other hand, the roots of 

temperature determine the bound points because, from a 

classical thermodynamics point of view, the negative of 

temperature is devoted to non-physical solutions. So, the 

roots of temperature can separate physical from non-

physical solutions. We find the roots of the temperature, 

which are: 

𝑟±|𝑇=0 =
±𝑞

√−Λ𝑒−𝛾
,  (26) 

which indicates that there is only one positive root (𝑟+). 

Also, a real root for the temperature reveals that the 

cosmological constant has to be negative⁡Λ < 0. This root 

(or the bound point) depends on three parameters of our 

system, i.e., Λ, q, and 𝛾. This bound point decreases 

(increases) by increasing |Λ| and 𝛾(𝑞). 

In the high energy limit of the temperature is given by 

lim
𝑣𝑒𝑟𝑦⁡𝑠𝑚𝑎𝑙𝑙⁡𝑟+

𝑇 ∝ −
𝑞2

2𝜋𝑟+
𝑒−𝛾,  (27) 

which indicates that the ModMax parameter plays a 

significant role in the high energy limit of the temperature. 

In other words, by increasing 𝛾, this limit decreases, and 

finally, it will be zero (see Figure 2, for more details). 
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Figure 1. 𝝍(𝒓) (metric function) versus 𝒓⁡for different values of parameters 

 

Figure 2. 𝑻 versus 𝒓+ for different values of parameters 

 

For the asymptotic limit of the temperature, we have: 

lim
𝑣𝑒𝑟𝑦⁡𝑙𝑎𝑟𝑔𝑒⁡𝑟+

𝑇 ∝ −
Λ𝑟+

2𝜋
,  (28) 

which is dependent on the cosmological constant. 

According to this fact, the cosmological constant is 

negative, so the asymptotic limit of the temperature will be 

positive. Indeed, the temperature of very large BTZ-

ModMax black holes is always positive when Λ < 0. 

The electric charge, 𝑄 is obtained by using Gauss’s law in 

the following form: 

𝑄 =
𝑞

2
𝑒−𝛾 ,  (29) 

where depends on the ModMax parameter. 

In Einstein’s theory of gravity, the entropy of black holes 

(S) can be extracted using the area law. In other words, we 

can obtain the entropy as a quarter of the event horizon area 

𝑆 =
𝐴

4
. Considering the metric (10), we can get the event 

horizon area (A) which is given by: 

𝐴 = ∫ √𝑔𝜑𝜑𝑑𝜑
2𝜋

0
= (∫ 𝑑𝜑

2𝜋

0
) 𝑟+ = 2𝜋𝑟+,  (30) 

so, the entropy of BTZ-ModMax black holes is: 

𝑆 =
𝜋𝑟+

2
.  (31) 

By applying the Hamiltonian approach and also the 

counterterm method, we are able to obtain the total mass of 

solutions, which leads to: 

𝑀 =
𝑚0

8
,  (32) 
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where 𝑚0 is geometrical mass and gets from the metric 

function (17) on the horizon (𝜓(𝑟 = 𝑟+) = 0), which leads 

to: 

𝑚0 = −Λ𝑟+
2 − 2𝑞2𝑒−𝛾 ln (

𝑟+

𝑟0
),   

so, the total mass turns to 

𝑀 = −
Λ𝑟+

2

8
−

𝑞2𝑒−𝛾

4
ln (

𝑟+

𝑟0
).  (33) 

Similar to the temperature (25), the total mass depends on 

the cosmological constant, the electrical charge, and the 

ModMax parameter. On the other hand, it was discussed that 

the total mass of black holes might be considered as the 

internal energy of a system. It is clear that the internal 

energy (on total mass) is always positive for large black 

holes. To study the effects of the MadMax parameter on the 

internal energy of our system, we plot the total mass (33) 

versus the radius of black holes in Figure 3. 

 

Figure 3. 𝑴 versus 𝒓+ for different values of parameters 

Our findings indicate that by increasing 𝛾, the negative 

values of the mass disappear, and we encounter the positive 

mass everywhere. Indeed, by increasing the ModMax 

parameter, the negative area decreases, and in the limit of 

very large values of 𝛾, there is no negative area for the total 

mass. 

We can get the electric potential, U, by the difference of 

gauge potential between the reference and the horizon, 

which yields [67, 68]: 

𝑈 = 𝐴𝜇𝒳
𝜇|
𝑟→𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

− 𝐴𝜇𝒳
𝜇|
𝑟→𝑟+

= −𝑞 ln (
𝑟+
𝑟0
).  (34) 

Now, we are able to check the relation of the first law of 

thermodynamics. Using the obtained thermodynamic 

quantities such as electric charge (29), entropy (31), and 

mass (32), and after some calculations, the first law of black 

hole thermodynamics is in the following relation: 

𝑑𝑀 = 𝑇𝑑𝑆 + 𝑈𝑑𝑄,  (35) 

where S and Q, respectively, are the temperature and the 

electric potential in the following forms: 

𝑇 = (
𝜕𝑀

𝜕𝑆
)
𝑄
,  (36) 

𝑈 = (
𝜕𝑀

𝜕𝑄
)
𝑆
,  (37) 

4. Thermal Stability 

Here, we would like to study the thermal stability of BTZ-

ModMax black holes in the context of the canonical 

ensemble. In this regard, the heat capacity and the 

Helmholtz free energy play a significant role in determining 

thermal stability. Using the heat capacity and the Helmholtz 

free energy, we can evaluate the local and global stability, 

respectively. So, we discuss the thermal stability of BTZ 

black holes using the heat capacity and the Helmholtz free 

energy. 

4.1. Local Stability 

By studying the heat capacity, we can extract two 

significant properties of the solutions, which are phase 

transition points, and the thermal stability of the solutions. 

Indeed, the phase transition points are related to the 

divergences of the heat capacity because these divergences 

belong to where the under-studying system goes under 

phase transitions. Also, the signature of heat capacity (i.e. 

bound point) determines the thermal instability/stability of 

the system in the canonical ensemble. In other words, the 

positivity (the negative) of heat capacity reveals that the 

black hole is in a thermally (un)stable state. So, we have to 

find bound (roots of the heat capacity is where the sign of 

temperature is changed) and phase transition (divergences 

point of the heat capacity) points. 

The heat capacity with fixed charge is defined by: 

𝐶𝑄 =
𝑇

(
𝜕𝑇

𝜕𝑆
)
𝑄

=
(
𝜕𝑀(𝑆,𝑄)

𝜕𝑆
)
𝑄

(
𝜕2𝑀(𝑆,𝑄)

𝜕𝑆2
)
𝑄

.  (38) 

to extract the heat capacity, we re-write the Hawking 

temperature (25) and the total mass (33) of BTZ-ModMax 

black hole in terms of the electrical charge (29), and the 

entropy (31), in the following forms: 

𝑇 = (
𝜕𝑀(𝑆,𝑄)

𝜕𝑆
)
𝑄
=

−ΛS

𝜋2
−

𝑄2𝑒𝛾

𝑆
,  (39) 

𝑀(𝑆, 𝑄) =
ΛS2

2𝜋2
+ 𝑄2𝑒𝛾 ln (

2𝑆

𝜋𝑟0
).  (40) 

Now, we can get the heat capacity by using Eqs. (38) to 

(40), which is: 

𝐶𝑄 =
(ΛS2+𝜋2𝑄2𝑒𝛾)𝑆

ΛS2−𝜋2𝑄2𝑒𝛾
,  (41) 

which indicates the heat capacity depends on the 

cosmological constant, electrical charge, and the ModMax 

parameter. To find the bound and phase transition points, we 

have to solve the following relations: 
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{

(
𝜕𝑀(𝑆,𝑄)

𝜕𝑆
)
𝑄
= 0, ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑏𝑜𝑢𝑛𝑑⁡𝑝𝑜𝑖𝑛𝑡𝑠

(
𝜕2𝑀(𝑆,𝑄)

𝜕𝑆2
)
𝑄
= 0, 𝑝ℎ𝑎𝑠𝑒⁡𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛⁡𝑝𝑜𝑖𝑛𝑡𝑠

  (42) 

We first get the bound point by solving T = 0. For this 

purpose, we consider Equation 39 and solve it in terms of 

the entropy, which leads to: 

𝑆𝑟𝑜𝑜𝑡 = 𝜋𝑄√
𝑒𝛾

−Λ
,  (43) 

which states that there is one real root (or one bound point) 

for the heat capacity. In other words, there are two different 

(thermal stable/unstable) areas for the system that are before 

and after this bound point. It is notable that the bound point 

depends on the electrical charge, the cosmological constant, 

and the ModMax parameter. On the other hand, the root of 

temperature reveals a limitation point. Indeed, the root of 

the temperature separates physical (i.e. positive 

temperature) from non-physical solutions (i.e. negative 

temperature). For determining the thermal 

stability/instability and physical black holes, we plot the 

heat capacity versus entropy in Figure 4. 

 

Figure 4. Heat capacity 𝑪𝑸 (thick lines), and the Hawking 

temperature T (thin lines) versus S for different values of the 

ModMax parameter 

Our results in Figure 4 show that there are two different 

behaviors for the heat capacity, which are: i) In the range 

𝑆 < 𝑆𝑟𝑜𝑜𝑡 , black holes are not physical objects because the 

temperature is negative. Since the heat capacity is negative 

in this area, our system is thermally unstable. ii) In the range 

𝑆 < 𝑆𝑟𝑜𝑜𝑡 , the temperature and the heat capacity are 

positive. So, black holes in this area are physical and stable 

objects. The effect of the ModMax parameter reveals that 

the physical and thermal stable area decrease by increasing 

𝛾 (see Figure 4 for more details). As a result, AdS BTZ-

ModMax black holes with a large radius (or entropy) are 

physical and thermal stable objects. 

4.2. Global Stability 

The Helmholtz free energy in the usual case of 

thermodynamics, is defined as: 

𝐹 = 𝑈 − 𝑇𝑆,  (44) 

where in the context of the black holes, we can consider 

U=M.  So, in a canonical ensemble with a fixed charge Q, 

the Helmholtz free energy is given by: 

𝐹(𝑇, 𝑄) = 𝑀(𝑆, 𝑄) − 𝑇𝑆,  (45) 

after some calculation, we get: 

𝐹 = −𝑄2𝑒𝛾 (ln (
2𝑆

𝜋𝑟0
) − 1) +

Λ𝑆2

2𝜋2
 , (46) 

It is notable that in the context of the canonical ensemble, 

F < 0 (i.e. the negative of the Helmholtz free energy) 

determines the global stability of a thermodynamic system. 

In this regard, we find one real root of the Helmholtz free 

energy in the following form: 

𝑆𝑟𝑜𝑜𝑡𝐹 =
𝜋𝑟0

2
𝑒−

𝐿𝑎𝑚𝑏𝑒𝑟𝑡𝑊(
−Λ𝑟0

2

4𝑄2𝑒𝛾−2
)

2
+1

 , 
(47) 

which indicates that this root depends on all of our system’s 

parameters.  To determine the global stability, we plot the 

Helmholtz free energy versus entropy in Figure 5. 

 

Figure 5. Helmholtz free energy F versus S for different 

values of the ModMax parameter 

The results in Figure 5 indicate that there are two different 

areas: i) AdS BTZ-ModMax black holes do not satisfy the 

global stability in the range 𝑆 < 𝑆𝑟𝑜𝑜𝑡𝐹  because F > 0 in this 

area. ii) In the range 𝑆 > 𝑆𝑟𝑜𝑜𝑡𝐹 , the Helmholtz free energy 

is negative, so the black holes satisfy the global stability. 

The effect of the ModMax parameter indicates that the 

global stable area decreases by increasing γ (similar to the 

heat capacity). As a result, AdS BTZ-ModMax black holes 

with large radius (or entropy) are within the global stable 

area. 
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By comparing the local and global stabilities of AdS BTZ-

ModMax black holes simultaneously, we find that the AdS 

BTZ-ModMax black holes with large radii (or entropy) 

satisfy the local and global stability conditions 

simultaneously. 

5. Conclusions 

In this paper, we obtained exact analytical three-

dimensional solutions in the presence of a new NED model, 

which is known as ModMax NED. Our analysis indicated 

that this solution belongs to the black hole solution, which 

included a singularity at r = 0 , which is covered by an event 

horizon for the AdS case. Also, we showed that although the 

ModMax parameter could remove the singularity of the 

electrical field at r = 0, however, it did not remove the 

curvature singularity at r = 0. Next, we evaluated the effects 

of various parameters on the root of the metric function. Our 

analysis in Figure 1 revealed that the small charged AdS 

BTZ black holes with big values of the ModMax parameter 

(γ) and mass (𝑚0) had two roots, which were related to the 

inner root and event horizon, respectively. Moreover, by 

increasing (decreasing) γ and 𝑚0 (q), the radius of the event 

horizon increases, and we encounter large black holes. 

We calculated the conserved and thermodynamic 

quantities of the solution, such as Hawking temperature, 

electric charge, electric potential, entropy, and mass.  Our 

analysis of the Hawking temperature indicated that it 

depended on the cosmological constant (Λ), the electrical 

charge (q), and the parameter of ModMax (γ). Λ (q) had a 

positive (negative) effect on temperature. Indeed, the 

temperature was an increasing (decreasing) function of the 

cosmological constant (the electrical charge). In addition, 

by increasing γ, the Hawking temperature was independent 

of q. We studied the high energy and asymptotic limit of the 

Hawking temperature. Our analysis indicated that the high 

energy limit of the temperature was dependent on γ, whereas 

the asymptotic limit of the temperature was dependent on 

the cosmological constant. Another interesting 

thermodynamics quantity was related to the total mass of 

black holes because this quantity gives us information about 

internal energy. Our findings in Fig. 3 indicated that by 

increasing the ModMax parameter, the negative area of the 

total mass decreased, and in the limit of very large values of 

γ, there was no negative area for the total mass. Then, we 

checked the validity of the first law of thermodynamics for 

BTZ-ModMax black holes. 

To study the thermal stability (i.e. the local and global 

stabilities) of BTZ-ModMax black holes in the canonical 

ensemble, we evaluated simultaneously the heat capacity 

and the Helmholtz free energy for these black holes. 

Our analysis of the heat capacity indicated that there was 

one bound point (Sroot), which was dependent on the 

electrical charge, the cosmological constant, and the 

ModMax parameter. This bound point separated two 

different behaviors for the heat capacity, which were before 

and after this point. In other words, before the bound point, 

i.e., in the range S < Sroot, black holes were not physical and 

stable objects because the temperature and the heat capacity 

were negative. After the bound point, i.e., in the range S > 

Sroot, the temperature and the heat capacity were positive. 

Therefore, large black holes were physical and stable 

objects. The effect of the ModMax parameter on the bound 

point in Fig. 4 revealed that the physical and thermal stable 

area decreased by increasing γ. 

We studied the Helmholtz free energy to evaluate global 

stability. Our results in Fig.  5 indicated that the same 

behavior was observed for Helmholtz free energy, similar to 

the heat capacity.  There was one real root for the Helmholtz 

free energy, in which before and after this root, Helmholtz 

free energy was positive and negative, respectively. Indeed, 

the large black holes satisfied the global stability condition. 

In addition, the effect of the ModMax parameter showed 

that the global stable area decreased by increasing γ. 

Finally, we compared the local and global stability, 

together. We found that the AdS BTZ-ModMax black hole 

with a large radius (or entropy) could satisfy the local and 

global stability conditions, simultaneously. 
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