| تعداد نشریات | 31 |
| تعداد شمارهها | 520 |
| تعداد مقالات | 5,051 |
| تعداد مشاهده مقاله | 7,716,997 |
| تعداد دریافت فایل اصل مقاله | 5,744,373 |
Finite difference and local discontinuous Galerkin methods for fourth-order time-fractional partial integro-differential equation: Computational approach for one-dimensional case | ||
| Caspian Journal of Mathematical Sciences | ||
| دوره 13، شماره 2 - شماره پیاپی 26، 2024، صفحه 319-330 اصل مقاله (159.71 K) | ||
| نوع مقاله: Research Articles | ||
| شناسه دیجیتال (DOI): 10.22080/cjms.2024.27625.1713 | ||
| نویسندگان | ||
| Gholamreza Karamali* 1؛ Hadi Mohammadi-firouzjaei2 | ||
| 1Faculty of Basic Sciences, Shahid Sattari Aeronautical University of Science and Technology, South Mehrabad, Tehran, Iran | ||
| 2Faculty of Basic Sciences, Shahid Sattari Aeronautical University of Science and Technology, South MehrAbad, Tehran, Iran. | ||
| تاریخ دریافت: 29 مرداد 1403، تاریخ بازنگری: 30 مهر 1403، تاریخ پذیرش: 13 آبان 1403 | ||
| چکیده | ||
| Our focus in this paper is on numerically solving fourthorder time-fractional integro-dierential equations with weakly singular kernels. L1 and quadrature formulas are used to discretize the temporal and memory terms. For spatial discretization, a highorder local discontinuous Galerkin method is employed. Finally, the numerical optimal convergence rate for the proposed scheme is demonstrated by the use of numerical results. | ||
| کلیدواژهها | ||
| L1 formula؛ Quadrature formula؛ Local discontinuous؛ Galerkin method؛ Fourth-order PIDEs؛ Memory term | ||
|
آمار تعداد مشاهده مقاله: 135 تعداد دریافت فایل اصل مقاله: 148 |
||