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Abstract. Topological indices of graphs are numerical descriptors
that determine the relationship between the properties of molecules
and their structures. In this paper, we introduce three novel vertex-
degree-based topological indices that show a good correlation with the
Sombor index. We have also derived bounds for them, identified the
relationship between them and other topological indices, and finally
examined their ability to predict some physico-chemical properties of
octane isomers.
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1. Introduction

Suppose G(V,E) be a simple, connected, and undirected graph where
V = V (G) is the set of vertices and E = E(G) is the set of edges. For
any vertex x ∈ V (G), Nx(G) represents the set of vertices adjacent to x.
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The degree of x, which is denoted by dx(G), is defined as the cardinality
of Nx(G).

The ordered pair (s, t), where s = dx and t = dy, is referred to the
degree-coordinate (or d-coordinate) of the edge xy ∈ E(G). In a two-
dimensional coordinate system, this pair corresponds to a point known as
the degree-point (or d-point) of the edge xy. Using Euclidean metrics,
the distance between the (s, t) and the origin of the coordinate system is
termed the degree-radius (or d-radius) of the edge xy.

Topological indices are numerical descriptors that are invariant under
graph isomorphisms. So far, many types of these indices have been intro-
duced, and numerous papers have been published about them.

Recently, Espinal and Gutman in [3], introduced the elliptic Sombor
index of G which is defined as

ESO(G) =
∑

uv∈E(G)

(du + dv)
√

d2u + d2v.

Gutman in [4], introduced a vertex-degree-based topological index which
is called Sombor index, and defined it by

SO(G) =
∑

uv∈E(G)

√
d2u + d2v.

Gutman in [5], obtained a new version of Sombor index which is called
Euler-Sombor index, and defined it by

EU(G) =
∑

uv∈E(G)

√
dudv + d2u + d2v,

he investigated some properties of this index on some special graphs. Tang
et al.[14] analyzed the chemical applicability of this version of Sombor
index. They established its mathematical properties, determined the ex-
tremal values for this Sombor index for all trees, and described the trees
that achieve these extremal values. In [6], Gutman and Lepović introduced
the generalized Randić index as

Rα(G) =
∑

uv∈E(G)

(dudv)
α.

In [7], Gutman et al. introduced the product of the Sombor index and
the modified Sombor index and computed its principal properties. Upper
and lower bounds for its product are obtained and the extremal graphs
are determined.

Kulli in [9], introduced the modified neighborhood Sombor index and its
exponential variant for graphs. He also computed the neighborhood and
modified neighborhood Sombor indices, as well as their exponentials, for
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several significant dendrimers. Furthermore, he derived various properties
of the neighborhood Sombor index.

Liu in [10], introduced multiplicative Sombor index, and some graph
transformations which increase or decrease the multiplicative Sombor in-
dex. By using these transformations, he determined extremal values of
the multiplicative Sombor index of trees and unicyclic graphs.

Ramezani Tousi and Ghods in [11] obtained the molecular graph and
the line graph of Glass, and computed their M-polynomial and some topo-
logical indices.

Redžepović [13] determined chemical applicability of Sombor indices
and studied their predictive and discriminative potentials. He examined
that Sombor indices have a strong predictive potential.

Similar studies have been conducted on the Zagreb indices. These in-
dices introduced by Gutman and Trinajstić [8] in 1972 as

M1(G) =
∑

uv∈E(G)

dv + du, M2(G) =
∑

uv∈E(G)

dudv,

and Ranjini et al. [12] redefined them.
In this paper, we introduce three new types of Sombor indices and

calculate their exact values for specific graphs. We also examine their
relationships with some other topological indices. Additionally, we ex-
plore their applications in predicting the physico-chemical properties of
materials. It is observed that given their good correlation with material
properties, they have the potential to be good predictors.

2. Results and Discussion

The high cost of chemical tests, as well as, the long time and precision
required to determine the properties of chemical molecules, have forced
scientists to find a way to predict their properties by defining some chem-
ical indices. They examine the compatibility of each of the indices with
different molecules, and thereby determine the predictive index of each of
them. The general form of these indices are

TI(G) =
∑

uv∈E(G)

f(du, dv),

where f is a symmetric positive two-variables function.
In this section we introduce the three novel vertex-degree-based topolog-
ical indices of graphs. We define the first, second, and third redefined
Sombor indices as

(1) ReSO1(G) =
∑

uv∈E(G)

dudv
√
d2u + d2v.

(2) ReSO2(G) =
∑

uv∈E(G)

√
dudv(d2u + d2v).
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(3) ReSO3(G) =
∑

uv∈E(G)

(√
dudv +

√
d2u + d2v

)
.

We will further show that these indices have a good correlation with some
other topological indices, making them potentially useful tools for predict-
ing certain physico-chemical properties of materials. Moreover, it may be
possible to derive some bounds for these indices according to the certain
graph parameters.

Example 2.1. The following statements are true.
(1) Suppose G be a r−regular graph with n vertices, then

ReSO1(G) =
nr4

2

√
2.

(2) For the cycle graph Cn, we have ReSO2(Cn) = 4n
√
2.

(3) If Kn be the complete graph, then

ReSO3(Kn) =
n(n− 1)2

2
(
√
2 + 1).

(4) If Qk be the hypercube graph with |V (Qk)| = 2k, then

ReSO2(Qk) =
2kk3

2

√
2.

Example 2.2. The following statements are true.
(1) Let Kp,q be the complete bipartite graph, then

ReSO1(Kp,q) = p2q2
√
p2 + q2.

(2) For complete bipartite graph Kp,p, we have
ReSO2(Kp,p) = p4

√
2.

(3) If Sn be star of order n, then ReSO3(Sn) = n
(√

1 + n2 +
√
n
)
.

Trees as an important class of graphs have always been of interest.
Here, we have obtained the second redefined Sombor index value for path
graphs as the simplest trees.

Theorem 2.3. If Pn be the path with n vertices, then

ReSO2(Pn) =

{ √
2 if n = 2,

2
√
10 + (n− 3)

√
32 if n ≥ 3.

Similarly, the values of ReSOi(Pn) for i = 1, 3 can be obtained.

Proof. The Theorem is obvious for n = 2. Suppose Pn be the path with
n ≥ 3 vertices and n − 1 edges as e1, e2, . . . , en−1, then e1 and en−1

have d-coordinate (1, 2) and other edges are d-coordinate (2, 2), therefore
ReSO2(Pn) = 2

√
2 ∗ 5 + (n− 3)

√
4 ∗ 8 = 2

√
10 + (n− 3)

√
32. □
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Obviously, by adding an edge to the graph, the value of the redefined
Sombor indices increases. Therefore, the fact that the largest value of
these indices occurs for the complete graphs, leads us to the following
theorem.

Proposition 2.4. If Kn represent the complete graph of order n, and Kn

be its complement, then for any graph G of order n, we have
ReSOi(Kn) ≤ ReSOi(G) ≤ ReSOi(Kn),

for i = 1, 2, 3, with ReSOi(Kn) = 0.

With the same argument, the smallest value of the redefined Sombor
indices occurs in trees. Since, the path graph has the minimum Sombor
index among trees (see [4]), the following result is obtained.

Theorem 2.5. If Kn represents the complete graph of order n, and Pn

be the path with n vertices, then for any connected graph G of order n, we
have

ReSOi(Pn) ≤ ReSOi(G) ≤ ReSOi(Kn),

for i = 1, 2, 3.

Similar to the results presented in [1, 2] about the extremal values of
some vertex degree-based topological indices, the paths and stars are the
bounds of redefined Sombor indices among trees.

Theorem 2.6. If Sn be the star of order n, and Pn be the path with n
vertices, then for any connected tree T of order n, we have

ReSOi(Pn) ≤ ReSOi(T ) ≤ ReSOi(Sn),

for i = 1, 2, 3. Equality on the left (res. right) holds iff T ∼= Pn (res.
T ∼= Sn).

Proof. The lower bound follows from Theorem 2.5. In order to deduce the
upper bound, Suppose s be a vertex of T with neighbors t1, t2, . . . , tk, z,
such that dT (ti) = 1, i = 1, 2, . . . , k. Let T ′, be the tree obtained from T ,
by the transformation shown in Figure 1. If dz = 1, then T = Sn and

z
s

t1

t2

tk

T

T̂ z

t1
t2

s

tk

T ′

T̂

Figure 1. Transformation of graph



Chemical Applications of Some New Versions of Sombor Index 357

equality holds. Let T ̸= Sn, therefore dz = l ≥ 2, and

ReSO1(T
′) = dzds

√
d2z + d2s +

k∑
i=1

dzdti

√
d2z + d2ti

+
∑

t̂∈V (T̂ )

dzdt̂

√
d2z + d2

t̂
+

∑
t̂i t̂j∈E(T̂ )

t̂i,t̂j ̸=z

dt̂idt̂j

√
d2
t̂i
+ d2

t̂j

= (l + k)
√
(l + k)2 + 1 +

k∑
i=1

(l + k)
√

(l + k)2 + 1

+
∑

t̂∈V (T̂ )

(l + k)dt̂

√
(l + k)2 + d2

t̂
+

∑
t̂i t̂j∈E(T̂ )

t̂i,t̂j ̸=z

dt̂idt̂j

√
d2
t̂i
+ d2

t̂j

= (k + 1)(l + k)
√

(l + k)2 + 1 +
∑

t̂∈V (T̂ )

(l + k)dt̂

√
(l + k)2 + d2

t̂

+
∑

t̂i t̂j∈E(T̂ )

t̂i,t̂j ̸=z

dt̂idt̂j

√
d2
t̂i
+ d2

t̂j
.

Moreover

ReSO1(T ) = dzds
√

d2z + d2s +
k∑

i=1

dsdti

√
d2s + d2ti

+
∑

t̂∈V (T̂ )

dzdt̂

√
d2z + d2

t̂
+

∑
t̂i t̂j∈E(T̂ )

t̂i,t̂j ̸=z

dt̂idt̂j

√
d2
t̂i
+ d2

t̂j

= l(k + 1)
√
l2 + (k + 1)2 +

k∑
i=1

(k + 1)
√
(k + 1)2 + 1

+
∑

t̂∈V (T̂ )

ldt̂

√
l2 + d2

t̂
+

∑
t̂i t̂j∈E(T̂ )

t̂i,t̂j ̸=z

dt̂idt̂j

√
d2
t̂i
+ d2

t̂j

= l(k + 1)
√
l2 + (k + 1)2 + k(k + 1)

√
(k + 1)2 + 1

+
∑

t̂∈V (T̂ )

ldt̂

√
l2 + d2

t̂
+

∑
t̂i t̂j∈E(T̂ )

t̂i,t̂j ̸=z

dt̂idt̂j

√
d2
t̂i
+ d2

t̂j
.
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On the other hand∑
t̂∈V (T̂ )

(l + k)dt̂

√
(l + k)2 + d2

t̂
≥

∑
t̂∈V (T̂ )

ldt̂

√
l2 + d2

t̂
,

and

(k + 1)(l + k)
√
(l + k)2 + 1 =k(k + 1)

√
(l + k)2 + 1

+ (k + 1)l
√
(l + k)2 + 1

≥ k(k + 1)
√
(k + 1)2 + 1

+ (k + 1)l
√
(k + 1)2 + l2.

Therefore, using the above inequlities, and comparing the amounts of
ReSO1(T

′) and ReSO1(T ) implies that ReSO1(T
′) ≥ ReSO1(T ). If T ′ =

Sn is proven, then the proof is complete, otherwise, we will repeat the
above process a finite number of times until the result is obtained. The
proof for i = 2, 3 is similar. □

The maximum and minimum vertex degrees are two important parame-
ters of a graph for establishing new bounds. Here, we derive some bounds
for ReSOi where i = 1, 2, 3, based on these values. The proof of the next
Theorem is a consequence of the inequality δ ≤ du(G) ≤ ∆.

Theorem 2.7. Let G be a simple and connected graph with m edges, and
let δ and ∆ denote the minimum and maximum degrees of the vertices of
G respectively, then

(1)
√
2mδ3 ≤ ReSO1(G) ≤

√
2m∆3.

(2)
√
2mδ2 ≤ ReSO2(G) ≤

√
2m∆2.

(3) (1 +
√
2)mδ ≤ ReSO3(G) ≤ (1 +

√
2)m∆.

Equality holds iff G be regular.

3. Relationship between redefined Sombor indices and other
vertex-degree-based topological indices

In this section, we explore the connections between the redefined Som-
bor indices and various other topological indices. The redefined Sombor
indices showed good correlations with some existing topological indices.
Table 1 asserts the possibililty of the establishment of some mathemati-
cal relationships among these indices. In the following, we prove some of
these relationships.

Proposition 3.1. For any arbitrary graph G, we have

ReSO3(G) ≤ 2ReSO2(G).
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Table 1. The correlation coefficients of the redefined
Sombor indices with some existing indices.

M1 M2 EU SO R ReSO1 ReSO2 ReSO3

ReSO1 0.96 0.99 0.95 0.94 -0.87 1.00 0.90 0.97
ReSO2 0.91 0.90 0.91 0.90 -0.85 0.90 1.00 0.87
ReSO3 0.97 0.96 0.96 0.96 -0.91 0.97 0.87 1.00

Proposition 3.2. For any arbitrary graph G, we have
ReSO2(G) ≤ ReSO1(G).

Equality holds if and only if G be a finite union of K2 graphs.

Proposition 3.3. If M1(G) be first Zagreb index and SO(G) be Sombor
index of graph G, then

ReSO2(G) ≤ M1(G)

2
SO(G).

Equality holds if and only if G ∼= K2.

Proof. Since √
xy ≤ x+ y

2
, we have

√
dudv(d2u + d2v) ≤

du + dv
2

√
d2u + d2v,

therefore,

ReSO2(G) =
∑

uv∈E(G)

√
dudv(d2u + d2v)

≤
∑

uv∈E(G)

(
du + dv

2
)

∑
uv∈E(G)

√
d2u + d2v

=
M1(G)

2
SO(G).

□
Proposition 3.4. For any arbitrary graph G, we have

ReSO2(G) ≤ 1

2
ESO(G).

Equality holds if and only if G be a regular graph.

Proposition 3.5. If M1(G) be first Zagreb index of graph G, then
EU(G) ≤ M1(G), EU(G) ≤ ReSO3(G).

Proof. Since
√
dudv + d2u + d2v ≤

√
2dudv + d2u + d2v = du+dv, then EU ≤

M1(G). The rest of the proof comes from the inequality√
dudv + d2u + d2v ≤

√
dudv +

√
d2u + d2v.

□
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Proposition 3.6. If M1(G) be first Zagreb index and SO(G) be Sombor
index of connected graph G, then

ReSO3(G) ≤ M1(G)

2
+ SO(G).

Equality holds if and only if G be a regular graph.

Proof. Since
√
dudv +

√
d2u + d2v ≤ du+dv

2 +
√
d2u + d2v, then

ReSO3(G) ≤ M1(G)

2
+ SO(G).

□

Proposition 3.7. If M1(G) be first Zagreb index and SO(G) be Sombor
index of connected graph G, then

ReSO1(G) ≤ M2
1

4
SO(G).

Equality holds if and only if G ∼= K2.

Proof. Since xy ≤ (
x+ y

2
)2, we have ReSO1(G) ≤ M2

1

4
SO(G). □

Proposition 3.8. Let G be a simple and connected graph, Rα(G) and
SO(G) are the generalized Randić and Sombor indices of G, respectively,
then √

2R3
1
2

(G) ≤ ReSO1(G),

with equality iff G be regular.

Proof. Since xy ≤ x2+y2

2 for x, y ∈ R with equality iff x = y, therefore
√
2(dudv)

3
2 ≤ dudv

√
d2u + d2v.

□

The following proposition is proven in [5]. Here, we present a shorter proof
of it.

Proposition 3.9. Let G be a simple and connected graph, then

SO(G) < EU(G) ≤
√

3

2
SO(G).

Proof. It suffices to show that

x2 + y2 < x2 + y2 + xy ≤ 3

2
(x2 + y2),
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for x, y > 0. The left inequality is obvious. For the right inequality, let
y = mx, then

x2 + y2 + xy = x2(1 +m2 +m)

≤ x2(1 +m2 +
1 +m2

2
) =

3

2
x2(1 +m2) =

3

2
(x2 + y2).

□
The proof of the following proposition is strightforward.

Proposition 3.10. Let G be a simple and connected graph, then
(1) SO(G) ≤ ReSO3(G) ≤ (1 + 1√

2
)SO(G).

(2) SO(G) ≤ ReSO2(G) ≤ ∆SO(G).

(3) SO(G) ≤ ReSO1(G) ≤ ∆2SO(G).

4. Applications

In this section, we concentrate on the predictive capacity of redefined
Sombor indices for framing linear regression models, to predict some
physico-chemical properties (Entropy(S), standard enthalpy of vaporisa-
tion (∆Hvap), acentric factor(AcentFac), Narumi simple topological in-
dex(SNar), and Narumi harmonic topological index(HNar)) of isomers of
octane. By using isomers, the influence of molecular size on the predic-
tive model is eliminated. The experimental data were collected from the
molecular descriptors database, available at moleculardescriptors.eu and
are shown in Table 2.

As seen in Table 3, the correlation coefficients of the redefined Sombor
indices with certain physico-chemical properties, is better compared to
other topological indices in some cases. Therefore, these indices may con-
tain useful information for prediction these properties. The motivation for
selecting these specific physico-chemical properties, is that the redefined
Sombor indices provide relatively strong linear correlations, with their re-
spective correlation coefficients, which are greater than 0.8. The results
are presented in Table 3.
The scatter plot depicted in Figures 2, 3, 4, 5, 6, demonstrates a lin-
ear dependence between physico-chemical properties and redefined Som-
bor indices. All analyzed correlations reveal linear relationships between
the redefined Sombor indices and these physico-chemical properties.
Therefore, we use a regression model for modeling to obtain a linear re-
lationship between physico-chemical properties and Sombor indices. The

 https://web.archive.org/web/20180830013934if_/http://moleculardescriptors.eu/dataset/dataset.htm
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Table 2. Physico-chemical properties of isomers of oc-
tane with ReSOi, i = 1, 2, 3.

Molecule ReSO1 ReSO2 ReSO3 S ∆Hvap AcentFac SNar HNar
octane 65.51 34.6 31.44 111.67 9.92 0.40 4.16 1.60
2-methylheptane 79.02 39.91 33.97 109.84 9.48 0.38 3.87 1.50
3-methylheptane 84.32 40.77 33.96 111.26 9.52 0.37 3.87 1.50
4-methylheptane 84.32 40.77 33.96 109.32 9.48 0.37 3.87 1.50
3-ethylhexane 89.63 41.63 33.94 109.43 9.48 0.36 3.87 1.50
2,2-dimethylhexane 112.3 51.86 38.97 103.42 8.92 0.34 3.47 1.39
2,3-dimethylhexane 104.06 46.81 36.45 108.02 9.27 0.35 3.58 1.41
2,4-dimethylhexane 97.83 46.08 36.49 106.98 9.03 0.34 3.58 1.41
2,5-dimethylhexane 92.52 45.22 36.51 105.72 9.05 0.36 3.58 1.41
3,3-dimethylhexane 124.79 53.77 38.97 104.74 8.973 0.32 3.47 1.39
3,4-dimethylhexane 109.36 47.67 36.44 106.59 9.32 0.34 3.58 1.41
2-methyl-3-ethylpentane 109.36 47.67 36.44 106.06 9.21 0.33 3.58 1.41
3-methyl-3-ethylpentane 146.18 55.68 38.97 101.48 9.09 0.31 3.47 1.39
2,2,3-trimethylpentane 145.06 59.53 41.43 101.31 8.83 0.30 3.18 1.32
2,2,4-trimethylpentane 125.86 57.17 37.4 104.09 8.40 0.31 3.18 1.32
2,3,3-trimethylpentane 152.2 60.57 41.44 102.06 8.90 0.29 3.18 1.32
2,3,4-trimethylpentane 123.8 52.84 38.95 102.39 9.01 0.32 3.30 1.33
2„2,3,3-tetramethylbutane 189.46 56.4 46.39 93.06 8.41 0.26 2.78 1.23

Table 3. The correlation coefficient of different topological indices
with S, ∆Hvap, AcenFac, HNar and SNar.

ReSO1 ReSO2 ReSO3 EU SO M1 M2 R
S -0.96 -0.84 -0.97 -0.95 -0.95 -0.95 -0.94 0.91

∆Hvap -0.82 -0.87 -0.84 -0.94 -0.95 -0.94 -0.81 0.96
AcentFac -0.98 -0.93 -0.95 -0.97 -0.96 -0.97 -0.99 0.90
HNar -0.91 -0.92 -0.93 -0.97 -0.96 -0.97 -0.93 0.96
SNar -0.94 -0.91 -0.95 -0.99 -0.98 -0.99 -0.95 0.97

Figure 2. The correlation between AcentFac and ReSOi

for 18 isomers of octane.

scatter plots are shown in Figures 7, 8, 9, 10, 11, and the coefficients of
these linear equations are presented in Table 4. The coefficients in the
regression models are determined through a Python script, utilizing the
scikit-learn machine learning framework.
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Figure 3. The correlation between the ∆Hvap and ReSOi

for 18 isomers of octane.

Figure 4. The correlation between the S and ReSOi for
18 isomers of octane.

Figure 5. The correlation between the HNar and ReSOi

for 18 isomers of octane.

Figure 6. The correlation between the SNar and ReSOi

for 18 isomers of octane.

In the model described by equation 4.1, one of the physico-chemical prop-
erties is forecasted by using only one of the redefined Sombor indices. The
tested regression models are outlined as follows:
S,∆Hvap, AcentFac,HNar, SNar ≈ A ∗ReSOi +B ; i = 1, 2, 3, (4.1)

Here, A, represents the regression coefficient and B, denotes the regression
constant. The values for A and B are presented in Table 4.
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Figure 7. The regression model with AcentFac and
ReSOi for 18 isomers of octane.

Figure 8. The regression model with ∆Hvap and ReSOi

for 18 isomers of octane.

Figure 9. The regression model with S and ReSOi for 18
isomers of octane.

Figure 10. The regression model with HNar and ReSOi

for 18 isomers of octane.

The terms R2, RMSE and R2
adj refer to the coefficients of determina-

tion, root mean square error and adjusted coefficient of determination,
respectively. The evaluation results shown in Tables 5 indicate that the
physico-chemical properties of octane isomers are effectively predicted us-
ing straightforward models based on equation 4.1. Specifically, over 90%
of the variance in the physico-chemical properties can be accounted for a
linear model, in which a single redefined Sombor index is the sole predictor.
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Figure 11. The regression model with SNar and ReSOi

for 18 isomers of octane.

Table 4. The values for the parameters used in the models.

Parameter ReSOi A B
S ReSO1 -0.14 120.92

ReSO2 -0.51 130.21
ReSO3 -1.34 155.54

∆Hvap ReSO1 -0.01 10.20
ReSO2 -0.05 11.33
ReSO3 -0.10 12.88

AcentFac ReSO1 -0.001 0.45
ReSO2 -0.005 0.56
ReSO3 -0.009 0.69

HNar ReSO1 -0.003 1.69
ReSO2 -0.01 1.91
ReSO3 -0.02 2.38

SNar ReSO1 -0.01 4.56
ReSO2 -0.04 5.54
ReSO3 -0.08 6.67

The results in Tables 5 demonstrate that the physico-chemical properties
of octane isomers can be adequately predicted using basic models derived
from equation 4.1. Specifically, a linear model using a single redefined
Sombor index as the sole predictor explains over 90% of the variance in
the physico-chemical properties. Moreover, the errors generated by these
models are minimal, particularly for SNar. Among all the models, the
model using the third redefined Sombor index to predict SNar demon-
strated the best performance. Precisely, its R2 value reaches 96.60%.

To compare the experimental and theoretical results, it is essential to
evaluate the model’s predictive power using the Root Mean Square Er-
ror (RMSE) metric. The optimal predictive model will be the one that
exhibits the minimum error, i.e., the lowest RMSE, which is defined as

RMSE =

√√√√ 1

n

n∑
j=1

(yj − ŷj)2.
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Table 5. The results of evaluation of the linear regression models.

ReSOi R2(%) R2
adj(%) RMSE

S
ReSO1 90.37 87.96 0.92
ReSO2 91.22 89.03 0.87
ReSO3 92.45 90.56 1.02

∆Hvap

ReSO1 94.15 92.69 0.10
ReSO2 86.40 83.01 0.14
ReSO3 91.74 89.68 0.12

AcentFac
ReSO1 94.10 92.63 0.08
ReSO2 92.11 90.14 0.08
ReSO3 93.75 92.19 0.01

HNar
ReSO1 95.09 93.8 0.02
ReSO2 91.74 89.68 0.03
ReSO3 92.17 90.21 0.03

SNar
ReSO1 96.60 95.75 0.08
ReSO2 0.96 95.01 0.06
ReSO3 92.63 90.79 0.09

Here yj represents the observed values of the independent variable, ŷj
signifies the predicted values of the independent variable, and n denotes
the number of samples under consideration.

5. Conclusions

In this paper, we have studied three newly redefined Sombor indices
of the first, second, and third types. We have also identified their rela-
tionships with some topological indices, as well as their predictive abilities
regarding the properties of molecules. In the future, we can explore some
bounds to these indices for certain molecular graphs, according to graph
parameters.

References
[1] Y. Alizadeh, A. Iranmanesh, T. Došlić, Additively weighted Harary index of

some composite graphs, Discrete Math. 313 (2013) 26–34.
[2] R. Cruz, J. Rada, The Path and the Star as Extremal Values of Vertex-

Degree-Based Topological Indices among Trees, MATCH Commun. Math.
Comput. Chem. 82 (2019) 715–732.

[3] C. Espinal, I. Gutman, J. Rada, Elliptic Sombor index of chemical graphs,
Commun. Comb. Optim. (2024) 1–11.

[4] I. Gutman, Geometric approach to degree-based topological indices: Sombor
indices, MATCH Commun. Math. Comput. Chem. 86 (2021) 11–16.

[5] I. Gutman, Relating Sombor and Euler indices, Vojnotehnicki Glasnik,
72(2024).



Chemical Applications of Some New Versions of Sombor Index 367

[6] I. Gutman, M. Lepović, Choosing the exponent in the definition of the con-
nectivity index, J. Serb. Chem. Soc. 66 (2001), 605–611.

[7] I. Gutman, I. Redžepović and B. Furtula, On the product of Sombor and
modified Sombor indices, Open J. Discr. Appl. Math. 6 (2023) 1–6.

[8] I. Gutman, N. Trinajstić, Graph theory and molecular Total orbitals. π-
electron energy of alternant hydrocarbons, Chem. Phys. Lett. 179 (1972)
535–538.

[9] V. R. Kulli, Neighborhood Sombor Indices, International Journal of Math-
ematics Trends and Technology, 68 (2022) 195–204.

[10] H. Liu, Multiplicative Sombor index of graphs, Discrete Mathematics Letters,
9 (2022) 80–85.

[11] J. Ramezani Tousi, M. Ghods, Computational Analysis of the Molecu-
lar Graph and the Line Graph of Glass by Studying Their M-Polynomial
and Topological Indices. Discontinuity, Nonlinearity, and Complexity,
13(02)(2024), 361-371.

[12] P. S. Ranjini, V. Lokesha, A. Usha, Relation between phenylene and hexag-
onal squeeze using harmonic index, Int. J. Graph Theory, 1 (2013) 116–121.

[13] I. Redžepović, Chemical applicability of Sombor indices, J. Serb. Chem. Soc.
86 (2021) 445–457.

[14] Z. Tang, Y. Li, H. Deng, The Euler Sombor index of a graph, Int. J. Quantum
Chem. 124 (2024), e27387.


	1.  Introduction
	2. Results and Discussion
	3. Relationship between redefined Sombor indices and other vertex-degree-based topological indices 
	4. Applications
	5. Conclusions
	References

