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Abstract. Topological indices of graphs are numerical descriptors
that determine the relationship between the properties of molecules
and their structures. In this paper, we introduce three novel vertex-
degree-based topological indices that show a good correlation with
the Sombor index. We have also derived bounds for them, iden-
tified the relationship between them and other topological indices,
and finally examined their ability to predict some physico-chemical
properties of octane isomers.
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1. Introduction

Suppose G(V,E) be a simple, connected, and undirected graph where
V = V (G) is the set of vertices and E = E(G) is the set of edges. For
any vertex x ∈ V (G), Nx(G) represents the set of vertices adjacent to x.
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The degree of x, which is denoted by dx(G), is defined as the cardinality
of Nx(G).

The ordered pair (s, t), where s = dx and t = dy, is referred to the
degree-coordinate (or d-coordinate) of the edge xy ∈ E(G). In a two-
dimensional coordinate system, this pair corresponds to a point known
as the degree-point (or d-point) of the edge xy. Using Euclidean metrics,
the distance between the (s, t) and the origin of the coordinate system
is termed the degree-radius (or d-radius) of the edge xy.

Topological indices are numerical descriptors that are invariant under
graph isomorphisms. So far, many types of these indices have been
introduced, and numerous papers have been published about them.

Recently, Espinal and Gutman in [3], introduced the elliptic Sombor
index of G which is defined as

ESO(G) =
∑

uv∈E(G)

(du + dv)
√

d2u + d2v.

Gutman in [4], introduced a vertex-degree-based topological index
which is called Sombor index, and defined it by

SO(G) =
∑

uv∈E(G)

√
d2u + d2v.

Gutman in [5], obtained a new version of Sombor index which is called
Euler-Sombor index, and defined it by

EU(G) =
∑

uv∈E(G)

√
dudv + d2u + d2v,

he investigated some properties of this index on some special graphs.
Tang et al.[14] analyzed the chemical applicability of this version of Som-
bor index. They established its mathematical properties, determined the
extremal values for this Sombor index for all trees, and described the
trees that achieve these extremal values. In [6], Gutman and Lepović
introduced the generalized Randić index as

Rα(G) =
∑

uv∈E(G)

(dudv)
α.

In [7], Gutman et al. introduced the product of the Sombor index and
the modified Sombor index and computed its principal properties. Up-
per and lower bounds for its product are obtained and the extremal
graphs are determined.

Kulli in [9], introduced the modified neighborhood Sombor index and
its exponential variant for graphs. He also computed the neighborhood
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and modified neighborhood Sombor indices, as well as their exponen-
tials, for several significant dendrimers. Furthermore, he derived various
properties of the neighborhood Sombor index.

Liu in [10], introduced multiplicative Sombor index, and some graph
transformations which increase or decrease the multiplicative Sombor
index. By using these transformations, he determined extremal values
of the multiplicative Sombor index of trees and unicyclic graphs.

Ramezani Tousi and Ghods in [11] obtained the molecular graph and
the line graph of Glass, and computed their M-polynomial and some
topological indices.

Redžepović [13] determined chemical applicability of Sombor indices
and studied their predictive and discriminative potentials. He examined
that Sombor indices have a strong predictive potential.

Similar studies have been conducted on the Zagreb indices. These
indices introduced by Gutman and Trinajstić [8] in 1972 as

M1(G) =
∑

uv∈E(G)

dv + du, M2(G) =
∑

uv∈E(G)

dudv,

and Ranjini et al. [12] redefined them.
In this paper, we introduce three new types of Sombor indices and

calculate their exact values for specific graphs. We also examine their
relationships with some other topological indices. Additionally, we ex-
plore their applications in predicting the physico-chemical properties of
materials. It is observed that given their good correlation with material
properties, they have the potential to be good predictors.

2. Results and Discussion

The high cost of chemical tests, as well as, the long time and precision
required to determine the properties of chemical molecules, have forced
scientists to find a way to predict their properties by defining some
chemical indices. They examine the compatibility of each of the indices
with different molecules, and thereby determine the predictive index of
each of them. The general form of these indices are

TI(G) =
∑

uv∈E(G)

f(du, dv),

where f is a symmetric positive two-variables function.
In this section we introduce the three novel vertex-degree-based topo-
logical indices of graphs. We define the first, second, and third redefined
Sombor indices as

(1) ReSO1(G) =
∑

uv∈E(G)

dudv
√
d2u + d2v.
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(2) ReSO2(G) =
∑

uv∈E(G)

√
dudv(d2u + d2v).

(3) ReSO3(G) =
∑

uv∈E(G)

(√
dudv +

√
d2u + d2v

)
.

We will further show that these indices have a good correlation with
some other topological indices, making them potentially useful tools for
predicting certain physico-chemical properties of materials. Moreover,
it may be possible to derive some bounds for these indices according to
the certain graph parameters.

Example 2.1. The following statements are true.
(1) Suppose G be a r−regular graph with n vertices, then

ReSO1(G) =
nr4

2

√
2.

(2) For the cycle graph Cn, we have ReSO2(Cn) = 4n
√
2.

(3) If Kn be the complete graph, then

ReSO3(Kn) =
n(n− 1)2

2
(
√
2 + 1).

(4) If Qk be the hypercube graph with |V (Qk)| = 2k, then

ReSO2(Qk) =
2kk3

2

√
2.

Example 2.2. The following statements are true.
(1) Let Kp,q be the complete bipartite graph, then

ReSO1(Kp,q) = p2q2
√

p2 + q2.

(2) For complete bipartite graph Kp,p, we have

ReSO2(Kp,p) = p4
√
2.

(3) If Sn be star of order n, then ReSO3(Sn) = n
(√

1 + n2 +
√
n
)
.

Trees as an important class of graphs have always been of interest.
Here, we have obtained the second redefined Sombor index value for
path graphs as the simplest trees.

Theorem 2.3. If Pn be the path with n vertices, then

ReSO2(Pn) =

{ √
2 if n = 2,

2
√
10 + (n− 3)

√
32 if n ≥ 3.

Similarly, the values of ReSOi(Pn) for i = 1, 3 can be obtained.
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Proof. The Theorem is obvious for n = 2. Suppose Pn be the path
with n ≥ 3 vertices and n− 1 edges as e1, e2, . . . , en−1, then e1 and en−1

have d-coordinate (1, 2) and other edges are d-coordinate (2, 2), therefore
ReSO2(Pn) = 2

√
2 ∗ 5 + (n− 3)

√
4 ∗ 8 = 2

√
10 + (n− 3)

√
32. □

Obviously, by adding an edge to the graph, the value of the redefined
Sombor indices increases. Therefore, the fact that the largest value of
these indices occurs for the complete graphs, leads us to the following
theorem.

Proposition 2.4. If Kn represent the complete graph of order n, and
Kn be its complement, then for any graph G of order n, we have

ReSOi(Kn) ≤ ReSOi(G) ≤ ReSOi(Kn),

for i = 1, 2, 3, with ReSOi(Kn) = 0.

With the same argument, the smallest value of the redefined Sombor
indices occurs in trees. Since, the path graph has the minimum Sombor
index among trees (see [4]), the following result is obtained.

Theorem 2.5. If Kn represents the complete graph of order n, and Pn

be the path with n vertices, then for any connected graph G of order n,
we have

ReSOi(Pn) ≤ ReSOi(G) ≤ ReSOi(Kn),

for i = 1, 2, 3.

Similar to the results presented in [1, 2] about the extremal values
of some vertex degree-based topological indices, the paths and stars are
the bounds of redefined Sombor indices among trees.

Theorem 2.6. If Sn be the star of order n, and Pn be the path with n
vertices, then for any connected tree T of order n, we have

ReSOi(Pn) ≤ ReSOi(T ) ≤ ReSOi(Sn),

for i = 1, 2, 3. Equality on the left (res. right) holds iff T ∼= Pn (res.
T ∼= Sn).

Proof. The lower bound follows from Theorem 2.5. In order to de-
duce the upper bound, Suppose s be a vertex of T with neighbors
t1, t2, . . . , tk, z, such that dT (ti) = 1, i = 1, 2, . . . , k. Let T ′, be the tree
obtained from T , by the transformation shown in Figure 1. If dz = 1,
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Figure 1. Transformation of graph

then T = Sn and equality holds. Let T ̸= Sn, therefore dz = l ≥ 2, and

ReSO1(T
′) = dzds

√
d2z + d2s +

k∑
i=1

dzdti

√
d2z + d2ti

+
∑

t̂∈V (T̂ )

dzdt̂

√
d2z + d2

t̂
+

∑
t̂i t̂j∈E(T̂ )

t̂i,t̂j ̸=z

dt̂idt̂j

√
d2
t̂i
+ d2

t̂j

= (l + k)
√
(l + k)2 + 1 +

k∑
i=1

(l + k)
√

(l + k)2 + 1

+
∑

t̂∈V (T̂ )

(l + k)dt̂

√
(l + k)2 + d2

t̂
+

∑
t̂i t̂j∈E(T̂ )

t̂i,t̂j ̸=z

dt̂idt̂j

√
d2
t̂i
+ d2

t̂j

= (k + 1)(l + k)
√

(l + k)2 + 1 +
∑

t̂∈V (T̂ )

(l + k)dt̂

√
(l + k)2 + d2

t̂

+
∑

t̂i t̂j∈E(T̂ )

t̂i,t̂j ̸=z

dt̂idt̂j

√
d2
t̂i
+ d2

t̂j
.
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Moreover

ReSO1(T ) = dzds
√
d2z + d2s +

k∑
i=1

dsdti

√
d2s + d2ti

+
∑

t̂∈V (T̂ )

dzdt̂

√
d2z + d2

t̂
+

∑
t̂i t̂j∈E(T̂ )

t̂i,t̂j ̸=z

dt̂idt̂j

√
d2
t̂i
+ d2

t̂j

= l(k + 1)
√
l2 + (k + 1)2 +

k∑
i=1

(k + 1)
√
(k + 1)2 + 1

+
∑

t̂∈V (T̂ )

ldt̂

√
l2 + d2

t̂
+

∑
t̂i t̂j∈E(T̂ )

t̂i,t̂j ̸=z

dt̂idt̂j

√
d2
t̂i
+ d2

t̂j

= l(k + 1)
√
l2 + (k + 1)2 + k(k + 1)

√
(k + 1)2 + 1

+
∑

t̂∈V (T̂ )

ldt̂

√
l2 + d2

t̂
+

∑
t̂i t̂j∈E(T̂ )

t̂i,t̂j ̸=z

dt̂idt̂j

√
d2
t̂i
+ d2

t̂j
.

On the other hand∑
t̂∈V (T̂ )

(l + k)dt̂

√
(l + k)2 + d2

t̂
≥

∑
t̂∈V (T̂ )

ldt̂

√
l2 + d2

t̂
,

and

(k + 1)(l + k)
√

(l + k)2 + 1 =k(k + 1)
√

(l + k)2 + 1

+ (k + 1)l
√
(l + k)2 + 1

≥ k(k + 1)
√
(k + 1)2 + 1

+ (k + 1)l
√
(k + 1)2 + l2.

Therefore, using the above inequlities, and comparing the amounts of
ReSO1(T

′) and ReSO1(T ) implies that ReSO1(T
′) ≥ ReSO1(T ). If

T ′ = Sn is proven, then the proof is complete, otherwise, we will repeat
the above process a finite number of times until the result is obtained.
The proof for i = 2, 3 is similar. □

The maximum and minimum vertex degrees are two important pa-
rameters of a graph for establishing new bounds. Here, we derive some
bounds for ReSOi where i = 1, 2, 3, based on these values. The proof of
the next Theorem is a consequence of the inequality δ ≤ du(G) ≤ ∆.



Chemical Applications of Some New Versions of Sombor Index 359

Theorem 2.7. Let G be a simple and connected graph with m edges, and
let δ and ∆ denote the minimum and maximum degrees of the vertices
of G respectively, then

(1)
√
2mδ3 ≤ ReSO1(G) ≤

√
2m∆3.

(2)
√
2mδ2 ≤ ReSO2(G) ≤

√
2m∆2.

(3) (1 +
√
2)mδ ≤ ReSO3(G) ≤ (1 +

√
2)m∆.

Equality holds iff G be regular.

3. Relationship between redefined Sombor indices and
other vertex-degree-based topological indices

In this section, we explore the connections between the redefined Som-
bor indices and various other topological indices. The redefined Sombor
indices showed good correlations with some existing topological indices.
Table 1 asserts the possibililty of the establishment of some mathemat-
ical relationships among these indices. In the following, we prove some
of these relationships.

Table 1. The correlation coefficients of the redefined
Sombor indices with some existing indices.

M1 M2 EU SO R ReSO1 ReSO2 ReSO3

ReSO1 0.96 0.99 0.95 0.94 -0.87 1.00 0.90 0.97
ReSO2 0.91 0.90 0.91 0.90 -0.85 0.90 1.00 0.87
ReSO3 0.97 0.96 0.96 0.96 -0.91 0.97 0.87 1.00

Proposition 3.1. For any arbitrary graph G, we have

ReSO3(G) ≤ 2ReSO2(G).

Proposition 3.2. For any arbitrary graph G, we have

ReSO2(G) ≤ ReSO1(G).

Equality holds if and only if G be a finite union of K2 graphs.

Proposition 3.3. If M1(G) be first Zagreb index and SO(G) be Sombor
index of graph G, then

ReSO2(G) ≤ M1(G)

2
SO(G).

Equality holds if and only if G ∼= K2.
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Proof. Since √xy ≤ x+ y

2
, we have

√
dudv(d2u + d2v) ≤

du + dv
2

√
d2u + d2v,

therefore,

ReSO2(G) =
∑

uv∈E(G)

√
dudv(d2u + d2v)

≤
∑

uv∈E(G)

(
du + dv

2
)

∑
uv∈E(G)

√
d2u + d2v

=
M1(G)

2
SO(G).

□

Proposition 3.4. For any arbitrary graph G, we have

ReSO2(G) ≤ 1

2
ESO(G).

Equality holds if and only if G be a regular graph.

Proposition 3.5. If M1(G) be first Zagreb index of graph G, then
EU(G) ≤ M1(G), EU(G) ≤ ReSO3(G).

Proof. Since
√
dudv + d2u + d2v ≤

√
2dudv + d2u + d2v = du + dv, then

EU ≤ M1(G). The rest of the proof comes from the inequality√
dudv + d2u + d2v ≤

√
dudv +

√
d2u + d2v.

□

Proposition 3.6. If M1(G) be first Zagreb index and SO(G) be Sombor
index of connected graph G, then

ReSO3(G) ≤ M1(G)

2
+ SO(G).

Equality holds if and only if G be a regular graph.

Proof. Since
√
dudv +

√
d2u + d2v ≤ du+dv

2 +
√
d2u + d2v, then

ReSO3(G) ≤ M1(G)

2
+ SO(G).

□

Proposition 3.7. If M1(G) be first Zagreb index and SO(G) be Sombor
index of connected graph G, then

ReSO1(G) ≤ M2
1

4
SO(G).

Equality holds if and only if G ∼= K2.
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Proof. Since xy ≤ (
x+ y

2
)2, we have ReSO1(G) ≤ M2

1

4
SO(G). □

Proposition 3.8. Let G be a simple and connected graph, Rα(G) and
SO(G) are the generalized Randić and Sombor indices of G, respectively,
then √

2R3
1
2

(G) ≤ ReSO1(G),

with equality iff G be regular.

Proof. Since xy ≤ x2+y2

2 for x, y ∈ R with equality iff x = y, therefore
√
2(dudv)

3
2 ≤ dudv

√
d2u + d2v.

□

The following proposition is proven in [5]. Here, we present a shorter
proof of it.

Proposition 3.9. Let G be a simple and connected graph, then

SO(G) < EU(G) ≤
√

3

2
SO(G).

Proof. It suffices to show that

x2 + y2 < x2 + y2 + xy ≤ 3

2
(x2 + y2),

for x, y > 0. The left inequality is obvious. For the right inequality, let
y = mx, then

x2 + y2 + xy = x2(1 +m2 +m)

≤ x2(1 +m2 +
1 +m2

2
) =

3

2
x2(1 +m2) =

3

2
(x2 + y2).

□

The proof of the following proposition is strightforward.

Proposition 3.10. Let G be a simple and connected graph, then
(1) SO(G) ≤ ReSO3(G) ≤ (1 + 1√

2
)SO(G).

(2) SO(G) ≤ ReSO2(G) ≤ ∆SO(G).

(3) SO(G) ≤ ReSO1(G) ≤ ∆2SO(G).
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4. Applications

In this section, we concentrate on the predictive capacity of redefined
Sombor indices for framing linear regression models, to predict some
physico-chemical properties (Entropy(S), standard enthalpy of vapor-
isation (∆Hvap), acentric factor(AcentFac), Narumi simple topological
index(SNar), and Narumi harmonic topological index(HNar)) of isomers
of octane. By using isomers, the influence of molecular size on the pre-
dictive model is eliminated. The experimental data were collected from
the molecular descriptors database, available at moleculardescriptors.eu
and are shown in Table 2.

Table 2. Physico-chemical properties of isomers of oc-
tane with ReSOi, i = 1, 2, 3.

Molecule ReSO1 ReSO2 ReSO3 S ∆Hvap AcentFac SNar HNar
octane 65.51 34.6 31.44 111.67 9.92 0.40 4.16 1.60
2-methylheptane 79.02 39.91 33.97 109.84 9.48 0.38 3.87 1.50
3-methylheptane 84.32 40.77 33.96 111.26 9.52 0.37 3.87 1.50
4-methylheptane 84.32 40.77 33.96 109.32 9.48 0.37 3.87 1.50
3-ethylhexane 89.63 41.63 33.94 109.43 9.48 0.36 3.87 1.50
2,2-dimethylhexane 112.3 51.86 38.97 103.42 8.92 0.34 3.47 1.39
2,3-dimethylhexane 104.06 46.81 36.45 108.02 9.27 0.35 3.58 1.41
2,4-dimethylhexane 97.83 46.08 36.49 106.98 9.03 0.34 3.58 1.41
2,5-dimethylhexane 92.52 45.22 36.51 105.72 9.05 0.36 3.58 1.41
3,3-dimethylhexane 124.79 53.77 38.97 104.74 8.973 0.32 3.47 1.39
3,4-dimethylhexane 109.36 47.67 36.44 106.59 9.32 0.34 3.58 1.41
2-methyl-3-ethylpentane 109.36 47.67 36.44 106.06 9.21 0.33 3.58 1.41
3-methyl-3-ethylpentane 146.18 55.68 38.97 101.48 9.09 0.31 3.47 1.39
2,2,3-trimethylpentane 145.06 59.53 41.43 101.31 8.83 0.30 3.18 1.32
2,2,4-trimethylpentane 125.86 57.17 37.4 104.09 8.40 0.31 3.18 1.32
2,3,3-trimethylpentane 152.2 60.57 41.44 102.06 8.90 0.29 3.18 1.32
2,3,4-trimethylpentane 123.8 52.84 38.95 102.39 9.01 0.32 3.30 1.33
2„2,3,3-tetramethylbutane 189.46 56.4 46.39 93.06 8.41 0.26 2.78 1.23

As seen in Table 3, the correlation coefficients of the redefined Sombor
indices with certain physico-chemical properties, is better compared to
other topological indices in some cases. Therefore, these indices may
contain useful information for prediction these properties. The motiva-
tion for selecting these specific physico-chemical properties, is that the
redefined Sombor indices provide relatively strong linear correlations,
with their respective correlation coefficients, which are greater than 0.8.
The results are presented in Table 3.
The scatter plot depicted in Figures 2, 3, 4, 5, 6, demonstrates a linear
dependence between physico-chemical properties and redefined Sombor

 https://web.archive.org/web/20180830013934if_/http://moleculardescriptors.eu/dataset/dataset.htm
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Table 3. The correlation coefficient of different topological indices
with S, ∆Hvap, AcenFac, HNar and SNar.

ReSO1 ReSO2 ReSO3 EU SO M1 M2 R
S -0.96 -0.84 -0.97 -0.95 -0.95 -0.95 -0.94 0.91

∆Hvap -0.82 -0.87 -0.84 -0.94 -0.95 -0.94 -0.81 0.96
AcentFac -0.98 -0.93 -0.95 -0.97 -0.96 -0.97 -0.99 0.90
HNar -0.91 -0.92 -0.93 -0.97 -0.96 -0.97 -0.93 0.96
SNar -0.94 -0.91 -0.95 -0.99 -0.98 -0.99 -0.95 0.97

indices. All analyzed correlations reveal linear relationships between
the redefined Sombor indices and these physico-chemical properties.

Figure 2. The correlation between AcentFac and
ReSOi for 18 isomers of octane.

Figure 3. The correlation between the ∆Hvap and
ReSOi for 18 isomers of octane.

Figure 4. The correlation between the S and ReSOi

for 18 isomers of octane.

Figure 5. The correlation between the HNar and
ReSOi for 18 isomers of octane.

Therefore, we use a regression model for modeling to obtain a linear rela-

Figure 6. The correlation between the SNar and
ReSOi for 18 isomers of octane.

tionship between physico-chemical properties and Sombor indices. The
scatter plots are shown in Figures 7, 8, 9, 10, 11, and the coefficients of
these linear equations are presented in Table 4. The coefficients in the
regression models are determined through a Python script, utilizing the
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Figure 7. The regression model with AcentFac and
ReSOi for 18 isomers of octane.

Figure 8. The regression model with ∆Hvap and ReSOi

for 18 isomers of octane.

Figure 9. The regression model with S and ReSOi for
18 isomers of octane.

Figure 10. The regression model with HNar and
ReSOi for 18 isomers of octane.

Figure 11. The regression model with SNar and
ReSOi for 18 isomers of octane.

scikit-learn machine learning framework.
In the model described by equation 4.1, one of the physico-chemical
properties is forecasted by using only one of the redefined Sombor in-
dices. The tested regression models are outlined as follows:
S,∆Hvap, AcentFac,HNar, SNar ≈ A∗ReSOi+B ; i = 1, 2, 3, (4.1)

Here, A, represents the regression coefficient and B, denotes the regres-
sion constant. The values for A and B are presented in Table 4.

The terms R2, RMSE and R2
adj refer to the coefficients of determina-

tion, root mean square error and adjusted coefficient of determination,
respectively. The evaluation results shown in Tables 5 indicate that the
physico-chemical properties of octane isomers are effectively predicted
using straightforward models based on equation 4.1. Specifically, over
90% of the variance in the physico-chemical properties can be accounted
for a linear model, in which a single redefined Sombor index is the sole
predictor. The results in Tables 5 demonstrate that the physico-chemical
properties of octane isomers can be adequately predicted using basic
models derived from equation 4.1. Specifically, a linear model using a
single redefined Sombor index as the sole predictor explains over 90%
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Table 4. The values for the parameters used in the models.

Parameter ReSOi A B
S ReSO1 -0.14 120.92

ReSO2 -0.51 130.21
ReSO3 -1.34 155.54

∆Hvap ReSO1 -0.01 10.20
ReSO2 -0.05 11.33
ReSO3 -0.10 12.88

AcentFac ReSO1 -0.001 0.45
ReSO2 -0.005 0.56
ReSO3 -0.009 0.69

HNar ReSO1 -0.003 1.69
ReSO2 -0.01 1.91
ReSO3 -0.02 2.38

SNar ReSO1 -0.01 4.56
ReSO2 -0.04 5.54
ReSO3 -0.08 6.67

of the variance in the physico-chemical properties. Moreover, the errors
generated by these models are minimal, particularly for SNar. Among
all the models, the model using the third redefined Sombor index to pre-
dict SNar demonstrated the best performance. Precisely, its R2 value
reaches 96.60%.

Table 5. The results of evaluation of the linear regression models.

ReSOi R2(%) R2
adj(%) RMSE

S
ReSO1 90.37 87.96 0.92
ReSO2 91.22 89.03 0.87
ReSO3 92.45 90.56 1.02

∆Hvap

ReSO1 94.15 92.69 0.10
ReSO2 86.40 83.01 0.14
ReSO3 91.74 89.68 0.12

AcentFac
ReSO1 94.10 92.63 0.08
ReSO2 92.11 90.14 0.08
ReSO3 93.75 92.19 0.01

HNar
ReSO1 95.09 93.8 0.02
ReSO2 91.74 89.68 0.03
ReSO3 92.17 90.21 0.03

SNar
ReSO1 96.60 95.75 0.08
ReSO2 0.96 95.01 0.06
ReSO3 92.63 90.79 0.09
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To compare the experimental and theoretical results, it is essential to
evaluate the model’s predictive power using the Root Mean Square Error
(RMSE) metric. The optimal predictive model will be the one that
exhibits the minimum error, i.e., the lowest RMSE, which is defined as

RMSE =

√√√√ 1

n

n∑
j=1

(yj − ŷj)2.

Here yj represents the observed values of the independent variable, ŷj
signifies the predicted values of the independent variable, and n denotes
the number of samples under consideration.

5. Conclusions

In this paper, we have studied three newly redefined Sombor indices of
the first, second, and third types. We have also identified their relation-
ships with some topological indices, as well as their predictive abilities
regarding the properties of molecules. In the future, we can explore some
bounds to these indices for certain molecular graphs, according to graph
parameters.

References
[1] Y. Alizadeh, A. Iranmanesh, T. Došlić, Additively weighted Harary index

of some composite graphs, Discrete Math. 313 (2013) 26–34.
[2] R. Cruz, J. Rada, The Path and the Star as Extremal Values of Vertex-

Degree-Based Topological Indices among Trees, MATCH Commun. Math.
Comput. Chem. 82 (2019) 715–732.

[3] C. Espinal, I. Gutman, J. Rada, Elliptic Sombor index of chemical graphs,
Commun. Comb. Optim. (2024) 1–11.

[4] I. Gutman, Geometric approach to degree-based topological indices: Som-
bor indices, MATCH Commun. Math. Comput. Chem. 86 (2021) 11–16.

[5] I. Gutman, Relating Sombor and Euler indices, Vojnotehnicki Glasnik,
72(2024).

[6] I. Gutman, M. Lepović, Choosing the exponent in the definition of the
connectivity index, J. Serb. Chem. Soc. 66 (2001), 605–611.

[7] I. Gutman, I. Redžepović and B. Furtula, On the product of Sombor and
modified Sombor indices, Open J. Discr. Appl. Math. 6 (2023) 1–6.

[8] I. Gutman, N. Trinajstić, Graph theory and molecular Total orbitals. π-
electron energy of alternant hydrocarbons, Chem. Phys. Lett. 179 (1972)
535–538.

[9] V. R. Kulli, Neighborhood Sombor Indices, International Journal of Math-
ematics Trends and Technology, 68 (2022) 195–204.

[10] H. Liu, Multiplicative Sombor index of graphs, Discrete Mathematics Let-
ters, 9 (2022) 80–85.

[11] J. Ramezani Tousi, M. Ghods, Computational Analysis of the Molecu-
lar Graph and the Line Graph of Glass by Studying Their M-Polynomial



Chemical Applications of Some New Versions of Sombor Index 367

and Topological Indices. Discontinuity, Nonlinearity, and Complexity,
13(02)(2024), 361-371.

[12] P. S. Ranjini, V. Lokesha, A. Usha, Relation between phenylene and hexag-
onal squeeze using harmonic index, Int. J. Graph Theory, 1 (2013) 116–
121.

[13] I. Redžepović, Chemical applicability of Sombor indices, J. Serb. Chem.
Soc. 86 (2021) 445–457.

[14] Z. Tang, Y. Li, H. Deng, The Euler Sombor index of a graph, Int. J.
Quantum Chem. 124 (2024), e27387.


	1.  Introduction
	2. Results and Discussion
	3. Relationship between redefined Sombor indices and other vertex-degree-based topological indices 
	4. Applications
	5. Conclusions
	References

