- Li, Y. C., & Gou, H. L. (2018). Modeling Problem of Equivalent Mechanical Models of a Sloshing Fluid. Shock and Vibration, 2018. doi:10.1155/2018/2350716.
- Altunisik, A. C., & Sesli, H. (2015). Dynamic response of concrete gravity dams using different water modelling approaches: Westergaard, lagrange and euler. Computers and Concrete, 16(3), 429–448. doi:10.12989/cac.2015.16.3.429.
- Moslemi, M., Farzin, A., & Kianoush, M. R. (2019). Nonlinear sloshing response of liquid-filled rectangular concrete tanks under seismic excitation. Engineering Structures, 188, 564–577. doi:10.1016/j.engstruct.2019.03.037.
- Mas’ud Alfanda, A. (2017). Comparative Analysis of Circular and Rectangular Reinforced Concrete Tanks Based on Economical Design Perspective. American Journal of Applied Scientific Research, 3(2), 14. doi:10.11648/j.ajasr.20170302.12.
- Kim, J. K., Koh, H. M., & Kwahk, I. J. (1996). Dynamic Response of Rectangular Flexible Fluid Containers. Journal of Engineering Mechanics, 122(9), 807–817. doi:10.1061/(asce)0733-9399(1996)122:9(807).
- Chern, M. J., Vaziri, N., Syamsuri, S., & Borthwick, A. G. L. (2012). Pseudospectral solution of three-dimensional nonlinear sloshing in a shallow water rectangular tank. Journal of Fluids and Structures, 35, 160–184. doi:10.1016/j.jfluidstructs.2012.08.003.
- Camnasio, E., Orsi, E., & Schleiss, A. J. (2011). Experimental study of velocity fields in rectangular shallow reservoirs. Journal of Hydraulic Research, 49(3), 352–358. doi:10.1080/00221686.2011.574387.
- Ghateh, R., Kianoush, M. R., & Pogorzelski, W. (2015). Seismic response factors of reinforced concrete pedestal in elevated water tanks. Engineering Structures, 87, 32–46. doi:10.1016/j.engstruct.2015.01.017.
- Hadj-Djelloul, N., & Djermane, M. (2020). Effect of geometric imperfection on the dynamic of elevated water tanks. Civil Engineering Journal (Iran), 6(1), 85–97. doi:10.28991/cej-2020-03091455.
- Wang, Q., Tiwari, N. D., Qiao, H., & Wang, Q. (2020). Inerter-based tuned liquid column damper for seismic vibration control of a single-degree-of-freedom structure. International Journal of Mechanical Sciences, 184, 105840. doi:10.1016/j.ijmecsci.2020.105840.
- Dou, P., Xue, M. A., Zheng, J., Zhang, C., & Qian, L. (2020). Numerical and experimental study of tuned liquid damper effects on suppressing nonlinear vibration of elastic supporting structural platform. Nonlinear Dynamics, 99(4), 2675–2691. doi:10.1007/s11071-019-05447-y.
- Jin, X., Tang, J., Tang, X., Mi, S., Wu, J., Liu, M., & Huang, Z. (2020). Effect of viscosity on sloshing in a rectangular tank with intermediate liquid depth. Experimental Thermal and Fluid Science, 118, 110148. doi:10.1016/j.expthermflusci.2020.110148.
- Shekari, M. R. (2020). On the numerical assessment of the resonant sloshing responses in 3D multi baffled partially liquid-filled steel cylindrical tanks shaken by long-period ground motions. Soil Dynamics and Earthquake Engineering, 129, 105712. doi:10.1016/j.soildyn.2019.105712.
- Yu, L., Xue, M. A., & Jiang, Z. (2020). Experimental investigation of parametric sloshing in a tank with vertical baffles. Ocean Engineering, 213, 107783. doi:10.1016/j.oceaneng.2020.107783.
- Ünal, U. O., Bilici, G., & Akyıldız, H. (2019). Liquid sloshing in a two-dimensional rectangular tank: A numerical investigation with a T-shaped baffle. Ocean Engineering, 187, 106183. doi:10.1016/j.oceaneng.2019.106183.
- Aghajanzadeh, S. M., Mirzabozorg, H., & Yazdani, H. (2023). SPH Technique to Study the Sloshing in Concrete Liquid Tanks. Numerical Methods in Civil Engineering, 8(1), 1–17. doi:10.61186/nmce.2304.1015.
- Wang, G., Lu, W., Zhang, S. (2021). Seismic Potential Failure Mode Analysis of Concrete Gravity Dam–Water–Foundation Systems Through Incremental Dynamic Analysis. In: Seismic Performance Analysis of Concrete Gravity Dams. Advanced Topics in Science and Technology in China,. Springer, Singapore. doi:10.1007/978-981-15-6194-8_4.
- Kianoush, M. R., & Ghaemmaghami, A. R. (2011). The effect of earthquake frequency content on the seismic behavior of concrete rectangular liquid tanks using the finite element method incorporating soil-structure interaction. Engineering Structures, 33(7), 2186–2200. doi:10.1016/j.engstruct.2011.03.009.
- Jia, J. (2016). Modern earthquake engineering: Offshore and land-based structures. Springer, Cham, Switzerland.
- ACI 350.3-01. (2001). Seismic Design of Liquid-Containing Concrete Structures, Reported by ACI Committee 350, Environmental Engineering Concrete Structures. American Concrete Institute (ACI), Michigan, United States.
- Vesenjak, M., Mullerschon, H., Hummel, A., & Ren, Z. (2004). Simulation of fuel sloshing-comparative study. LS-DYNA Anwenderforum, 1-8.
- Ghaemmaghami, A. (2010). Dynamic time-history response of concrete rectangular liquid storage tanks. PhD Thesis, Sharif University, Tehran, Iran.
- Livaoglu, R., Cakir, T., Dogangun, A., & Aytekin, M. (2011). Effects of backfill on seismic behavior of rectangular tanks. Ocean Engineering, 38(10), 1161–1173. doi:10.1016/j.oceaneng.2011.05.017.
- Elnashai, A. S., & Di Sarno, L. (2008). Fundamentals of Earthquake Engineering. John Wiley & Sons, Hoboken, United States. doi:10.1002/9780470024867
- Xue, M.-A., Zheng, J., & Lin, P. (2012). Numerical Simulation of Sloshing Phenomena in Cubic Tank with Multiple Baffles. Journal of Applied Mathematics, 2012(1). doi:10.1155/2012/245702.
|