تعداد نشریات | 31 |
تعداد شمارهها | 484 |
تعداد مقالات | 4,710 |
تعداد مشاهده مقاله | 7,347,140 |
تعداد دریافت فایل اصل مقاله | 5,492,671 |
تحلیل فرصت ها و چالش های یادگیری شخصی سازی شده مبتنی بر هوش مصنوعی در آموزش عالی ایران | ||
مطالعات برنامه ریزی آموزشی | ||
دوره 13، شماره 26، اسفند 1403، صفحه 7-33 اصل مقاله (560.75 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22080/eps.2025.28091.2292 | ||
نویسندگان | ||
صادق احمدی1؛ داود طهماسب زاده2؛ رضا میرعرب رضی* 3 | ||
1دانش آموخته کارشناسی ارشد رشته برنامه ریزی درسی دانشگاه تبریز، تبریز، ایران | ||
2گروه علوم تربیتی، دانشکده علوم تربیتی و روانشناسی، دانشگاه تبریز، تبریز، ایران | ||
3گروه علوم تربیتی، دانشکده علوم انسانی و اجتماعی، دانشگاه مازندران، بابلسر، ایران | ||
تاریخ دریافت: 10 شهریور 1403، تاریخ بازنگری: 10 مهر 1403، تاریخ پذیرش: 10 آذر 1403 | ||
چکیده | ||
هدف:این مقاله به بررسی فرصتها و چالشهای یادگیری شخصیسازیشده مبتنی بر هوش مصنوعی در آموزش عالی ایران پرداخته و به تحلیل موانع پیچیده ای می پردازد که در برنامه ریزی آموزش عالی ایران در این زمینه پدیدار شده اند. روششناسی: رویکرد پژوهش کیفی و از نوع پدیدارشناسی توصیفی بود. از میان صاحبنظران و اساتید دانشگاه تعداد 14 نفر به روش نمونهگیری هدفمند از نوع گلوله برفی و تا رسیدن به اشباع نظری دادهها انتخاب شدند. تجزیه و تحلیل مصاحبههای نیمهساختاریافته به صورت دستی و به روش کلایزی انجام شد. یافتهها: از تجزیه و تحلیل دادهها، 401 عبارت مهم استخراج شد که به 463 واحد معنایی فرموله شدند. در آخر واحدهای معنایی مشترک در دستههای کلیتری قرار گرفتند که حاصل آن، یافتههای به دست آمده در پژوهش بود که نشاندهنده 8 مضمون اصلی و 52 زیرمضمون بود. مضامین اصلی استخراج شده عبارت بودند از: اصلاح و ارتقا نظام آموزشی، رفع کمبودها، ارتقا عملکرد دانشجویان، افزایش بهرهوری استادان، آیندهنگری شغلی، نیاز به زیرساخت و نیروی انسانی، مقاومت فرهنگی و دغدغههای انسانی و اخلاقی. نتیجهگیری و پیشنهادات: میتوان نتیجه گرفت که یادگیری شخصیسازیشده مبتنی بر هوش مصنوعی با فواید و فرصتهای زیادی برای برنامه ریزی آموزش عالی ایران همراه است اما چالشهای سختافزاری و انسانی بر سر راه آن قرار دارد که نیازمند توجه ویژه هستند. نوآوری و اصالت: این مطالعه تحلیل جدیدی از ظرفیت هوش مصنوعی در برنامه ریزی آموزش عالی، فرصت هایی که می تواند به یادگیری شخصی سازی و ارتقاء کیفیت در نظام آموزش عالی کمک کند و چالش هایی که در این مسیر وجود دارد پرداخته است. | ||
کلیدواژهها | ||
یادگیری شخصیسازی شده؛ آموزش عالی؛ برنامهریزیآموزشی؛ سیاستگذاری هوش مصنوعی | ||
عنوان مقاله [English] | ||
Analysis the opportunities and challenges of personalization learning based on artificial intelligence in higher education | ||
نویسندگان [English] | ||
sadegh ahmadi1؛ Davoud Tahmaseb zade Sheikhlar2؛ Reza Mirarab razi3 | ||
1M.A in curriculum Development ,University of Tabriz, Tabriz, Iran | ||
2Department of Educational Sciences, Faculty of Educational Sciences and Psychology, University of Tabriz, Tabriz, Iran | ||
3Department of Educational Sciences, Faculty of Humanities and Social Sciences, University of Mazandaran, , Babolsar, Iran | ||
چکیده [English] | ||
Aim: This article was conducted with the aim of analyzing the opportunities and challenges of personalized learning based on artificial intelligence in Iran's higher education Methodology: The research approach was qualitative and descriptive phenomenology. among the experts and professors of the university, 14 people were selected by purposeful snowball sampling method until the theoretical saturation of the data was reached. The analysis of semi-structured interviews was done manually and using the Colaizzi method. Results: The findings indicate that from the data analysis, 401 important phrases were extracted, which were formulated into 463 semantic units. Finally, the common semantic units were placed in more general categories, which resulted in the findings obtained in the research, which indicated 8 main themes and 52 sub-themes. The main themes extracted were: reforming and upgrading the educational system, eliminating deficiencies, improving students' performance, increasing professors' productivity, job prospects, the need for infrastructure and manpower, cultural resistance, and human and moral concerns. Conclusions and suggestions: it can be concluded that personalized learning based on artificial intelligence is associated with many benefits and opportunities, but there are some hardware and human challenges on its way that require special attention. Innovation and originality: This study provides a new analysis of the capacity of artificial intelligence in higher education planning, the opportunities that can help personalized learning and quality improvement in the higher education system, and the challenges that exist in this direction | ||
کلیدواژهها [English] | ||
Personalized learning, higher education, educational planning, AI policy-making | ||
مراجع | ||
Adli, M., Suriani, A. B., Ibrahim, M. M., Azzam, A. B., Fatiatun, Kusuma, H. H., Dwandaru, W. S. B., & Muhammad D. (2024). Comprehensive Review on Technology-Based Learning Using Artificial Intelligence for Science Subjects and Its Implications in Teaching and Learning. EDUCATUM Journal of Science, Mathematics and Technology, 11(2), 109–122. https://doi.org/10.37134/ejsmt.vol11.2.12.2024 Amzil, I., Aammou, S., & Zakaria, T. (2023). ENHANCE STUDENTS’LEARNING BY PROVIDING PERSONALIZED STUDY PATHWAYS. Conhecimento & Diversidade, 15(39), 83-93. DOI:10.18316/rcd.v15i39.11130 Arslantas, T. K., & Gul, A. (2022). Digital literacy skills of university students with visual impairment: A mixed-methods analysis. Education and Information Technologies, 27(4), 5605-5625. https://doi.org/10.1007/s10639-021-10860-1 Ashouri Kisomi , M. (2024). Investigating some ethical issues of artificial intelligence in art, Metaphysic, 16(1), 93-110. 10.22108/MPH.2024.138105.1488. [in Persian]. Basham, J. D., Hall, T. E., Carter Jr, R. A., & Stahl, W. M. (2016). An operationalized understanding of personalized learning. Journal of Special Education Technology, 31(3), 126-136. DOI: 10.1177/0162643416660835 Banyasady, A. (2024). From the Unexpected Encounter with Artificial Intelligence in the University classroom to Deep Thinking about its Increasing Presence in Higher Education. Journal of Educational Planning Studies, 13(25), 92-111. doi: 10.22080/eps.2024.27632.2274. [in Persian]. Baydaroğlu, Ö, Yeşilköy, S., Sermet, M. Y., & Demir, I. (2022). A comprehensive review of ontologies in the hydrology towards guiding next generation artificial intelligence applications. doi:10.3808/jei.202300500 Bernacki, M. L., Greene, M. J., & Lobczowski, N. G. (2021). A systematic review of research on personalized learning: Personalized by whom, to what, how, and for what purpose (s)? Educational Psychology Review, 33(4), 1675-1715. https://doi.org/10.1007/s10648-021-09615-8 Bishop, P. A., Downes, J. M., Netcoh, S., Farber, K., DeMink-Carthew, J., Brown, T., & Mark, R. (2020). Teacher roles in personalized learning environments. The Elementary School Journal, 121(2), 311-336. DOI:10.1086/711079 Brown, E. D. (2020). Exploration of a Pedagogical Shift: Transitioning from Traditional Teaching to Personalized Learning (Doctoral dissertation, Keiser University). Google Scholar Bryant, J., Heitz, C., Sanghvi, S., & Wagle, D. (2020). How artificial intelligence will impact K-12 teachers. Retrieved May, 12, 2020. Fryer, L. K., Ainley, M., Thompson, A., Gibson, A., & Sherlock, Z. (2017). Stimulating and sustaining interest in a language course: An experimental comparison of Chatbot and Human task partners. Computers in human behavior, 75, 461-468. https://doi.org/10.1016/j.chb.2017.05.045 Habibi, A., & Jalalnia, R. (2022). Phenomenology. Tehran: Narvan. [in Persian]. Hosseini Moghadam, M. (2023). Artificial Intelligence and the Future of University Education in Iran. Quarterly Journal of Research and Planning in Higher Education, 29(1), 1-25. Doi: 10.61838/irphe.29.1.1 [in Persian]. Jian, M. J. K. O. (2023). Personalized learning through AI. Advances in Engineering Innovation, 5(1). DOI:10.54254/2977-3903/5/2023039 Kuleto, V., Ilić, M., Dumangiu, M., Ranković, M., Martins, O. M., Păun, D., & Mihoreanu, L. (2021). Exploring opportunities and challenges of artificial intelligence and machine learning in higher education institutions. Sustainability, 13(18), 10424. https://doi.org/10.3390/su131810424 Liu, K., Zhang, X., Chen, W., Yu, A. S. L., Kellum, J. A., & Matheny, M. E. (2022). Development and Validation of a Personalized Model with Transfer Learning for Acute Kidney Injury Risk Estimation Using Electronic Health Records. JAMA Netw Open. 2022; 5: 2219776. doi: 10.1001/jamanetworkopen.2022.32183. Luckin, R., & Cukurova, M. (2019). Designing educational technologies in the age of AI: A learning sciences‐driven approach. British Journal of Educational Technology, 50(6), 2824-2838. https://doi.org/10.1111/bjet.12861 Makhambetova, A., Zhiyenbayeva, N., & Ergesheva, E. (2021). Personalized learning strategy as a tool to improve academic performance and motivation of students. International Journal of Web-Based Learning and Teaching Technologies (IJWLTT), 16(6), 1-17. DOI:10.4018/IJWLTT.286743 Miri Balajorshari, S, M., Mahmoudi, A. (2024). Analysis of ethical challenges in the field of artificial intelligence with an approach to Islamic ethics, Journal of Scientific Journal of Applied Ethics Studies, 14(53), 97-123. magiran.com/p2741132. [in Persian]. Motallebinejad, A. Fazeli, F & Navaii, E. (2023). A systematic review of the promises and challenges of artificial intelligence for teachers, Journal of Technology and Scholarship in Education, 3(1), 23-44. magiran.com/p2689585. [in Persian]. Naderi, F., Ayati, M., & Khamsan, A. (2012). A theoretical model of teachers' current actions to personalize elementary students' learning using grounded theory. Quarterly Journal of Educational Psychology, 17 (59). 253-287. https://doi.org/10.22054/jep.2021.47205.2790 [in Persian]. Ogwari, P., Mendoza-Role, E., & Amimo, C. (2020). Effect of personalized learning on mathematics performance among secondary schools in Awendo Sub-County, Kenya. East African Journal of Education and Social Sciences, 1(2), 98-108. DOI:10.46606/eajess2020v01i02.0025 Opele, J. K., Alade, T. T., & Ajifowoke, R. O. (2024). the impact of artificial intelligence (AI) on teaching and research experience of university lecturers: a review. unizik Journal of Educational Research and Policy Studies, 17(1), 24-35. Ouyang, F., & Jiao, P. (2021). Artificial intelligence in education: The three paradigms. Computers and Education: Artificial Intelligence, 2, 100020. https://doi.org/10.1016/j.caeai.2021.100020 Peng, W., Liu, H., & Qi, C. (2022, December). Personalized Learning Resource Recommendation Based On Learner Profile. In 2022 IEEE 21st International Conference on Ubiquitous Computing and Communications (IUCC/CIT/DSCI/SmartCNS) (pp. 198-203). IEEE. DOI:10.1109/CIS.2019.00037 Petruţa، G.-P. (2013). Multiple Intelligences Stimulated Within the Lessons by the Practicant Students from the Faculty of Sciences. Procedia-Social and Behavioral Sciences، 76، 676-680. DOI:10.1016/j.sbspro.2013.04.185 Popenici, S. A., & Kerr, S. (2017). Exploring the impact of artificial intelligence on teaching and learning in higher education. Research and practice in technology enhanced learning, 12(1), 22. https://doi.org/10.1186/s41039-017-0062-8 Pratama, M. P., Sampelolo, R., & Lura, H. (2023). Revolutionizing education: harnessing the power of artificial intelligence for personalized learning. Klasikal: Journal of Education, Language Teaching and Science, 5(2), 350-357. https://doi.org/10.52208/klasikal.v5i2.877 Rahiman, H. U., & Kodikal, R. (2024). Revolutionizing education: Artificial intelligence empowered learning in higher education. Cogent Education, 11(1), 2293431. DOI:10.1080/2331186X.2023.2293431 Roh, Y., Heo, G., & Whang, S. E. (2021). A Survey on Data Collection for Machine Learning: A Big Data-AI Integration Perspective. IEEE Transactions on Knowledge and Data Engineering, 33(4), 1328–1347. doi: 10.1109/TKDE.2019.2946162 Safari, E., Safari, Karim (2022). Identifying and Prioritizing the Challenges of Artificial Intelligence Development in Iran using Thematic Analysis and Fuzzy Cognitive Mapping, Information management, 8(1), 23-44. magiran.com/p2530713. [in Persian]. Shafiei, S., & Sharifzadeh, M. (2019). Study of Students' Learning Styles. Journal of Contemporary Research in Sciences and Research, 2(13), 35-44. SID. https://sid.ir/paper/59295/fa [in Persian]. Shahbazi, M., Khanzadeh, F., Moradi, E., & Soltani, S. (2023). Application of Artificial Intelligence in Education and Learning. Journal of Sexual and Psychological Disorders, 1(2), 12-21. DOI:10.23947/2334-8496-2024-12-2-259-272 [in Persian]. Shemshack, A., & Spector, J. M. (2020). A systematic literature review of personalized learning terms. Smart Learning Environments, 7(1), 33. https://doi.org/10.1186/s40561-020-00140-9 Smith, G. E., & Throne, S. (2009). Differentiating instruction with technology in middle school classrooms. Eugene, OR: International Society for Technology in Education. Soper, K. N. (2024). A Phenomenological Study of Teacher Experiences Personalizing Learning in English Language Arts. Doctoral Dissertations and Projects. 5249. Sullivan, J. (2019). An Examination of the Attitudinal and Structural Barriers to Successful Implementation of Personalized Learning (Doctoral dissertation, Lindenwood University). Thompson, V. L. (2020). The Lived Experiences of General and Special Education Teachers When Implementing Personalized Learning: A Transcendental Phenomenological Study (Doctoral dissertation, Concordia University (Oregon)). Tian, T. Y., & Smith, E. B. (2024). Stretched Thin: How a Misalignment Between Allocation and Valuation Underlies the Paradox of Diversity Achievement in Higher Education. Administrative Science Quarterly, 69(3), 711-746. https://doi.org/10.1177/00018392241247744 Vasarik Staub, K., Reusser, K., & Stebler, R. (2018). “In parents' school experience, the teacher was just lecturing at the front": school-family partnerships in schools with personalized learning concepts. International Journal about Parents in Education, 10(1), 1-13. DOI:10.54195/ijpe.14124 Winkler, R., & Söllner, M. (2018, July). Unleashing the potential of chatbots in education: A state-of-the-art analysis. In Academy of Management Proceedings (Vol. 2018, No. 1, p. 15903). Briarcliff Manor, NY 10510: Academy of Management. DOI:10.5465/AMBPP.2018.15903abstract Zualkernan, I. A. (2016). Personalized Learning for the Developing World: Issues, Constraints, and Opportunities. The Future of Ubiquitous Learning: Learning Designs for Emerging Pedagogies, 241-258. | ||
آمار تعداد مشاهده مقاله: 610 تعداد دریافت فایل اصل مقاله: 506 |