- Abbasi, M., Hosseinpour, I., Barari, A., & Mirmoradi, S. H. (2025). Mechanical Properties of Silty Sand Treated with MICP Technique Subjected to Freeze-Thaw Cycles. Transportation Infrastructure Geotechnology, 12(1), 34. doi:10.1007/s40515-024-00468-6.
- Zhang, X., Wang, H., Wang, Y., Wang, J., Cao, J., & Zhang, G. (2024). Improved methods, properties, applications and prospects of microbial induced carbonate precipitation (MICP) treated soil: A review. Biogeotechnics, 100123. doi:10.1016/j.bgtech.2024.100123.
- Li, G., Zhang, Y. J., Hua, X. Q., Liu, J., & Liu, X. (2024). Mechanical properties of aeolian sand cemented via microbially induced calcite precipitation (MICP). Scientific Reports, 14(1), 22745. doi:10.1038/s41598-024-73986-5.
- Zhu, T., He, R., Hosseini, S. M. J., He, S., Cheng, L., Guo, Y., & Guo, Z. (2024). Influence of precast microbial reinforcement on lateral responses of monopiles. Ocean Engineering, 307, 119493. doi:10.1016/j.oceaneng.2024.118211.
- Wang, Z., Li, Y., Bai, L., Hou, C., Zheng, C., & Li, W. (2025). Biodegradation of polypropylene microplastics by Bacillus pasteurii isolated from a gold mine tailing. Emerging Contaminants, 11(1), 100397. doi:10.1016/j.emcon.2024.100397.
- Yin, J., Qu, W., Yibulayimu, Z., & Qu, J. (2024). Enhancing aeolian sand stability using microbially induced calcite precipitation technology. Scientific Reports, 14(1), 23876. doi:10.1038/s41598-024-74170-5.
- Lai, H. J., Cui, M. J., Wu, S. F., Yang, Y., & Chu, J. (2021). Retarding effect of concentration of cementation solution on biocementation of soil. Acta Geotechnica, 16(5), 1457–1472. doi:10.1007/s11440-021-01149-1.
- Wang, Y., Chang, X., Zhang, G., Zeng, Z., Huang, X., Wang, M., & Ma, M. (2024). Pore structure of the mixed sedimentary reservoir of Permian Fengcheng Formation in the Hashan area, Junggar Basin. Scientific Reports, 14(1), 1–21. doi:10.1038/s41598-024-71646-2.
- Ge, J., Zhao, W., Wang, S., Hu, S., & Chen, G. (2024). Study on the fluidity of the pore-fracture binary system in a tight sandstone reservoir-NMR. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 10(1). doi:10.1007/s40948-024-00810-9.
- Gadhvi, M. S., Javia, B. M., Vyas, S. J., Patel, R., & Dudhagara, D. R. (2024). Bhargavaea beijingensis a promising tool for bio-cementation, soil improvement, and mercury removal. Scientific Reports, 14(1), 23976. doi:10.1038/s41598-024-75019-7.
- Mujah, D., Cheng, L., & Shahin, M. A. (2019). Microstructural and Geomechanical Study on Biocemented Sand for Optimization of MICP Process. Journal of Materials in Civil Engineering, 31(4). doi:10.1061/(asce)mt.1943-5533.0002660.
- ASTM D698-12(2021). (2021). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3). ASTM International, Pennsylvania, United States. doi:10.1520/D0698-12R21.
- ASTM D2487-17. (2020). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, Pennsylvania, United States. doi 10.1520/D2487-17.
- Dagliya, M., Satyam, N., Sharma, M., & Garg, A. (2022). Experimental study on mitigating wind erosion of calcareous desert sand using spray method for microbially induced calcium carbonate precipitation. Journal of Rock Mechanics and Geotechnical Engineering, 14(5), 1556–1567. doi:10.1016/j.jrmge.2021.12.008.
- [Liu, L., Liu, H., Stuedlein, A. W., Evans, T. M., & Xiao, Y. (2019). Strength, stiffness, and microstructure characteristics of biocemented calcareous sand. Canadian Geotechnical Journal, 56(10), 1502–1513. doi:10.1139/cgj-2018-0007.
- Mitchell, J. K., & Santamarina, J. C. (2005). Biological Considerations in Geotechnical Engineering. Journal of Geotechnical and Geoenvironmental Engineering, 131(10), 1222–1233. doi:10.1061/(asce)1090-0241(2005)131:10(1222).
- Chowdhury, R., Flentje, P., Bhattacharya, G. (2013). Geotechnics in the Twenty-First Century, Uncertainties and Other Challenges: With Particular Reference to Landslide Hazard and Risk Assessment. Proceedings of the International Symposium on Engineering under Uncertainty: Safety Assessment and Management (ISEUSAM - 2012). Springer, India. doi:10.1007/978-81-322-0757-3_2.
- Chu, J., Stabnikov, V., & Ivanov, V. (2012). Microbially Induced Calcium Carbonate Precipitation on Surface or in the Bulk of Soil. Geomicrobiology Journal, 29(6), 544–549. doi:10.1080/01490451.2011.592929.
- ASTM D2166-06. (2010). Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM International, Pennsylvania, United States doi:10.1520/D2166-06
- Choi, S.-G., Park, S.-S., Wu, S., & Chu, J. (2017). Methods for Calcium Carbonate Content Measurement of Biocemented Soils. Journal of Materials in Civil Engineering, 29(11). doi:10.1061/(asce)mt.1943-5533.0002064.
- Zeitouny, J., Lieske, W., Alimardani Lavasan, A., Heinz, E., Wichern, M., & Wichtmann, T. (2023). Impact of New Combined Treatment Method on the Mechanical Properties and Microstructure of MICP-Improved Sand. Geotechnics, 3(3), 661–685. doi:10.3390/geotechnics3030036.
- Al Qabany, A., Soga, K., & Santamarina, C. (2012). Factors Affecting Efficiency of Microbially Induced Calcite Precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 138(8), 992–1001. doi:10.1061/(asce)gt.1943-5606.0000666.
- Sharma, M., Satyam, N., & Reddy, K. R. (2021). Effect of freeze-thaw cycles on engineering properties of biocemented sand under different treatment conditions. Engineering Geology, 284, 106022. doi:10.1016/j.enggeo.2021.106022.
- Cui, M. J., Zheng, J. J., Zhang, R. J., Lai, H. J., & Zhang, J. (2017). Influence of cementation level on the strength behaviour of bio-cemented sand. Acta Geotechnica, 12(5), 971–986. doi:10.1007/s11440-017-0574-9.
- Sharma, M., & Satyam, N. (2021). Strength and durability of biocemented sands: Wetting-drying cycles, ageing effects, and liquefaction resistance. Geoderma, 402, 115359. doi:10.1016/j.geoderma.2021.115359.
- Chang, Z., Long, G., Xie, Y., & Zhou, J. L. (2022). Recycling sewage sludge ash and limestone for sustainable cementitious material production. Journal of Building Engineering, 49, 104035. doi:10.1016/j.jobe.2022.104035.
- Ahenkorah, I., Rahman, M. M., Karim, M. R., & Beecham, S. (2023). Unconfined compressive strength of MICP and EICP treated sands subjected to cycles of wetting-drying, freezing-thawing and elevated temperature: Experimental and EPR modelling. Journal of Rock Mechanics and Geotechnical Engineering, 15(5), 1226–1247. doi:10.1016/j.jrmge.2022.08.007.
- Wen, K., Li, Y., Liu, S., Bu, C., & Li, L. (2019). Development of an Improved Immersing Method to Enhance Microbial Induced Calcite Precipitation Treated Sandy Soil through Multiple Treatments in Low Cementation Media Concentration. Geotechnical and Geological Engineering, 37(2), 1015–1027. doi:10.1007/s10706-018-0669-6.
- Ahenkorah, I., Rahman, M. M., Karim, M. R., & Beecham, S. (2023). Characteristics of MICP and EICP-Treated sands in simple shear conditions: A benchmarking with the critical state of untreated sand. Geotechnique. doi:10.1680/jgeot.22.00329.
- Mahawish, A., Bouazza, A., & Gates, W. P. (2019). Factors affecting the bio-cementing process of coarse sand. Proceedings of the Institution of Civil Engineers: Ground Improvement, 172(1), 25–36. doi:10.1680/jgrim.17.00039.
- Zhao, Q., Li, L., Li, C., Li, M., Amini, F., & Zhang, H. (2014). Factors Affecting Improvement of Engineering Properties of MICP-Treated Soil Catalyzed by Bacteria and Urease. Journal of Materials in Civil Engineering, 26(12). doi:10.1061/(asce)mt.1943-5533.0001013.
|