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1. Introduction

Graph theory is a fundamental area of mathematics with applications
in various fields such as computer science, operations research, social
network analysis, and more. Understanding graphs and their properties
enables the analysis and modeling of complex relationships and systems.
A graph G consists in a pair G = (V,E) of two sets together with a map
i : E → V × V assigning to every e ∈ E a pair (u, v) of elements of
V . Elements of V are called vertices, elements of E are called edges. If
i(e) = (u, v), the vertices u and v are also called the endpoints of e [15].
Graphs provide a powerful framework for solving problems related to
connectivity, networks, optimization, and more [1].
A graph can be used to explain the network because it can show the
relationships between vertices at a suitable abstract level as a mathe-
matical structure [2].
Social networks are structures composed of individuals (or entities) con-
nected by various types of relationships, such as friendships, professional
collabora tions, family ties, etc. These networks can be represented as
graphs where vertices represent entities and edges represent relationships
between pairs of entities. Analyzing social networks involves studying
the patterns of connections and interactions between individuals to gain
insights into social structures, behavior, information flow, and influence
propagation. Social network analysis provides valuable insights into the
relationships, structures, and dynamics of social systems, offering a pow-
erful tool for studying complex interactions and behaviors in various
contexts [3].
Let G = (V,E) be a graph, and the set vertex is divided into the com-
munities C1, C2, ...., Ck so that Ci represents the community to which
the vertex vi belongs for 1 ≤ i ≤ k. The modularity measure of G is
defined as where Q is the modularity measure, A = [Ai,j ] is the edge
weight between vertices vi and vj , ki and kj are the degrees of vertices
vi and vj respectively, m is the total edge weight in the network, Ci and
Cj are the community assignments of vertices vi and vj respectively, and
δ(Ci, Cj) is the Kronecker delta function which equals 1 if Ci = Cj and
0 otherwise [4].

Q =
1

2m

∑
i,j

(Ai,j −
kikj
2m

)δ(Ci, Cj). (1.1)
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Modularity score is a specific numerical value calculated based on the
concept of modularity. The modularity score [13] of a community C

Q(C) =
∑

vi,vj∈C

i ̸=j

(Ai,j −
kikj
2m

). (1.2)

The cumulative modularity score [13] of a partition of the network into
p communities is the sum of the modularity scores of the individual
communities, defined as:

Q =

p∑
l=1

∑
vi,vj∈cl,i ̸=j

(Ai,j −
kikj
2m

). (1.3)

In graph theory, there are several operations and transformations that
are commonly employed to analyze and modifying graphs. These op-
erations can be used in various applications of graph theory, such as
network analysis, social network analysis, and computational biology,
among others [5]. Product graphs are utilized in various computer sci-
ence fields and applications such as distributed computing, network pro-
tocols, parallel computing, and communication networks. Understand-
ing the structure and properties of product graphs can aid in solving
combinatorial optimization problems efficiently [6]. On this basis, we
use the graph operations tool to study the modularity behavior in the
network.

2. Modularity of Networks

Newman’s modularity is a concept in network theory that measures
the strength of division of a network into modules or communities by
comparing the number of edges inside modules with the expected num-
ber of edges in a random network with the same vertices and degree dis-
tribution. This concept helps analyze the structure of complex networks
and understand the relationships between vertices in a network [7]. In
2004 [8], Newman introduced a quantitative measure called modularity
to measure the quality of community detection algorithms. Modularity
is a measure that helps to detect the strength of division of a network
into modules or communities [9]. The main idea of defining modularity
is that the edges within a community are more than the expected edges
in that community [9]. In essence, modularity measures the quality of
a division of a network into communities by comparing the number of
edges within communities to the expected number of such edges [10].
Modularity is typically calculated using the formula (eq1). The goal is
to find a partition that maximizes the modularity value, as high mod-
ularity suggests a well-defined community structure in the graph [11].
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In the mathematical field of graph theory, graph operations are actions
or transformations that can be applied to graphs to create new graphs
or modify existing ones. Some common graph operations include union,
intersection, products, composition and so on. In section (3), the mod-
ularity criteria of some graph operations are investigated. Products of
graphs provide a structured way to create new graphs from existing ones
by combining their vertex sets and edge sets. This construction can be
useful in designing and analyzing complex networks or systems.

3. Main result

In this section, we will examine the modularity of some specific graphs
and calculate the modularity value of graph operations.

Example 3.1. (1) Q(Pn) =
2m−1
2m ,

(2) Q(Kn) =
n−1
2 ,

(3) Q(K̄n) = 0.
The following results for paths and completes on n vertices and m

edges follow easily by direct calculations.

The G − v, removing the vertex (vertices) from the graph G and re-
moving all incident edges with the removed vertex. The G−e, removing
the edge only with it’s ends [14].

Theorem 3.2. Let G be a simple graph and v ∈ V (G) and e = uv ∈
E(G). The modularity value of G− v and G− e is equals to

QG−v = QG − k2v
2m

, (3.1)

and
QG−e = QG − kukv

2m
, (3.2)

respectively.

The union of two graphs G and H is a graph G, written by G∪H with
vertex set V (G)∪V (H) and the edge set E(G)∪E(H). The intersection
of two graphs G and H is a graph G, written by G ∩H with vertex set
V (G)∩V (H) and the edge set E(G)∩E(H). This fundamental concepts
has various applications in studying network structures, connectivity,
and relationships between different entities represented by vertices and
edges in graphs [14].

Theorem 3.3. Let G and H be two graphs. Then
• Q(G ∪H) ≥ (Q(G), Q(H)).
• Q(G ∩H) ≤ (Q(G), Q(H)).
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Proof. • Let G and H be two graphs, according to the definition of
union of two graphs, the number of vertices is equal to the union of
vertices of two graphs and the number of edges is equal to the union
of edges of two graphs, so the degree of vertices becomes larger in
the union state and according to the definition of modularity, the
value of modularity increases.

• Let G and H be two graphs, according to the definition of intersec-
tion two graphs, the number of vertices is equal to the intersection
of the vertices of the two graphs and the number of edges is equal
to the intersection of edges from the two graphs. Therefore, the
degree of the vertices in the intersection mode becomes smaller and
according to the definition of modularity, the value of modularity
decreases.

□

The Cartesian product G×H of two graphs G and H is a graph that
has a vertex set V (G)× V (H), where each vertex is a pair (u, v) with u
in V (G) and v in V (H). Two vertices (u1, v1) and (u2, v2) are adjacent
in G × H if and only if either u1 = u2 and v1v2 is an edge in H, or
u1u2 is an edge in G and v1 = v2. This product provides a mathemat-
ical tool for modeling and analyzing various systems in different fields
of computer science and mathematics. It is obviously that the Carte-
sian product G×H will have n1 × n2 vertices and n1m2 + n2m1 edges.
Additionally, the degree of a vertex in the Cartesian product graph is
the collected of the degrees of the corresponding vertices in the original
graphs [12].

Theorem 3.4. Let G and H be two simple graphs of oredr n1 and n2

also with the number of edges respectively m1 and m2. The modularity
value of Q(G×H) is equals to

Q(G×H) =
1

n1m2 +m1n2
(n1m2Q(G) + n2m1Q(H) + 2m1m2).

Proof. Q(G×H) =
∑

(i,i′)(j,j′)
i ̸=j,i′ ̸=j′

(((A⊗ In2) + (In1 ⊗A′))− k(i,i′)k(j,j′)
2m ).

According to the article [12] the adjacency matrix of the product
G×H of order n×m is equal to ((A⊗ In2)+ (In1 ⊗A′)) and the degree
of a vertex in the Cartesian product graph is the collected of the degrees
of the corresponding vertices in graphs G and H and the edges is equal
to m2n1 + n1m2. Therefore, as much m2n1 + n1m2 positive score as
n(n−1)/2− (m2n1+n1m2) negative score is assigned to the modularity
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of Cartesian product.

Q=
∑

(i,i′)(j,j′)
i ̸=j,i′ ̸=j′

(((A⊗ In2) + (In1 ⊗A′))− (ki+ki′ )(kj+kj′ )

2m )

=
∑

(i,i′)(j,j′)
i̸=j,i′ ̸=j′

(((A⊗ In2) + (In1 ⊗A′))− (kikj+kikj′+ki′kj+ki′kj′ )

2(m2n1+n1m2)
)

= 1
n1m2+m1n2

(n1m2(
∑
i,j
i ̸=j

A− kikj
2m1

) + n2m1(
∑
i′,j′
i′ ̸=j′

A′ − ki′kj′
2m2

) + 2m1m2).

□

The Tensor product G⊗H of two graphs G and H is a graph that has
a vertex set V (G) × V (H), where each vertex is a pair (u, v) with u in
V (G) and v in V (H). Two vertices (u1, v1) and (u2, v2) are adjacent in
G×H if and only if either u1u2 is an edge in G and v1v2 is an edge in H.
This product provides a mathematical tool for modeling and analyzing
various systems in different fields of computer science and mathematics.
It is obviously that the Tensor product G⊗H will have n1 × n2 vertices
and 2m1m2 edges. Additionally, the degree of a vertex in the Tensor
product graph is the product of the degrees of the corresponding vertices
in the original graphs [12].

Theorem 3.5. Let G and H be two simple graphs of oredr n1 and n2

also with the number of edges respectively m1 and m2. The modularity
value of Q(G⊗H) is equals to

Q(G⊗H) = 2Q(G)Q(H).

Proof. Q(G⊗H) =
∑

(i,i′)(j,j′)
i ̸=j,i′ ̸=j′

(A⊗A′ − k(i,i′)k(j,j′)
2m ).

According to the article [12] on the adjacency matrix of the product
G⊗H of order n×m is equal to A⊗A′ and the degree of each vertex of
the tensor product is equal to the product of the degrees of the vertices
of the graphs G and H and the edges is equal to 2m1m2.
Therefore, as much 2m1m2 positive score as n(n− 1)/2− 2m1m2 nega-
tive score is assigned to the modularity of tensor multiplication.

Q=
∑

(i,i′)(j,j′)
i̸=j,i′ ̸=j′

(A⊗A′ − kiki′kjkj′
4m1m2

) = 2(
∑
i,j
i ̸=j

A− kikj
2m1

)(
∑
i′,j′
i′ ̸=j′

A′ − ki′kj′
2m2

). □
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The Symmetric difference G⊕H of two graphs G and H is the graph
with vertex set V (G⊕H) = V (G)× V (H) and two vertices (u1, v1) and
(u2, v2) are adjacent in G⊕H if and only if either u1u2 is an edge in G
or v1v2 is an edge in H but not both. The number of edges of this graph
operation is equals to m1n

2
2+m2n

2
1− 4m1m2 and the degree of arbitrary

vertex (u, v) of G⊕H is equals to n2ku + n1kv − 2kukv [12].

Theorem 3.6. Let G and H be two simple graphs of oredr n1 and n2

also with the number of edges respectively m1 and m2. The modularity
value of Q(G⊕H) is equals to

Q(G⊕H) =
1

(m1n2
2 +m2n2

1 − 4m1m2)
((m1n1n

2
2 − 8m1m2n2)Q(G)

+ (m2n2n
2
1 − 8m1n1m2)Q(H) + 16m1m2Q(G)Q(H) + 2m1m2n1n2).

Proof. Q(G⊕H) =
∑

(i,i′)(j,j′)
i ̸=j,i′ ̸=j′

((A⊕A′ − k(i,i′)k(j,j′)
2m ).

According to the article [12] on the adjacency matrix of the product
G ⊕ H of order n × m is equal to A ⊕ A′ and the degree of arbitrary
vertex (u, v) of G⊕H is equals to n2ku + n1kv − 2kukv and the edges is
equal to m1n

2
2 +m2n

2
1 − 4m1m2.

Therefore, as much m1n
2
2+m2n

2
1−4m1m2 positive score as n(n−1)/2−

(m1n
2
2+m2n

2
1− 4m1m2) negative score is assigned to the modularity of

Symmetric difference.

Q =
∑

(i,i′)(j,j′)
i̸=j,i′ ̸=j′

(A⊕A′ − (n2ki+n1ki′−2kiki′ )(n2kj+n1kj′−2kjkj′ )

m1n2
2+m2n2

1−4m1m2
)

= 1
(m1n2

2+m2n2
1−4m1m2)

((m1n1n
2
2 − 8m1m2n2)(

∑
i,j
i̸=j

A− kikj
2m1

)

+(m2n2n
2
1 − 8m1n1m2)(

∑
i′,j′
i′ ̸=j′

A′ − ki′kj′
2m2

) + 2m1m2n1n2

+16m1m2(
∑
i,j
i̸=j

A− kikj
2m1

)(
∑
i′,j′
i′ ̸=j′

(A′ − ki′kj′
2m2

).

□

The G[H] of two graphs G and H is the graph with vertex set V (G[H]) =
V (G)×V (H) and two vertices (u1, v1) and (u2, v2) are adjacent in G[H]
if and only if either u1u2 is an edge in G or v1v2 is an edge in H
and u1 = u2. The number of edges of this graph operation is equals to
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n2
2m1 +m2n1 and the degree of arbitrary vertex (u, v) of G[H] is equals

to n2ku + kv [12].

Theorem 3.7. Let G and H be two simple graphs of oredr n1 and n2

also with the number of edges respectively m1 and m2. The modularity
value of Q(G[H]) is equals to

Q(G[H]) =
1

(n2
2m1 +m2n1)

(n3
2m1Q(G) + n1m2Q(H) + 2n2m1m2).

Proof. Q(G[H]) =
∑

(i,i′)(j,j′)
i̸=j,i′ ̸=j′

(A[A′]− k(i,i′)k(j,j′)
2m ).

According [12] the adjacency matrix of the product G[H] of order n×m
is equal to A[A′] and the degree of each vertex of the product is equal
to the degree of arbitrary vertex (u, v) of G[H] is equals to n2ku + kv
and the edges is equal to n2

2m1 +m2n1.
Therefore, as much n2

2m1+m2n1 positive score as n(n−1)/2− (n2
2m1+

m2n1) negative score is assigned to the modularity of tensor multiplica-
tion.

Q =
∑

(i,i′)(j,j′)
i ̸=j,i′ ̸=j′

(A[A′])− (n2ki+ki′ )(n1kj+kj′ )

2(n2
2m1+m2n1)

= 1
(n2

2m1+m2n1)
(n3

2m1(
∑
i,j
i ̸=j

A− kikj
2m1

) + n1m2(
∑
i′,j′
i′ ̸=j′

A′ − ki′kj′
2m2

) + 2n2m1m2).

□

Theorem 3.8. Let G and H be two graphs of order n1 and n2 then

Q(G⊗H) ≤ (n1 − 1)(n2 − 1)

2
, (3.3)

equality holds if and only if G and H are isomorphic to Kn.
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Proof.

Q(G⊗H) =
∑

(i,i′)(j,j′)
i ̸=j,i′ ̸=j′

(A(i,i′)(j,j′) −
k(i,i′)k(j,j′)

4m1m2
)

=
∑

vivj∈E(G) and vi′vj′∈E(H)

(1−
kiki′kjkj′

4m1m2
)

+
∑

vivj /∈E(G) and vi′vj′∈E(H)

(0−
kiki′kjkj′

4m1m2
)

+
∑

vivj∈E(G) and vi′vj′ /∈E(H)

(0−
kiki′kjkj′

4m1m2
)

+
∑

vivj /∈E(G) or vi′vj′ /∈E(H)

(0−
kiki′kjkj′

4m1m2
)

≤ 2(
n1 − 1

2

n2 − 1

2
) =

(n1 − 1)(n2 − 1)

2
.

□

If n1 = n2 then

Q(G⊗H) ≤ (n− 1)2

2
. (3.4)

Theorem 3.9. Let G and H be two graphs of order n1 and n2 then

Q(G×H) ≤ 1

(n1 − 1) + (n2 − 1)
((n1−1)2+(n2−1)2+((n1−1)(n2−1))),

(3.5)
equality holds if and only if G and H are isomorphic to Kn.
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Proof.

Q(G×H) =
∑

(i,i′)(j,j′)
i ̸=j,i′ ̸=j′

(A(i,i′)(j,j′) −
k(i,i′)k(j,j′)

2m1n2 + 2n1m2
)

=
∑

vivj∈E(G) and vi′=vj′

(1−
(ki + ki′)(kj + kj′)

2m1n2 + 2n1m2
)

+
∑

vi=vj and vi′vj′∈E(H)

(1−
(ki + ki′)(kj + kj′)

2m1n2 + 2n1m2
)

+
∑

vi ̸=vj or vi′vj′ /∈E(H)

(0−
(kikj + kikj′ + ki′kj + ki′kj′)

2m1n2 + 2n1m2
)

+
∑

vivj /∈E(G) or vi′ ̸=vj′

(0−
(kikj + kikj′ + ki′kj + ki′kj′)

2m1n2 + 2n1m2
)

≤ 1

(n1 − 1) + (n2 − 1)
((n1 − 1)2 + (n2 − 1)2 + ((n1 − 1)(n2 − 1))).

□

If n1 = n2 then

Q(G×H) ≤ 3(n− 1)

2
. (3.6)

Theorem 3.10. Let G and H be two graphs of order n1 and n2 then

Q(G[H]) ≤ n1n2 − 1

2
. (3.7)
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Proof.

Q(G[H]) =
∑

(i,i′)(j,j′)
i̸=j,i′ ̸=j′

(
A(i,i′)(j,j′) −

(nki + ki′)(nkj + kj′)

2(n2m1 +m2n)

)

=
∑

vivj∈E(G)

(
1−

(nki + ki′)(nkj + kj′)

2(n2m1 +m2n)

)
+

∑
vi=vj and vi′vj′∈E(H)

(
1−

(nki + ki′)(nkj + kj′)

2(n2m1 +m2n)

)
+

∑
vivj /∈E(G) or vi ̸=vj

(
0−

(nki + ki′)(nkj + kj′)

2(n2m1 +m2n)

)
+

∑
vi′vj′ /∈E(H)

(
0−

(nki + ki′)(nkj + kj′)

2(n2m1 +m2n)

)
≤ 1

2(n2(n1 − 1) + (n2 − 1))
((n2(n1 − 1)) + (n2 − 1))2 =

n1n2 − 1

2
.

□

If n1 = n2 then

Q(G[H]) ≤ n2 − 1

2
. (3.8)

Theorem 3.11. Let G and H be two graphs of order n then

Q(G⊕H) ≥ n− 1. (3.9)
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Proof.

Q(G⊕H) =
∑

(i,i′)(j,j′)
i ̸=j,i′ ̸=j′

(A(i,i′)(j,j′) −
(nki + nki′ − 2kiki′)(nkj + nkj′ − 2kjkj′)

2(n2m1 + n2m2 − 4m1m2)
)

=
∑

vivj∈E(G)

(1−
(nki + nki′ − 2kiki′)(nkj + nkj′ − 2kjkj′)

2(n2m1 + n2m2 − 4m1m2)

+
∑

vi′vj′∈E(H)

(1−
(nki + nki′ − 2kiki′)(nkj + nkj′ − 2kjkj′)

2(n2m1 + n2m2 − 4m1m2)
)

+
∑

vivj∈E(G) and vi′vj′∈E(H)

(0−
(nki + nki′ − 2kiki′)(nkj + nkj′ − 2kjkj′)

2(n2m1 + n2m2 − 4m1m2)

+
∑

vivj /∈E(G) and vi′vj′ /∈E(H)

(0−
(nki + nki′ − 2kiki′)(nkj + nkj′ − 2kjkj′)

2(n2m1 + n2m2 − 4m1m2)

≥ n− 1.

□

Corollary 3.12. Let G be a graph of order n and H = K2, then the
modularity of the Tensor product is equal to

Q(G⊗H) = Q(G).
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