Caspian Journal of Mathematical Sciences (CJMS) University of Mazandaran, Iran http://cjms.journals.umz.ac.ir https://doi.org/10.22080/cjms.2025.27972.1725 Caspian J Math Sci. 14(1)(2025), 15-29 (RESEARCH ARTICLE)

Radical formula for L-submodules

Razieh Mahjoob¹ and Shaheen Qiami² ¹ Department of Mathematics, Semnan University, Semnan, Iran mahjoob@semnan.ac.ir ² Department of Mathematics, Semnan University, Semnan, Iran sh.ghiami@semnan.ac.ir

ABSTRACT. Let R be a commutative ring with non-zero identity and M be a unitary R-module. In this paper, we introduce the concepts of radical and E-radical (envelope) of L-submodules and investigate their properties. Additionally, we define L-radical formula and demonstrate that, under specific conditions, the L-radical formula can be derived using the concept of the envelope of an Lsubmodule.

Keywords: Prime L-submodules, Radical of L-submodules, Envelope of L-submodules.

2000 Mathematics subject classification: 08A72

1. INTRODUCTION

Throughout this paper, R denotes a commutative ring with identity. Mis assumed to be a unitary *R*-module. For each ideal I of *R*, the radical of I defined as the intersection of all prime ideals containing I, has the characterization $\sqrt{I} = \{r \in R | r^n \in I, \text{ for some } n \in \mathbb{Z}^+\}$. A proper

15

 $^{^{1}}$ Corresponding author: mahjoob@semnan.ac.ir

Received: 03 November 2024 Revised: 03 November 2024 Accepted: 18 January 2025

How to Cite: Mahjoob, Razieh; Qiami, Shaheen. Radical formula for L-submodules, Casp.J. Math. Sci., 14(1)(2025), 15-29.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2025 by University of Mazandaran. Subbmited for possible open access publication under the terms and conditions of the Creative Commons Attribution(CC BY) license(https://craetivecommons.org/licenses/by/4.0/)

submodule N of an R-module M is said to be prime if $ra \in N, a \notin N$ implies that $rM \subseteq N$. The concept of radical of a submodule N of an R-module M was defined in [3] as the intersection of all prime submodules of M containing N and is denoted by rad(N). If there does not exist any prime submodule of M containing N, then it is defined that rad(N) = M. N is called radical submodule if rad(N) = N.

Zadeh in [15], introduced the notion of a fuzzy subset μ of a nonempty set X as a function from X to unit real interval I = [0, 1]. Goguen in [4] replaced I with a complete lattice L in the definition of fuzzy sets and introduced the notion of L-fuzzy sets. Rosenfeld introduced the notion of fuzzy groups [12] and fuzzy submodules of M over R were first introduced by Negoita and Ralescu [10]. Pan in [11] studied fuzzy finitely generated modules and fuzzy quotient modules (also see [13]). In the last few years, a considerable amount of work has been done on fuzzy ideals in general and prime fuzzy ideals. $\sqrt{\mu}$ and $\Re(\mu)$ were defined for any L-ideals of a ring R by Malik and Mordeson in [7] and [8] respectively, these were the generalization of the concept of the radical of an ideal \sqrt{I} . The notion of prime L-submodules of a module over a commutative ring with identity say R, where L is a complete lattice, was introduced by Ameri and Mahjoob in [1]. They also introduced the notion of the radical of an L-submodule μ as the intersection of all prime L-submodules of M containing μ and it is denoted by $Rad(\mu)$. In this paper we investigate some basic properties of $Rad(\mu)$, and also we introduce the notion of the envelope of an L-submodule μ of an Rmodule M denoted by $E(\mu)$ in Sec. 4. Our definition is a generalization of the notion of the ordinary envelope of an *R*-module which appears in the current literature on algebra (for example refer to [3] and [5]). In the end, we will establish relationships between $Rad(\mu)$ and $E(\mu)$ in Section 5.

2. Preliminaries

In this section, to make it easier to follow, we recall some definitions and theorems from the book [9], which we need them for development of our paper.

L denotes a complete lattice. By an *L*-subset μ of a non-empty set *X*, we mean a function μ from *X* to *L*. L^X denotes the set of all *L*-subsets of *X*. In particular, if L = [0, 1], the L-subsets of *X* are called fuzzy subsets and are denoted by F^X . Let *A* be a subset of *X* and $y \in L$. Define $y_A \in L^X$ as follows:

$$y_A(x) = \begin{cases} y & if \ x \in A \\ 0 & otherwise \end{cases}$$

In special cases if $A = \{a\}$, we denote $y_{\{a\}}$ by y_a , and it is called an *L*-point of *X*.

For $\mu, \nu \in L^X$, we say that μ is contained in ν and we write $\mu \subseteq \nu$ if $\mu(x) \leq \nu(x)$, in particular $x_a \in \mu$ means $a \leq \mu(x)$ for all $x \in X$ and $a \in L$. For $\mu, \nu \in L^M$, the intersection and union, $\mu \cup \nu, \mu \cap \nu \in L^X$, are defined by

$$(\mu \cup \nu)(x) = \mu(x) \lor \nu(x)$$
 and $(\mu \cap \nu)(x) = \mu(x) \land \nu(x)$ for all $x \in X$.

Also for $\mu \in L^X$, $a \in L$, μ_a is defined by,

$$\mu_a = \{ x \in M | \mu(x) \ge a \},\$$

where μ_a is called *a*-cut or *a*-level subset of μ . Let f be a mapping from X into Y and let $\mu \in L^X$, $\nu \in L^Y$. Then $f(\mu) \in L^Y$ and $f^{-1}(\nu) \in L^X$ are defined as follows:

$$f(\mu)(y) = \begin{cases} \bigvee \{\mu(x) | x \in f^{-1}(y)\} & \text{if } f^{-1}(y) \neq \emptyset \\ 0 & \text{otherwise} \end{cases}$$

and

$$f^{-1}(\nu)(x) = \nu(f(x)), \ \forall x \in X.$$

This is the extension principle.

Let M and N be R-modules and $f: M \to N$ be an R-module homomorphism. $\mu \in L^M$ is called f-invariant if f(x) = f(y), implies that $\mu(x) = \mu(y)$ for all $x, y \in M$.

Definition 2.1. Let μ be an L-subset of R. The radical of μ is denoted by $\Re(\mu)(x) = \bigvee_{n \in \mathbb{N}} \mu(x^n), \ \forall x \in \mathbb{R}.$

Definition 2.2. Let $c \in L \setminus \{1\}$. *c* is called a prime element of *L* if $a \wedge b \leq c$, implies that $a \leq c$ or $b \leq c$, for all $a, b \in L$.

Definition 2.3. Let $\mu \in L^R$. Then μ is called the *L*-ideal of *R* if for every $x, y \in R$ the following conditions are satisfied: (1) $\mu(x - y) \ge \mu(x) \land \mu(y)$; (2) $\mu(xy) \ge \mu(x) \lor \mu(y)$.

The set of all L-ideals of R is denoted by LI(R).

Definition 2.4. Let $\mu, \nu \in LI(R)$. We define $\mu\nu \in LI(R)$ as follows:

$$\mu\nu(x) = \bigvee \{\mu(y) \land \nu(z) \mid y, z \in R, x = yz\}, \ \forall x \in R$$

Definition 2.5. Let R be a ring and $\zeta \in LI(R)$. Then ζ is called prime L-ideal of R if ζ is non-constant and for every $\mu, \nu \in LI(R), \mu\nu \subseteq \zeta$ implies that $\mu \subseteq \zeta$ or $\nu \subseteq \zeta$.

Theorem 2.6. Let $\zeta \in L^R$. Then ζ is prime L-ideal of R if only if $\zeta(0) = 1$ and $\zeta = 1_{\zeta_*} \cup c_R$ such that ζ_* is a prime ideal of R and c is a prime element of $L.\Box$

Definition 2.7. An *L*- submodule of *M* is an *L*-subset $\mu \in L^M$ such that:

 $\begin{array}{l} (1)\mu(0) = 1;\\ (2)\mu(rx) \geq \mu(x) \ for \ all \ r \in R \ and \ x \in M \ and \\ (3)\mu(x+y) \geq \mu(x) \wedge \mu(y) \ for \ all \ x, y \in M. \end{array}$ The set of all L-submodules of M is denoted by L(M).

Definition 2.8. Let $\mu \in L^M$. Then $\mu \in L(M)$ if and only if each nonempty level subset of μ is a submodule of M. Moreover if $\mu \in L(M)$ then

$$\mu_* = \{ x \in M \mid \mu(x) = 1 \}$$

is a submodule of M.

Let $\zeta \in L^R$ and $\mu \in L^M$. Define $\zeta \cdot \mu \in L^M$ as follows:

$$(\zeta \cdot \mu)(x) = \bigvee \{ \zeta(r) \land \mu(y) \mid r \in R, y \in M, ry = x \} \text{ for all } x \in M.$$

For $\mu, \nu \in L^M$ and $\zeta \in L^R$, define $(\mu : \nu) \in L^R$ and $(\mu : \zeta) \in L^M$ as follows:

$$(\mu:\nu) = \bigcup \{\eta \in L^R \mid \eta \cdot \nu \subseteq \mu\},\$$
$$(\mu:\zeta) = \bigcup \{\nu \in L^M \mid \zeta \cdot \nu \subseteq \mu\}.$$

In [9] it was proved that if $\nu \in L^M$, $\mu \in L(M)$ and $\zeta \in LI(R)$ then

$$(\mu:\nu) = \bigcup \{\eta \in LI(R) \mid \eta \cdot \nu \subseteq \mu\},$$
$$(\mu:\zeta) = \bigcup \{\nu \in L(M) \mid \zeta \cdot \nu \subseteq \mu\}.$$

Theorem 2.9. Let $c \in L$ and N be a submodule of M. Then

$$(1_N \cup c_M) : 1_M = 1_{(N:M)} \cup c_R.$$

We recall that an *L*-submodule μ of *M* is called prime if for $\zeta \in LI(R)$ and $\nu \in L(M)$ such that $\zeta \cdot \nu \subseteq \mu$, then either $\nu \subseteq \mu$ or $\zeta \subseteq (\mu : 1_M)([1])$. By *L*-Spec(M), we denote the set of all prime *L*-submodules of *M*.

Theorem 2.10. [1] Let μ be an L-submodule of M. Then μ is prime if and only if $\mu = 1_{\mu_*} \cup c_M$ such that μ_* is a prime submodule of M and c is a prime element of L.

As we have mentioned, the radical of an L-submodule $\mu \in L(M)$ is the intersection of all prime L-submodules ν of M containing μ and denoted by $Rad(\mu)$. In [3], the notion of the envelope of a submodule N of M, E(N), is defined to be the set

$$\{x \in M \mid x = ry, r^n y \in N, \text{ for some } r \in R, y \in M \text{ and } n \in \mathbb{N}\}$$

We are going to generalize this notion to L-submodules of M and, we will investigate some basic properties of $Rad(\mu)$ and $E(\mu)$ and establish relationship between $Rad(\mu)$ and $E(\mu)$ by using of notions of radical L-submodule and L-radical formula.

3. On radical of L-submodules

The notion of radical of an L-submodule μ of M is introduced in [1], now we recall it here and study some new results.

Definition 3.1. Let $\mu \in L(M)$, and \mathcal{P}_{μ} be the family of all prime *L*-submodules ν of *M* which contain μ . The *L*-radical of μ denoted by $Rad(\mu)$ is defined by

$$Rad(\mu) = \begin{cases} \cap \{\nu \mid \nu \in \mathcal{P}_{\mu}\} & \text{if } \mathcal{P}_{\mu} \neq \varnothing \\ 1_{M} & \text{if } \mathcal{P}_{\mu} = \varnothing \end{cases}$$

The concept of radical of an L-ideal was introduced in [9], and several results were investigated. Here we generalize their results to Lsubmodules. The proofs are almost the same as L-ideals.

Theorem 3.2. Let μ be a constant L-submodule of M, then

$$Rad(\mu) = 1_M$$

Theorem 3.3. Let μ be a non-constant L-submodule of M. Then (1) $Rad(\mu)(0) = \mu(0)$; (2) $Rad(\mu_*) \subseteq Rad(\mu)_*$; (3) $Rad(\mu)(x) = 1, \forall x \in Rad(\mu)_*$; (4) $\mu \subseteq Rad(\mu)$; (5) $Rad(\mu \cap \nu) \subseteq Rad(\mu) \cap Rad(\nu)$; (6) $Rad(Rad(\mu)) = Rad(\mu)$. **Proposition 3.4.** Let M be an R-module and μ_i be an L-submodule of M, for each $i \in I$. Then (i) $Rad(\bigcap_{i \in I} \mu_i) \subseteq \bigcap_{i \in I} Rad(\mu_i) = Rad(\bigcap_{i \in I} Rad(\mu_i))$; (ii) $\sum_{i \in I} Rad(\mu_i) \subseteq Rad(\sum_{i \in I} \mu_i) = Rad(\sum_{i \in I} Rad(\mu_i))$. **Proof.**(i) $\bigcap_{i \in I} \mu_i$, for all $i \in I$, so $Rad(\bigcap_{i \in I} \mu_i) \subseteq \bigcap_{i \in I} Rad(\mu_i)$

$$Rad(\bigcap_{i\in I}\mu_i)\subseteq \bigcap_{i\in I}Rad(\mu_i)\subseteq Rad(\bigcap_{i\in I}Rad(\mu_i))$$

Hence
$$Rad(\bigcap_{i \in I} \mu_i) \subseteq \bigcap_{i \in I} Rad(\mu_i) = Rad(\bigcap_{i \in I} Rad(\mu_i)).$$

 $(ii)\mu_i \subseteq \sum_{i \in I} \mu_i, \text{ so } \mu_i \subseteq Rad(\mu_i) \subseteq Rad(\sum_{i \in I} \mu_i) \text{ for all } i \in I \text{ and } \sum_{i \in I} \mu_i \subseteq \sum_{i \in I} Rad(\mu_i) \subseteq Rad(\sum_{i \in I} \mu_i).$ Hence
 $Rad(\sum_{i \in I} \mu_i) \subseteq Rad(\sum_{i \in I} Rad(\mu_i)) \subseteq Rad(Rad(\sum_{i \in I} \mu_i)) = Rad(\sum_{i \in I} \mu_i).$

Lemma 3.5. Let L be a dense chain. Then $Rad(\mu)_a \subseteq rad(\mu_a)$ for each $a \in L$.

Proof. Let P be a prime submodule of M containing μ_a , and $\nu \in L(M)$ is defined by $\nu(x) = 1$ if $x \in P$ and $\nu(x) = b$ if $x \notin P$ that $a < b \in L$. Then $\nu \in \mathcal{P}_{\mu}$ and $\nu_a = P$, so $Rad(\mu)_a \subseteq rad(\mu_a).\square$ From the previous lemma, we can see for $\mu \in L(M)$; $Rad(\mu)_* \subseteq rad(\mu_*)$, and the following example shows that in general, $Rad(\mu_*) \neq Rad(\mu)_*$.

Example 3.6. ([9]) Consider $R = M = \mathbb{Z}$ and let $P_n = \langle 2^n \rangle$ and $P = \cap P_n$. Let

$$\mu(x) = \begin{cases} 1 & \text{if } x \in P, \\ 1 - \frac{1}{i_x} & \text{if } x \notin P \text{ and } i_x \text{ is the smallest } i \text{ such that } x \notin P_i. \end{cases}$$
Then $\operatorname{Rad}(\mu_i) = \{0\}$ and $(\operatorname{Rad}\mu_i) = \langle 2 \rangle$, whis shows that $\operatorname{Rad}(\mu_i) \neq \langle 0 \rangle$.

Then $Rad(\mu_*) = \{0\}$ and $(Rad\mu)_* = \langle 2 \rangle$, whis shows that $Rad(\mu_*) \neq (Rad\mu)_*.\square$

In the last example, we note that $\forall \{\mu(x) \mid x \notin Rad(\mu_*)\} = \mu(0)$.

Theorem 3.7. Let μ be a non-constant L-submodule of M and let $\vee \{\mu(x) \mid x \notin Rad(\mu_*)\} = a < \mu(0)$ and a be prime. Then $Rad(\mu_*) = Rad(\mu)_*$.

As mentioned in Theorem 3.3, it is not always true for L-submodules μ and ν that $Rad(\mu) \cap Rad(\nu) = Rad(\mu \cap \nu)$. Now we investigate sufficient conditions on L-submodules μ and ν which will guarantee that

$$Rad(\mu) \cap Rad(\nu) = Rad(\mu \cap \nu). \ (*)$$

It is quite simple to show that (*) holds if μ and ν are prime or $\mu \subseteq \nu$.

Definition 3.8. We say that an L-submodule μ of M is a radical L-submodule if $Rad(\mu) = \mu$.

Theorem 3.9. Let μ and ν be L-submodules of an R-module M. Then $\mu \cap \nu = Rad(\mu) \cap Rad(\nu)$ if and only if the following conditions hold: (i) $\mu \cap \nu$ is radical;

(*ii*) $Rad(\mu) \cap Rad(\nu) = Rad(\mu \cap \nu)$.

Proof. Suppose that $\mu \cap \nu = Rad(\mu) \cap Rad(\nu)$. Then

 $Rad(\mu) \cap Rad(\nu) \subseteq \mu \cap \nu \subseteq Rad(\mu \cap \nu).$

So we can conclude that,

 $Rad(\mu) \cap Rad(\nu) = Rad(\mu \cap \nu).$

By (i), $\mu \cap \nu = Rad(\mu \cap \nu) = Rad(\mu) \cap Rad(\nu)$. The converse is immediate.

Example 3.10. Let N and K be prime submodules of an R-module M and c be a prime element of the complete lattice L. Put $\mu = 1_N \cup c_M$ and $\nu = 1_K \cup c_M$. Then by Theorem 2.10, μ and ν are prime L-submodules and so by last Theorem $Rad(\mu \cap \nu) = Rad(\mu) \cap Rad(\nu).\square$

Example 3.11. Let $R = \mathbb{Z}$, $M = \mathbb{Z} \times \mathbb{Z}$, $N = \langle (2,3) \rangle$ and $K = \langle (4,0), (0,1) \rangle$. It is shown in [6] that N is prime submodule and $rad(K) = \langle (2,0), (0,1) \rangle$. Also $N \cap K = \langle (4,6) \rangle$ which is a radical submodule, and $rad(N) \cap rad(K) = \langle (2,3) \rangle$. Suppose that c is a prime element of a complete lattice L. Consider $\mu = 1_N \cup c_M$ and $\nu = 1_K \cup c_M$. Then

$$Rad(\mu)(2,3) = \bigwedge \{\xi(2,3) | \xi \in \mathcal{P}_{\mu}\} = 1,$$

and

$$Rad(\nu)(2,3) = \bigwedge \{\zeta(2,3) | \zeta \in \mathcal{P}_{\nu}\} = 1$$

since $(2,3) \in rad(k) \subseteq \zeta_*$ for each $\zeta \in \mathcal{P}_{\nu}$.

Also we have $\bigcap_{\eta \in \mathcal{P}_{\mu \cap \nu}} (\eta)_* = rad(N \cap K)$, since if there is a prime sub-

module P of M containing $N \cap K$, then $(1_P \cup c_M) \in \mathcal{P}_{\mu \cap \nu}$, and so

$$Rad(\mu \cap \nu)(2,3) = \bigwedge \{\eta(2,3) | \eta \in \mathcal{P}_{(\mu \cap \nu)} \} < 1$$

because if $(2,3) \in \eta_*$ for every $\eta \in \mathcal{P}_{\mu \cap \nu}$, then $(2,3) \in \bigcap(\eta)_* = rad(N \cap K) = N \cap K$, that is a contradiction.

If M is a finitely generated R-module, then every proper submodule of M contained in a maximal submodule of M. Further, since every maximal submodule of M is prime, thus every proper submodule of Mis contained in a prime submodule.

If we adapt the proof of [9, Lemma 3.7.7], then we get the following lemma.

Lemma 3.12. Let M be a finitely generated R-module, L be a dense chain and ξ be a proper L-submodule of M. Then there exists at least a prime L-submodule of M containing ξ .

Theorem 3.13. Let M be a finitely generated R-module, L be a dense chain, and μ , ν be L-submodules of M. Then $Rad(\mu) + Rad(\nu) = 1_M$ if and only if $\mu + \nu = 1_M$.

Proof. Since $\mu \subseteq Rad(\mu)$ and $\nu \subseteq Rad(\nu)$, $\mu + \nu = 1_M$ implies that $Rad(\mu) + Rad(\nu) = 1_M$. Conversely, assume that $Rad(\mu) + Rad(\nu) = 1_M$ and suppose that $\mu + \nu \neq 1_M$. Since M is finitely generated, there exists a prime L-submodule η such that $\mu + \nu \subseteq \eta$. Hence $Rad(\mu) \subseteq \eta$ and $Rad(\nu) \subseteq \eta$, so $Rad(\mu) + Rad(\nu) \subseteq \eta$, contradicting the assumption. \Box

Definition 3.14. [9]. Let $\{\mu_{\alpha} | \alpha \in \Omega\}$ be a collection of finite-valued L-ideal of R such that $\mu_{\alpha}(0) = \mu_{\beta}(0)$, for all $\alpha, \beta \in \Omega$. Then the μ_{α} are said to be pairwise comaximal if $\mu_{\alpha} \neq a_{R}, a = \mu(0), \forall \alpha \in \Omega$ and $\mu_{\alpha} + \mu_{\beta} = a_{R} \forall \alpha, \beta \in \Omega, \alpha \neq \beta$.

Lemma 3.15. Let $\mu_1, ..., \mu_n$ be L-submodules of M such that for $i = 1, ..., n, (\mu_i : 1_M)$ are pairwise comaximal. Consider a prime L-submodule ν of M containing $\mu_1 \cap \mu_2 \cap ... \cap \mu_n$ then there is exactly one $i \in \{1, 2, ..., n\}$ such that $\mu_i \subseteq \nu$

Before proof of the lemma, we mention a result about L-ideals.

Lemma 3.16. Let $\mu_1, \mu_2, ..., \mu_n$ be *L*-ideals and suppose that μ be a prime *L*-ideal of *R* containing $\bigcap_{i=1}^{n} \mu_i$. Then $\mu_i \subseteq \mu$ for some i = 1, 2, ..., n.

Proof. Let $\mu_i \not\subseteq \mu$ for all *i*. Then there exists x_i in M such that $\mu_i(x_i) \notin \mu(x_i)$ for i = 1, 2, ..., n. Thus $x_i \notin \mu_*$ and $\mu_i(x_i) \notin c$, for i = 1, ..., n. So $\prod_{i=1}^n x_i \notin \mu_*$, since μ_* is a prime ideal of R by Theorem 2.6. But

But

$$\mu_1(x_1) \wedge \mu_2(x_2) \wedge \dots \wedge \mu_n(x_n) \leq (\bigcap_{i=1}^n \mu_i)(\prod_{i=1}^n x_i) \leq \mu(\prod_{i=1}^n x_i) = c,$$

this is a contradiction since c is a prime element of $L.\Box$ **Proof of Lemma 3.15** If ν is a prime L-submodule such that

$$\mu_1 \cap, ..., \cap \mu_n \subseteq \nu,$$

then

$$(\mu_1:1_M)\cap, ..., \cap(\mu_n:1_M) \subseteq (\nu:1_M)$$

Since $(\nu : 1_M)$ is a prime *L*-ideal, wlog we have $(\mu_1 : 1_M) \subseteq (\nu : 1_M)$. If $(\mu_i : 1_M) \subseteq (\nu : 1_M)$ for some i > 1, then both $(\mu_1 : 1_M) \subseteq (\nu : 1_M)$ and $(\mu_i : 1_M) \subseteq (\nu : 1_M)$, contradicting comaximality. We thus have $(\mu_1 : 1_M) \subseteq (\nu : 1_M)$ and $(\mu_i : 1_M) \not\subseteq (\nu : 1_M)$ for i > 1. We will show that $\mu_1 \subseteq \nu$. Suppose $x_a \in \mu_1$ but $x_a \notin \nu$ and choose $(r_i)_{a_i} \in$ $(\mu_i : 1_M)$ and $(r_i)_{a_i} \notin (\nu : 1_M)$ for i > 1. Put $r_b = (r_2)_{a_2}...(r_n)_{a_n}$. Then $r_b x_a \in \mu_1$ since $x_a \in \mu_1$ and also $r_b x_a \in \mu_i$ for i > 1 by the construction of r_b . Hence $r_b x_a \in \mu_1 \cap ... \cap \mu_n \subseteq \nu$ and $x_a \notin \nu$ implies that $r_b = (r_2)_{a_2}...(r_n)_{a_n} \in (\nu : 1_M)$, a contradiction. Thus $\mu_1 \subseteq \nu.\Box$

Theorem 3.17. Let $\mu_1, ..., \mu_n$ be L-submodules of M such that for $i = 1, ..., n, (\mu_i : 1_M)$ are pairwise comaximal. Then $Rad(\mu_1 \cap, ..., \cap \mu_n) = Rad(\mu_1) \cap, ..., \cap Rad(\mu_n)$.

Proof. If $Rad(\mu_1 \cap, ..., \cap \mu_n) = 1_M$, then the result is immediate. If not, then clearly we have $Rad(\mu_1 \cap, ..., \cap \mu_n) \subseteq Rad(\mu_1) \cap, ..., \cap Rad(\mu_n)$. On the other hand, if ν is a prime *L*-submodule such that $\mu_1 \cap, ..., \cap \mu_n \subseteq \nu$, then by last lemma there is an $i \in \{1, 2, ..., n\}$ such that $\mu_i \subseteq \nu$. Thus $Rad(\mu_i) \subseteq Rad(\mu_1 \cap, ..., \cap \mu_n)$, and so $Rad(\mu_1) \cap, ..., \cap Rad(\mu_n) \subseteq Rad(\mu_1 \cap, ..., \cap \mu_n)$. \Box

4. E-RADICAL OF L-SUBMODULES

In this section, we introduce the notion of E-radical of L-submodules and give some results of it.

Definition 4.1. Let M be an R-module and μ be an L-subset of M. Then the L-subset $E(\mu) \in L^M$ is defined by

$$E(\mu)(x) = \bigvee \{ \mu(r^n y) | x = ry, n \in \mathbb{N} \}, \ \forall x \in M,$$

and is called the E-radical (envelope) of μ .

Note that this definition is different from the definition of radicals of *L*-submodules given in [13] even L = [0, 1]. In fact this definition is a generalization of the notion of the envelope of submodules in module theory, as well as it agrees with the definition of \Re -radicals by the Definition 2.1.

Theorem 4.2. Let $\mu \in L(M)$. Then the following assertions hold: (1) $E(\mu)(0) = 1$; (2) $\mu \subseteq E(\mu) \subseteq Rad(\mu)$; (3) $\langle E(\mu_b) \rangle \subseteq E(\mu)_b$; (4) If $\vee \{\mu(x) | x \notin \mu_*\} = b < 1$, then $\langle E(\mu_*) \rangle = E(\mu)_*$; (5) $\mu \subseteq \nu \Rightarrow E(\mu) \subseteq E(\nu)$.; (6) $\mu + \nu \subseteq E(\mu) + E(\nu)$; (7) $E(\mu) \cap E(\nu) = E(\mu \cap \nu)$.

Proof. (1) $E(\mu)(0) = \forall \{\mu(r^n y) | 0 = ry, n \in \mathbb{N}\} = \mu(0) = 1.$ (2). Clearly $\mu \subseteq E(\mu)$. If $Rad(\mu) = 1_M$, then the result is clear, If not, consider ξ as a prime *L*-submodule of *M* and containing μ . Then $\xi(M) = \{1, c\}$, that is $c \in L \setminus \{1\}$ is a prime element of *L*. Let $x \in M$ such that $x = ry, n \in \mathbb{N}$ and $\xi(r^n y) = 1$. Then $r^n y \in \xi_*$, thus $r \in \mathbb{N}$ $(\xi_*: M)$ or $y \in \xi_*$, since ξ_* is prime. Therefore $x = ry \in \xi_*$ and so $\xi(r^n y) = \xi(x) = 1$. Now if $\xi(r^n y) = c$, then $c = \xi(r^n y) \ge \xi(ry) = \xi(x)$. Thus $\xi(x) = \xi(ry) = c = \xi(r^n y)$. Hence

$$\forall n \in \mathbb{N}, \ \xi(x) = \xi(r^n y) \ge \mu(r^n y).$$

So $E(\mu)(x) \leq \xi(x)$, therefore $E(\mu)(x) \subseteq Rad(\mu)(x)$. (3) Let $x \in E(\mu_b)$, then there are $m \in \mathbb{N}, r \in R$ and $y \in M$ such that x = ry and $r^m y \in \mu_b$. Thus $\mu(r^m y) \geq b$, Hence $E(\mu)(x) = \vee \{\mu(r^n y) \mid x = ry, n \in \mathbb{N}\} \geq b$. Therefore $x \in E(\mu)_b$, and so $\langle E(\mu_b) \rangle \subseteq E(\mu)_b$. (4) From (3) we have $\langle E(\mu_*) \rangle \subseteq E(\mu)_*$. Now let $x \in E(\mu)_*$, then $E(\mu)(x) = E(\mu)(0)$. Thus

$$1 = \mu(0) = E(\mu)(0) = E(\mu)(x) = \lor \{ \mu(r^n y) \mid x = ry, n \in \mathbb{N} \}.$$

Hence there are $n \in \mathbb{N}, s \in R$, and $y \in M$ such that x = sy and $\mu(s^n y) = \mu(0) = 1$. Then $x = sy \in \mu_* \subseteq E(\mu_*) \subseteq \langle E(\mu_*) \rangle$ (5) and (6) are straightforward.

$$(7)(E(\mu) \cap E(\nu))(x) = (\bigvee \{\mu(r^n y) \mid x = ry, n \in \mathbb{N}\}) \land (\bigvee \{\nu(r^n y) \mid x = ry, n \in \mathbb{N}\})$$
$$= \bigvee \{\mu(r^n y) \land \nu(r^n y) \mid x = ry, n \in \mathbb{N}\}$$
$$= \{(\mu \cap \nu)(r^n y) \mid x = ry, n \in \mathbb{N}\}$$
$$= E(\mu \cap \nu)(x).\Box$$

Theorem 4.3. Let M be an R-module. If $\mu \in L(M)$, then $E(\mu) \in L(M)$

Proof. Let
$$x, y \in M$$
 and $r \in R$. By previous theorem, $E(\mu)(0) = 1$,
 $E(x+y) = \bigvee \{\mu(r^n z) \mid x+y = rz, n \in \mathbb{N}\}$
 $\geqslant \bigvee \{\mu(r^n u + r^n v) \mid x = ru, y = rv, n \in \mathbb{N}\}$
 $\geqslant \bigvee \{\mu(r^n u) \land \mu(r^n v) \mid x = ru, y = rv, n \in \mathbb{N}\}$
 $= (\bigvee \{\mu(r^n u) \mid x = ru, n \in \mathbb{N}\}) \land (\bigvee \{\mu(r^n(v)) \mid y = rv, n \in \mathbb{N}\})$
 $= E(\mu)(x) \land E(\mu)(y)$

and we have

$$\begin{split} E(\mu)(rx) &= \lor \{\mu(s^n y) \mid rx = sy, n \in \mathbb{N}\} \\ &\geqslant \lor \{\mu(r^n(t^n y)) \mid rx = rty, n \in \mathbb{N}\} \\ &\geqslant \lor \{\mu(t^n y) \mid rx = rty, n \in \mathbb{N}\} \\ &\geqslant \lor \{\mu(t^n y) \mid x = ty, n \in \mathbb{N}\} = E(\mu)(x). \Box \end{split}$$

We know that for an *L*-ideal μ of *R*, we have $\Re(\Re(\mu)) = \Re(\mu)$. So in studying the \Re -radical of an *L*-ideal, the number of \Re -radicals is not important. But for $E(\mu)$, it is important. For example, see the following:

Example 4.4. Consider $R = \mathbb{Z}[x]$ and let the *R*-module to be $M = R \oplus R$ and let $N = R(x, 4) + R(0, x) + x^2 M$. Then according to Example 1 in [2] for submodule N we have,

$$< E(N) >= R(0,4) + xM \neq R(0,2) + xM$$

Hence $(0,2) \notin \langle E(N) \rangle$, however

$$2^2(0,1) = (0,4) \in \langle E(N) \rangle.$$

Now let $\mu = 1_N \cup c_M$. Then we have,

$$E(\mu)(0,2) = \bigvee \{\mu(r^n y) | (0,2) = ry\} = c.$$

But

$$E(E(\mu))(0,2) = \bigvee \{ E(\mu)(s^m z) | (0,2) = sz \} = 1$$

Because $(0,4) = 2^2(0,1) \in N$ and $E(\mu)(0,4) = 1$. Therefore $E(\mu) \neq E(E(\mu))$.

Theorem 4.5. Let $\mu \in L(M)$. Then

$$E(\mu)(x) = \bigvee \{ a \mid a \in \mu(M), x \in E(\mu_a) \}.$$

Proof. Let $x \in M$ and $E(\mu)(x) = b = \bigvee \{\mu(r^n y) \mid x = ry, n \in \mathbb{N}\}$ and suppose that $c = \bigvee \{a \mid a \in \mu(M), x \in E(\mu_a)\}$. Then

$$c = \bigvee \{ a \mid a \in \mu(M), x = ry, r^n y \in \mu_a, \text{ for some } n \in \mathbb{N} \}$$
$$= \bigvee \{ a \mid a \in \mu(M), x = ry, \mu(r^n y) \ge a, \text{ for some } n \in \mathbb{N} \}.$$

Therefore $b \ge c$. Now let $x \in M$ such that x = ry. For $n \in \mathbb{N}$ put $a = \mu(r^n y)$. Then $a \in \mu(M)$ and $r^n y \in \mu_a$. Hence $x \in E(\mu_a)$, so $b \le c.\square$

Corollary 4.6. Let $\mu \in L(M)$ and $\mu(M) = \{a_i \mid i \in \mathbb{N}\}$ which $a_1 = 1$ and $\forall i \in \mathbb{N} \setminus \{1\}, a_{i+1} \leq a_i$. Then $(i) < E(\mu_{a_i}) >= E(\mu)_{a_i}, \ \forall i \in \mathbb{N}$ (ii)

$$E(\mu)(x) = \begin{cases} \mu(0) & \text{if } x \in E(\mu_*) \\ a_i & \text{if } x \in E(\mu_{a_i}) > \backslash < E(\mu_{a_{i-1}}) > i \in \mathbb{N} \setminus \{1\} \end{cases}$$

Proof. By Theorem 4.2, $\langle E(\mu_{a_i}) \rangle \subseteq E(\mu)_{a_i}$. Now let $i \in \mathbb{N}$ and $x \in E(\mu)_{a_i}$. Then $E(\mu)(x) \ge a_i$. Thus

$$\bigvee \{\mu(r^n y) \mid x = ry, n \in \mathbb{N}\} \ge a_i.$$

So there is $n \in \mathbb{N}$ such that $\mu(r^n y) \ge a_i$, x = ry. Then $r^n y \in \mu_{a_i}$, x = ry, so $x \in E(\mu_{a_i}) \subseteq \langle E(\mu_{a_i}) \rangle$. (*ii*). Let $x \in \langle E(\mu_{a_i}) \rangle \setminus \langle E(\mu_{a_{i-1}}) \rangle$. Then $x \in E(\mu)_{a_i} \setminus \langle E(\mu)_{a_{i-1}}$ by (i). Thus $a_i \leq E(\mu)(x) < a_{i-1}$, and $E(\mu)(x) = a_i$. By Corollary 4.6, if μ is a fuzzy submodule, then $\langle E(\mu_b) \rangle = E(\mu)_b$.

Theorem 4.7. Let $\nu \in L^M$. Then

$$E(\nu) = \bigcup \{ x_a \mid x = ry, a \in L, (r^n y)_a \subseteq \nu, \text{ for some } n \in \mathbb{N} \}.$$

Proof. Let $a \in L$, and let x = sz. If there exists $n \in \mathbb{N}$ such that $(s^n z)_a \subseteq \nu$, then

$$E(\nu)(x) = \bigvee \{\nu(r^m y) \mid x = ry, m \in \mathbb{N}\}$$

$$\geqslant \nu(s^n z)$$

$$\geqslant a.$$

Thus $E(\nu)(x) \ge x_a(x)$, hence

$$E(\nu) \supseteq \bigcup \{ x_a \mid x = ry, a \in L, (r^n y)_a \subseteq \nu, \text{ for some } n \in \mathbb{N} \}.$$

Now Let $x \in M$ such that $x = r_i y_i$, which $y_i \in M, r_i \in R$ and $\forall n \in \mathbb{N}$, $\nu(r_i^n y_i) = a_{in}$. Then $(r_i^n y_i)_{a_{in}} \subseteq \nu$, $\forall n \in \mathbb{N}$. Therefore

$$E(\nu)(x) = \bigvee \{\nu(r^n y) \mid x = ry, \ n \in \mathbb{N}\}$$

= $\bigvee \{(r_i^n y_i)_{a_{in}}(r_i^n y_i) \mid x = r_i y_i, \ n \in \mathbb{N}\}$
 $\leqslant (\bigcup \{x_a \mid x = ry, \ a \in L, \ (r^n y)_a \subseteq \nu, \ \text{for some } n \in \mathbb{N}\})(x).$

Hence $E(\nu) \subseteq \bigcup \{ x_a \mid x = ry, a \in L, (r^n y)_a \subseteq \nu, \text{ for some } n \in \mathbb{N} \}.$ Therefore,

$$E(\nu)(x) = \bigcup \{ x_a \mid x = ry, \ a \in L, \ (r^n y)_a \subseteq \nu, \text{ for some } n \in \mathbb{N} \}. \Box$$

In the next two Theorems, we investigate the behavior of E-radical under homomorphisms.

Theorem 4.8. Let N be an R-module and f be an epimorphism from M into N. Consider $\mu \in L^M$ and $\nu \in L^N$. (i) If μ is f-invariant, then $f(E(\mu)) = E(f(\mu))$. (ii) $f^{-1}(E(\mu)) \subseteq E(f(\mu))$.

Proof. (i) Let $y \in N$. Then

$$\begin{split} f(E(\mu))(y) &= \bigvee \{ E(\mu)(x) \mid y = f(x) \} \\ &= \bigvee \{ \bigvee \{ \mu(r^n z) \mid x = rz, \ n \in \mathbb{N} \} \mid y = f(x) \} \\ &= \bigvee \{ \bigvee \{ \mu(r^n z) \mid f(r^n z) = r^{n-1} y \} \mid y = rf(z), \ n \in \mathbb{N} \} \\ &= \bigvee \{ \bigvee \{ \mu(u) \mid f(u) = r^{n-1} y \} \mid y = rf(z), \ n \in \mathbb{N} \} \\ &= \bigvee \{ f(\mu)(r^{n-1} y) \mid y = rf(z), \ n \in \mathbb{N} \} \\ &= \bigvee \{ f(\mu)(r^n f(z)) \mid y = rf(z), \ n \in \mathbb{N} \} = E(f(\mu))(y). \end{split}$$

(ii)

$$\begin{split} E(f^{-1}(\nu))(x) &= \bigvee \{ f^{-1}(\nu)(r^n y) \mid x = ry, n \in \mathbb{N} \} \\ &= \bigvee \{ \nu(f(r^n y)) \mid x = ry, n \in \mathbb{N} \} \\ &\leqslant \bigvee \{ \nu((r^n f(y))) \mid f(x) = rf(y), n \in \mathbb{N} \} \\ &= E(\nu)(f(x)) = f^{-1}(E(\nu)(x)). \Box \end{split}$$

Now if f is an isomorphism, then the equality holds in the second part.

Theorem 4.9. Assume the hypothesis given of Theorem 4.8. Then (i) If μ is f-invariant, then $E(f(\mu)) \in L(N)$. (ii) If f be an isomorphism, then $E(f^{-1}(\nu)) \in L(M)$.

Proof. This is a direct consequence of the last theorem. \Box

Proposition 4.10. Let $\mu \in L(M)$. Then: $i)\Re(\mu:1_M) \subseteq (E(\mu):1_M);$ $ii)\sqrt{\mu:1_M} \subseteq (Rad(\mu):1_M).$ $\mathbf{Proof.}(i)$

$$(\Re(\mu:1_M)\cdot 1_M)(x) = \bigvee_{x=ry} \{\Re(\mu:1_M)(r) \wedge 1_M(y)\}$$

$$= \bigvee_{x=ry} \{\bigvee_{n \in \mathbb{N}, \eta \cdot 1_M \subseteq \mu} (\eta(r^n) \wedge 1_M(y))\}$$

$$= \bigvee_{x=ry, n \in \mathbb{N}} \{\bigvee_{\eta \cdot 1_M \subseteq \mu} (\eta(r^n) \wedge 1_M(y))\}$$

$$\leq \bigvee_{x=ry, n \in \mathbb{N}} \{\bigvee_{\eta \cdot 1_M \subseteq \mu} \eta \cdot 1_M(r^ny)\}$$

$$\leq \bigvee_{x=ry, n \in \mathbb{N}} \mu(r^ny)$$

$$= E(\mu)(x), \forall x \in M.$$

(*ii*) if $Rad(\mu) = 1_M$, the result is immediate. Otherwise, if ν is any prime *L*-submodule of *M* which contains μ , we have $(\mu : 1_M) \subseteq (\nu : 1_M)$, and $(\nu : 1_M)$ is prime *L*-ideal. Hence $\sqrt{\mu : 1_M} \subseteq (\nu : 1_M)$, and thus $\sqrt{\mu : 1_M} \cdot 1_M \subseteq (\nu : 1_M) \cdot 1_M \subseteq \nu$. Since ν is an arbitrary prime *L*-submodule containing μ , we have $\sqrt{\mu : 1_M} \cdot 1_M \subseteq Rad(\mu)$. \Box

5. L-RADICAL FORMULA

We say that M satisfies the L-radical formula if for every $\mu \in L(M)$, $E(\mu) = Rad(\mu)$. In the following example, it can be seen that the L-radical formula is not generally valid in L-submodules:

Example 5.1. Let R denote the polynomial ring $\mathbb{Z}[x]$. Consider $M = R \oplus R$ and let $N = R(x, 4) + R(0, x) + x^2 M$. Then according to [14], for submodule N, we have,

$$\langle E(N) \rangle = R(0,4) + xM \neq R(0,2) + xM = Rad(N).$$

Now let $\mu = 1_N \cup c_M$. If $\nu \in \mathcal{P}_{\mu}$, then $N = \mu_* \subseteq \nu_*$. So $Rad(N) \subseteq \nu_*$, therefore $(0,2) \in \nu_*$ for all $\nu \in \mathcal{P}_{\mu}$. Thus

$$Rad(\mu)(0,2) = \bigwedge_{\nu \in \mathcal{P}_{\mu}} \nu(0,2) = 1.$$

But

$$E(\mu)(0,2) = \bigvee \{ \mu(r^n y) \mid (0,2) = ry, n \in \mathbb{N} \} = c.$$

Since if there is $n \in \mathbb{N}$ such that $r^n y \in N$ and (0,2) = ry, then we will have $(0,2) \in E(N) \subseteq \langle E(N) \rangle$, that is a contradiction. \Box

In the sequel, we will investigate some conditions for $E(\mu) = Rad(\mu)$ for any L-submodule μ of M. **Theorem 5.2.** Let μ be a radical L-submodule of M. Then

 $E(\mu) = Rad(\mu).$

Proof. $\mu \subseteq E(\mu) \subseteq Rad(\mu) = \mu.\Box$

Corollary 5.3. Let μ be a radical L-submodule of M. Then

$$/\mu : 1_M = (Rad(\mu) : 1_M) = (E(\mu) : 1_M) = \Re(\mu : 1_M)$$

Theorem 5.4. Let μ be an L-submodule and $rad(\mu_a) = \langle E(\mu_a) \rangle$, for each $a \in L$. Then $E(\mu) = Rad(\mu)$.

Proof. Consider $x \in M$. Put $a = Rad(\mu)(x)$, then

$$x \in Rad(\mu)_a \subseteq rad(\mu_a) = \langle E(\mu_a) \rangle \subseteq E(\mu)_a.$$

So $E(\mu)(x) \ge a = Rad(\mu)(x)$. Thus $Rad(\mu) \subseteq E(\mu).\Box$

Corollary 5.5. Let M be an R-module that satisfies the radical formula, and L be a dense chain. Then $E(\mu) = Rad(\mu)$.

Corollary 5.6. Let $rad(\mu_a) = \langle E(\mu_a) \rangle$, for each $a \in L$. Then $rad(\mu_a) \subseteq Rad(\mu)_a$.

Proof. $rad(\mu_a) = \langle E(\mu_a) \rangle \subseteq E(\mu)_a \subseteq Rad(\mu)_a$. \Box

References

- R. Ameri, R. Mahjoob, Spectrum of prime L-submodules, Fuzzy Sets and Systems 159 (2008)1107-1115.
- [2] A. Azizi, Radical formula and prime submodules, Journal of Algebra 307 (2007) 454-460.
- [3] R. McCasland, Some Commutative Ring Results Generalized to Unitary Modules, Ph.D.Thesis, University of Texas at Arlington, 1983.
- [4] J.A. Goguen, L-fuzzy sets, J. Math. Appl. 18 (1967) 145-174.
- [5] R. L. McCasland, M. E. Moore, On radicals of submodules, Communications in Algebra 19(5) (1991)1327-1341.
- [6] M. E. Moore, S. J. Smith, Prime and radical submodules of modules over commutative ring, Communications in Algebra, 30(10)(2002)5037-5064.
- [7] D.S. Malik, J.N. Mordeson, Fuzzy maximal, radical, and primary ideals of a ring, Inform.Sci.53(1991)237-250.
- [8] D.S. Malik, J.N. Mordeson, Radicals of fuzzy ideals, Inform.Sci. 65(1992)239-252.
- [9] J.N. Mordeson, D.S. Malik, *Fuzzy Commutative Algebra*, World Scientific Publishing, Singapore, 1998.
- [10] C.V. Negoita, D.A. Ralescu, Application of Fuzzy Systems Analysis, Birkhauser, Basel, 1975.
- [11] F.Z. Pan, Fuzzy finitely generated modules, Fuzzy Sets and Systems 21 (1987) 105-113.
- [12] R. Rosenfeld, Fuzzy groups, J. Math. Anal Appl. 35(1971)512-517.
- [13] F.I. Sidky, On radical of fuzzy submodules and primary fuzzy submodules, Fuzzy Sets and Systems 119 (2001) 419- 425.
- [14] P.F. Smith, Primary modules over commutative rings, Glasgow Math. J.43(2001)103-111.
- [15] L.A. Zadeh, Fuzzy Sets, Inform and Control 8 (1965) 338-353.