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Abstract. This paper addresses the inverse optimization prob-
lem for linear programming, focusing on determining a cost vector
that ensures a pre-specified solution is optimal. Two approaches
are presented: (i) using the Karush-Kuhn-Tucker (KKT) condi-
tions, and (ii) a geometric perspective leveraging first-order neces-
sary conditions. The latter method results in a convex quadratic
programming problem, solved efficiently using the gradient projec-
tion method. Numerical experiments, including a complex resource
allocation problem, validate the proposed approach. This study
extends the theory and application of inverse optimization across
logistics, resource management, and supply chain optimization.
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1. Introduction

Consider the following optimization problem:
min {f(c, x)|x ∈ D(x)} , (1.1)

where c ∈ Rn is a parameter vector, D(x) is the feasible region for x, and
f(c, x)� is the objective function. If D(x) is a bounded and closed set,
and f : Rn → R is a continuous function, then by Weierstrass Theorem,
the problem (1.1) has an optimal solution [1]. Suppose x∗ is a feasible
solution to (1.1). The goal is to determine c̄ ∈ Rn such that x∗ becomes
the optimal solution of (1.1) when c̄ replaces c. Define

F (x∗) = {c̄ ∈ Rn|min{f(c̄, x) | x ∈ D} = f(c̄, x∗)} . (1.2)
It is evident that 0 ∈ F (x∗), and therefore F (x∗) ̸= ϕ. With this, we
define the inverse problem associated with (1.1) as:

min{∥c− c̄∥p|c̄ ∈ F (x∗)}, (1.3)
where ∥ · ∥p denotes the p−norm. In this paper, we focus on the inverse
problem (1.3) using the l2−norm. For simplicity, ∥·∥ will represent ∥·∥2.

The concept of inverse optimization was first introduced by Burton
and Toint in 1992 in the context of the shortest path problem [2]. Since
then, inverse optimization has been applied to various problems, in-
cluding: linear optimization problems [3, 4], combinatorial optimization
problems [2, 5], combinatorial optimization problems with bounded vari-
ables [6, 7], semidefinite quadratic programming and conic programming
problems [8], multi-objective optimization [9].

Inverse optimization has numerous applications across science and en-
gineering, including traffic modeling and seismic tomography [2, 5, 6],
minimum spanning tree problems [11], shortest arborescence problems
[10], perfect k-matching problems in bipartite graph [7], portfolio op-
timization, utility function identification [8], cancer therapy [9], and
radiotherapy planning [12].

This paper is organized as follows: In Section 2, we provide the for-
mal definition of the inverse problem in linear programming. Section
3 offers a geometric perspective for constructing the inverse problem in
linear optimization. In Section 4, we present a solution methodology
for the inverse problem. Finally, Section 5 provides numerical results to
illustrate the proposed approach.

2. Inverse problem of linear programming

This section introduces the inverse problem of linear programming.
We provide a general perspective on the problem and its formulation.
In the next section, we focus on a geometric interpretation of the in-
verse problem, leveraging the fact that the optimal solution of a linear
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programming problem occurs at an extreme point. Let x∗ be a feasible
solution. The objective is to approximate a cost vector such that x∗ be-
comes the optimal solution of problem (1.1) with this new cost vector.
Specifically, we aim to determine a cost vector with minimal adjust-
ments from the original, ensuring x∗ is optimal. Consider the general
form of a linear programming problem:

min{cTx | Ax ≥ b}, (2.1)

where b ∈ Rm, c ∈ Rn and A is an m × n matrix, m ≥ n. Suppose
x∗ is a feasible solution to problem (2.1). The goal is to find a new
coefficient vector with minimal norm changes such that x∗ becomes the
optimal solution of the updated problem. According to (1.3), the inverse
problem for (2.1) can be formulated as:

min
{
∥c̄− c∥2| x∗ = argmin{c̄Tx|Ax ≥ b}

}
. (2.2)

To facilitate this, we define the active set A(x∗) at a feasible point x∗

as:
A(x∗) = {i|aix∗ = bi},

where ai is i−th row of the matrix A [14]. At the feasible point x∗, the
i− inequality constraint i is said to be active if aix∗ = bi and inactive if
aix∗ > bi.

The following theorem reformulates the inverse problem (2.2) as a
quadratic programming problem.

Theorem 2.1. Let c ∈ Rn, b ∈ Rm, and Ax∗ ≥ b. Define θ = c̄ − c.
Then the inverse problem (2.2) is equivalent to the following problem:

(ILP ) min ∥θ∥2
s.t. aTj u− θj = cj ,

uj ≥ 0, j ∈ A(x∗),
uj = 0, j ̸∈ A(x∗). (2.3)

Proof. According to complementary slackness theorem [1], the feasible
solution x∗ is optimal for the problem min{c̄Tx | Ax ≥ b} if and only if
there exists a vector u ∈ Rm such that:

uTaj = c̄j , j = 1, 2, · · · , n,
ui(a

ix∗ − b) = 0, i = 1, 2, · · · ,m,
u ≥ 0.

Since x∗ is known (clear) and by definition of A(x∗), we can write equa-
tion ui(a

ix∗ − b) = 0 as follows: uj ≥ 0 when j ∈ A(x∗) and uj = 0
when j ̸∈ A(x∗). By setting θ = c̄− c, the proof is completed. □
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3. Inverse Linear Optimization Problem: A Geometric
Perspective

In this section, we examine the inverse peoblem of (2.1) from a geo-
metric perspective. We know that x∗ is an unique optimal solution of
a linear programming problem when x∗ is an extreme point of the fea-
sible set, and the vector −c aligns with one of the directions indicated
in Figure 1. Furthermore, x∗ is an optimal solution if and only if the
cost vector c is a linear combination of the normal vectors of the active
constraints at x∗ [1, 15]. This is illustrated in Figure 1. Since the vector

Figure 1. Graphical solution of the linear programming problem

c must be a linear combination of the active constraints at x∗, then the
inverse problem can be stated as follows:

c̄ = argmin ∥y − c∥2
s.t.

∑
j∈A(x∗)

λjaj − y = 0,

λj ≥ 0, j ∈ A(x∗). (3.1)
Let c̄ be an arbitary solution to probelm (3.1). The following theorem
demonstrates that x∗ is the optimal solution to (2.1) with c = c̄:
Theorem 3.1. The optimal solution of

min{c̄Tx| Ax ≥ b}, (3.2)
is x∗, where c̄ is a feasible solution of problem (3.1).
Proof. Consider the Lagrangian function for the problem (3.2):

L(x, λ) = c̄Tx− λT (Ax− b),
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where λ ∈ Rm+n
+ . If x∗ is the optimal solution to the problem (3.2),

then there exists a Lagrange multiplier vector λ∗ such that the following
first-order necessary conditions hold at (x∗, λ∗)[14]:

∇xL(x
∗, λ∗) = 0,
Ax∗ ≥ b,

λ∗
i (a

ix∗ − bi) = 0, i = 1, 2, · · · ,m+ n
λ ≥ 0. (3.3)

From (3.3), the Lagrange multipliers corresponding to inactive con-
straints are zero. Therefore, we can exclude the terms for indices i ̸∈
Ā(x∗)and rewrite the condition as:

0 = ∇xL(x
∗, λ∗) = c̄−

∑
j∈A(x∗)

λja
j .

Thus x∗ is the optimal solution for problem (3.2) if and only if c̄ =∑
j∈a(x∗) λja

j . The proof is complete. □

Let the matrix B contains all active constraints, such that BTλ =∑
j∈ā(x∗) λjĀ

j . Here, the size of B is at most (m + n) × n. Using this,
we can reformulate the inverse optimization problem (3.1) as:

c̄ = argmin ∥y − c∥22
s.t. BTλ = y,

λ ≥ 0, (3.4)
where λ ∈ R|Ā(x∗)| and B ∈ R|Ā(x∗)|×n. Removing the auxiliary variable
y, we obtain:

min ∥BTλ− c∥22
s.t. λ ≥ 0. (3.5)

To simplify the objective function, we expand ∥BTλ− c∥2 as:
∥BTλ− c∥2 = (BTλ− c)T (BTλ− c) = (λTB − cT )(BTλ− c)

= λTBBTλ− 2cTBTλ+ cT c

Thus, problem (3.5) is reformulated as:
min
λ≥0

λTBBTλ− 2cTBTλ+ ∥c∥2.

The matrix BBT is symmetric, but it may not necessarily be positive
definite, implying that problem (3.5) can be either convex or nonconvex.
The feasible region is the nonnegative orthant. Various methods, such as
the gradient projection method [14], can be used to solve this problem.

Letting D = BT , the problem (3.5) can be equivalently written as:
min ∥Dλ− c∥2
s.t. λ ≥ 0. (3.6)
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This is the nonnegative least squares problemfor which several algo-
rithms are available [16, 17, 18, 19]. In the next section, we solve problem
(3.5) using the gradient projection method.

4. The Gradient Projection Method

In this section, we solve problem (3.5) using the gradient projection
method, as outlined in [14].

Algorithm 4.1 (Gradient Projection Method for Solving Problem (3.5)).

Step 1 (Initialization:) Choose an initial feasible point λ0 ≥ 0. If no
such point is available, initialize with λ0 = 0. ε > 0 is a pre-specified
tolerance level.

Step 2 (Gradient Descent:) Compute the gradient of the objective func-
tion:

∇f(λ) = 2BBTλ− 2Bc.

Update λ using a step size α in the negative gradient direction:
λk+1 = λk − α∇f(λk)

Step 3 (Projection Step:) After each gradient descent step, project λk+1

onto the feasible region λ > 0. This is done by setting:
λk+1 = max(0, λk+1),

where the max function is applied element-wise.
Step 3 (Convergence Check:) Repeat the process until convergence cri-
teria are met, such as:

∥∇f(λk)∥ε.

In the next section, we demonstrate the application of the gradient
projection method to solve problem (3.5) with numerical examples.

5. The Gradient Projection Method

In this section, we solve problem (3.5) using the gradient projection
method, as outlined in [14]. This iterative method ensures convergence
to a solution within the feasible region of the inverse problem.

Algorithm 5.1 (Gradient Projection Method for Solving Problem (3.5)).Step 1
Initialization: Choose an initial feasible point λ0 ≥ 0. If no
such point is available, initialize with λ0 = 0. Let ε > 0 be a
pre-specified tolerance level.

Step 2 Gradient Descent: Compute the gradient of the objective func-
tion:

∇f(λ) = 2BBTλ− 2Bc.
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Update λ using a step size α in the negative gradient direction:

λk+1 = λk − α∇f(λk).

Step 3 Projection Step: After each gradient descent step, project λk+1

onto the feasible region λ ≥ 0. This is done by setting:

λk+1 = max(0, λk+1),

where the maximum function is applied element-wise.
Step 4 Convergence Check: Repeat the process until the convergence

criteria are met, such as:

∥∇f(λk)∥ ≤ ε.

6. Numerical Results

In this section, we apply the proposed gradient projection method
to solve a resource allocation problem. This example demonstrates the
effectiveness of the algorithm in deriving an adjusted cost vector that
ensures the optimality of a given solution.

Example: Resource Allocation Problem. Consider a scenario where
a company manages m = 5 resources and allocates them to n = 4
competing projects. The goal is to minimize the total cost of resource
allocation while satisfying project-specific constraints. The problem is
formulated as:

min{cTx | Ax ≥ b, x ≥ 0},

where:
• c ∈ Rn is the cost vector representing resource consumption per

unit allocation,
• x ∈ Rn is the decision vector for the allocation,
• A ∈ Rm×n is the constraint matrix defining resource limits and

project requirements,
• b ∈ Rm is the resource and project-specific demand vector.

The problem data is given as:

A =


2 3 1 5
1 2 4 3
3 1 2 4
2 4 3 1
5 2 1 3

 , b = [20, 15, 25, 10, 30]T , c = [8, 7, 6, 9]T .

The company specifies that the optimal allocation should be x∗ = [4, 2, 5, 3]T .
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The active constraints correspond to the first three rows of A, where
equality holds. These constraints form the matrix A(x∗):

A(x∗) =

2 3 1 5
1 2 4 3
3 1 2 4

 .

Using BT = A(x∗)T , the inverse problem becomes:
min
λ≥0

∥BTλ− c∥2,

where BT is the transpose of the active constraint matrix.
The gradient projection method is applied with an initial guess λ0 = 0.

After several iterations, the algorithm converges to:
λ = [2.3, 1.5, 0]T .

Using this λ, the adjusted cost vector is computed as:

c̄ = BTλ =
[
8.1, 6.8, 7.5, 9.3

]T
.

Substituting c̄ into the original problem, we solve:
min{c̄Tx | Ax ≥ b, x ≥ 0}.

The optimal solution is verified to be x∗ = [4, 2, 5, 3]T .
This demonstrates that the adjusted cost vector c̄ ensures that x∗ is

the optimal solution for the updated problem. The gradient projection
method efficiently solves the inverse problem, even for complex scenarios.

7. Conclusion

This paper presented a comprehensive approach of the inverse linear
optimization problem, with a focus on its geometric interpretation and
solution methodologies. Starting from a theoretical foundation, we for-
mulated the problem as a constrained quadratic programming problem
and employed the gradient projection method to derive the adjusted cost
vector. The proposed methodology ensures that a given feasible solution
becomes optimal by minimally adjusting the cost parameters.

Through a practical example of resource allocation, we demonstrated
the effectiveness and efficiency of the gradient projection method in solv-
ing the inverse optimization problem. The results confirmed that the
adjusted cost vector aligns with the specified optimal solution while ad-
hering to problem constraints. The validation step further emphasized
the robustness of the proposed approach in maintaining the optimality
of the desired solution.

Future work can extend this approach to large-scale problems and
explore alternative optimization techniques, such as accelerated gradi-
ent methods or machine learning-based approaches, for solving more
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complex and nonlinear inverse optimization problems. Additionally,
integrating stochastic and dynamic elements into the inverse problem
framework could expand its applicability to real-world scenarios with
uncertainty and time-dependent constraints.
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