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1. INTRODUCTION

Cantor believed that values of elements in a set are either zero or one.
This cannot manage ambiguity and uncertainty. In 1965, Zadeh[3§]
instituted fuzzy theory because he believed that values of elements in
a fuzzy set are between zero and one. Human life has been greatly
impacted by graphs in various contexts. The theory of fuzzy graphs by
Rosenfeld in 1975, [21] have nomerous applications in various fields of hu-
man life, including computer science, expert systems, medical diagnosis,
etc. In 1983, Atanassov [, 2, B] generalized fuzzy sets and presented in-
tuitionistic fuzzy sets. Rashmanlou et al. [18] studied on interval valued
intuitionistic (s, t)-fuzzy graphs. F. Smarandache [29, B0, B1, B2, B3, 34|
introduced notion of neutrosophic sets and gave a mathematical tool for
managing problems including ambiguous, uncertainty and inconsistent
data. Shi et al. [27] investigated the main energies of picture fuzzy
graphs. M Shoaib et al. [28] studied on complex pythagorean fuzzy
graphs. Rashmanlou et al. [36, 20, 26]studied on vague graphs and their
properties. Shao et al. [25] studied on fuzzy decision making in medical
diagnosis using vague sets. Kosari et al. [9] studied on topological indices
in fuzzy graphs. Kaviyarasu et al. [§] discussed the use of t-neutrosophic
fuzzy graphs to addresscircular economy strategies. Chen et al.[6] dis-
cussed on elementary abelian covers of the wreath graph W(3, 2) and
the fostergraph. Broumi et al. [5] defined the notion of single valued
neutrosophic graph. Gnaana Bhragsam et al.[7] presented neighbourly
irregular graphs. Nagoor Gani and Radha [[12, 13] introduced regular
fuzzy graphs, total degree and totally regular fuzzy graphs. Kosari et al.
[10] studied on perfectly regular fuzzy graphs. Nagoor Gani and Latha
[11] studied neighbourly, highly and totally irregular fuzzy graphs. Na-
goor Gani et al. [[14] studied some types of irregular intuitionistic fuzzy
graphs. The Nandhinis [[15] introduced strongly irregular fuzzy graphs
and strongly total irregular fuzzy graphs also they established some of
their properties. Rashmanlou et al._[19] studied on highly irregular
bipolar fuzzy graphs. Poulik et al. [16] investigated on certain indices
of graphs under bipolar fuzzy enviroment. poulik et al. [17] establisfed
wiener index in bipolar fuzzy graphs. Talebi et al. [35] investigated
some types of irregular intuitionistic fuzzy graphs. Santhi Maheswari et
al. [22, 23, 24] researched for neighbourly and strongly edge irregular
fuzzy graphs.

2. PRELIMINARIES

Herein, we review some definitions and notions for the next sections.
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Definition 2.1. [B8] Assume that { represent the nonempty set. A
fuzzy set(FS) A is symbolized as {(u,d4(u)) | u € U}, such that J4 is a
membership function from 4l to the interval [0, 1].

Definition 2.2. [, 2] Consider a collection ${ made up of different
objects. An intuitionistic fuzzy set (IFS), is represented by

B = {(u,ap(u), Bp(u))|u € U}
such that ap : & — [0,1] and fp : & — [0, 1] reffered the degree of
membership(DM) and the degree of non-membership(DNM) of uin A. It
is important to note that for any u € 4, the relation 0 < a4 (u)+L4(u) <

1 must hold true. The class of IFSs on the universe l will be referred
to as IFS(4).

Definition 2.3. [34] Consider a collection ${ made up of different ob-
jects, then the neutrosophic set (NS) A can be presented by A = {(u, T4 (u)
Ja(u),Fa(u))|u € U}. Here, the functions T,7,F : U —]07,17[ as-
signed by the DM, the degree of indeterminacy(DI), and the DNM of the
element u € 4 to the set A. It is important to note that the condition

for these functions is

07 < Taw)+Ta(w) +Falu) <37,

These functions T4(u),J4(u) and Fa(u) are subsets of |07, 17 [ that
can be either real standard or nonstandard. For practical issues, the
concept of SVNS instead of NS was presented by Wang et al.

Definition 2.4. [37] Consider a collection 4l made up of different ob-
jects. A SVNS A is presented by A = {{(u, (T4 (u),Ta(u),Fa(u)));u € s}
These functions give values between 0 and 1.

Definition 2.5. [4] An ordered pair &* = (U, €) is referred to as a
graph. U and € represents the set of nodes and edges of &*, respectively.
If both ¥ and € be finite, then &* = (0, &) is finite.

Definition 2.6. The number of edges in &* that is coincident with node
v is called the degree of v, or simply dg=«(b).

Definition 2.7. A fuzzy graph (FG) represented by & = (p,v). where
p is a fuzzy subset of the nonempty set ¥ and v is a symmetric fuzzy
relation on p so that

v(a,b) = v(ab) < minlp(a), p(b)] for every a,bey.
Notice that these functions p, v are subsets of [0, 1].

Definition 2.8. [3] An intuitionistic fuzzy graph (IFG) can be repre-
sented as & = (p,v) where p = (p1, p2) and v = (v1,2) such that
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(1) p1 and ps are functions from U to [0, 1] that express the DM and the
DNM of the element a € U, respectively and 0 < py(a) + p2(a) < 1 for
each a € U;

(2) v1 and vy are functions from U x U to [0, 1] that express the DM
and the DNM of an edge ab € €&, respectively. So that vq(ab) <
min|pi(a), p2(b)] and v2(ab) < maz|pa(a), p2(b)] and 0 < vy (ab)+va(ab) <
1 for each ab in €.

Definition 2.9. [p] The form of a single valued neutrosophic graph
(SVNG) is @ = (f)ﬁ, ‘It) Where gﬁ = (Sgﬂ, jgm,ggm) and ‘Jt = (‘Im, jm, Sm)
such that

(1) Tom, Jon and Fon are functions from Y to [0, 1] that signify the degree
of truth-membership, the degree of indeterminacy-membership and the
degree of falsity-membership of the element a € U, respectively, 0 <
Tom(a) + TIom(a) + Fm(a) < 3 for each a € T;

To(ab) < min[Top(a), Ton(d)]
Jn(ab) > max[Jom(a), Jom(b)]
Son(ab) > max[Fon(a), S (b)]

and 0 < Typ(ab) + In(ab) + Fn(ab) < 3 for every ab in €.

3. SINGLE-VALUED INTUITIONISTIC NEUTROSOPHIC SET

We define the notion of Single-Valued Intuitionistic Neutrosophic Set
(SVINS) and express some of its properties.

Definition 3.1. Consider a set iU be fixed. A SVINS A on U is pre-
sented by

A={(u,x,V)uec u}
x = (BT FX) s T FX U — [0,1]
Y= (¥ 3Y. 5% 2V, 0V 5 U —[0,1]

where
() + TV () <1,
() 4+ 3% (w) <1,
Fw) + 3" (w) < 1.

A SVINS A can be written as
A= {(u, (T¥(w), 7(w), ¥ (), T (), 3% (), 37 (w))) }-
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Example 3.2. Let & = {u;,us} and A = {(uy, (0.5,0.3,0.1,0.4,0.2,0.5)),
(u2, (0.1,0.7,0.2,
0.5,0.1,0.6))} is a SVINS.

Definition 3.3. Let a set i be fixed and A; = {(a, (¥} (a), I\ (a), F} (a),
Ty( ), 37 (a),

§Y (@)} and Ay = {(a, (T3 (a),T5(a), §5(a), T3 (a), T3 (a),§5 (a)))} be
two SVINSs. Then A; C Ag if and only if

Ti(a) = F3(a) , 3(a) £33(a) , Fi(a) =3F3(a)

TH(a) > %Y (a) , T(a)>TY(a) , F'(a)<F3(a) for all a € 4.
Example 3.4. Let 4 = {a1, a2} and A; = {(a1, (0.2,0.2,0.6,0.6,0.5,0.3)),
(ag,(0.1,0.2,0.5,0.5,0.4,0.2))} and Ay = {{a1, (0.3,0.4,0.2,0.5,0.3,0.4)),

(a2,(0.3,0.4,0.3,0.2,0.2,0.6))} be two SVINSs. We can see that
A C As.

Definition 3.5. Assume that set { be fixed. Consider

Ay = {{a,(%{(a),7 ()3X() 1(a),37 (a),§ ())>}
and 43 = {{a, (T5(a), 33(a), 33 (), T¥ (a), 34 (), 3% (@)))} be two SVINSs,
Then A1 = A2 1f and only if

Ti(a) = T3(a) . (@) =(a) . F(a)=F)(a)
) =) , (@) =) , F¥@)=F¥a)  for all acil

4. SINGLE-VALUED INTUITIONISTIC NEUTROSOPHIC GRAPH

Herein, we present the notion of single-valued intuitionistic neutro-
sophic relation. Then we investigate the concept of single-valued in-
tuitionistic neutrosophic graph(SVING). Also, we prove the results of
it.

Definition 4.1. Let 4 and U be ordinary finite nonempty sets. Then
a single-valued intuitionistic neutrosophic relation is called to be single-

valued intuitionistic neutrosophic subset of 4 x U and it is denoted by
R:

R = {((u,0), (Ty(u,0), Ty (1w, 0), % (1, 0), Ty (w, v), T (, v), Tz (w, b))
I(u, ) € 4 x ).
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and
TX(u,0) + T¥(u,0) < 1,
X (u,0) +T¥(u,0) < 1,
Fu,0) +F (u,0) <1 for every (u,v) € 4 x Y

2. & =M, ‘ﬁ) is a SVING, If
51(0), $:(0), T (), 3% (a), 5% (a)) be a SVINS on 41

IX(u
(u
Definition 4.
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where
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such that
T (a,b) < min(TH,(a), T (b)) ‘Im(a b) < maX(S (a),‘Ig\Iﬁ(b))
I5(a,b) > max(33;(a), T35 (b)) , In(a,b) > min(Jgy(a), To(b))
Fx(a,0) > max(Fap(a), (b)) , Fn(a,0) > min(Fy(a), Ty (b))-
Example 4.3. The SVING & is shown in this figure.

Definition 4.4. Let & = (9, N) be a SVING where M = (T3, Iay: Sars
T T So) and N = (TN, Ty, Fays T, Iohs Top) be two SVINSs on a
non-empty finite set Y and & C Y >< 0 respectively. The complement of

a SVING & is & = (9, 0N) where M = (T, Tny;, Sgt,Jm,%m) is a

forall a,b € U
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(0.2,0.4,0.3,0.4,0.2,0.1)

(0.2,0.3,0.5,0.3,0.4,0.3)

a

(0.2,0.4,0.6,0.4,0.2,0.1)

(0.2,0.5,06,04,0.2,0.1)

(0.2,0.5,0.6,0.4,0.3,0.1)

(0.5,0.1,0.2,0.4,0.3,0.1)

FI1GURE 1. SVING &.
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Definition 4.6. A SVING & = (9,N) is saied strong if

Ty (uv) = min(TH(u), Ty, (v))
3% (uv) = maz (3N, (u), 35,(0))
S (uv) = max(Fap(w), Ty (v))
Tor(uv) = maz(Tyy(u), Tyn (b)) forallub € ¢
T (uv) = min (T (u), Tyy(v))
Fax(uo) = min(Fon (1), Fon(v))

Remark 4.7. A complete SVING & is strong. But the converse is not
correct.

Definition 4.8. The degree of any node a in the SVING & is determined
by

dg (a) = (d‘)ém (a)v d§m (a)7 d§m (a)v d%jgjt (a)7 d’}IIgm (a’)v d\&Ijgﬁ (a)>

where

d’ém (@) =) Tx(a,b) TX—degree of a
atb

d%’m (@) =) Ty(a,b) TY — degree of a
atb

d%‘m (@) =) T%(a,b) IX¥— degree of a
atb

d;“}fm (@) = Ty(a,b) T¥— degree of a
atb

d’éﬁm (@) =)> Fxla,b) F¥—degree of a
atb

d%m (@) =) Fnla,b) F¥— degree of a

S}
LS
S»

Definition 4.9. The total degree (TD) of a node a in the SVING & is
assigned by

tdg(a) = (td¥ (a),tdX (a),tdX (a),td3, (a),tds, (a),tdg, (a))



where
tdém (a)
tdgm

tdX (

Jon a) =

tdjm
tdX

a
&m

td&aﬁ

Single-Valued Intuitionistic Neutrosophic Sets

= T¥(a,b) + Ti(a)

a#b

a#b

> 3%(a,b) + 3 (a)
a#b

=2 In Im(a)

a#b

=" F(a,b) + §p(a)

aFo

a#b

257
total TX — degree of a
total TV — degree of a
total JX — degree of a
total JY — degree of a
total FX — degree of a
total F¥ — degree of  a.

Definition 4.10. The minimum degree of any node a in SVING & is

determined by

where
0X(®) =
05(®) =
0X(®) =
0% (8) =
05 (&) =
p(®) =

(&)

N{di(a)la € 0}
N{d5(a)la € 0}
N{di(a)la € 0}
Nld< (a)]a € T}
A{d5 (a)la € 0}
N5 (a)]a € T}

= (6%,0%,6%,0%,65 .65

minimum¥X — degree of a
minimumJX — degree of a
minimumgX — degree of a
minimum%¥ — degree of a
minimumJ¥ — degree of a
minimumF? — degree of a.

Definition 4.11. The mazimum degree of any node a in SVING & is

determined by

A(®)

= (AY, AY, A, AT, AT, AY)
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where
AY(®) = \/{d¥(a)|a € T}
AX(®) = \/{d)(a)|a € T}
AX(®) = \/{d¥(a)|a € B}
AF(®) = \/{df(a)la € T}
AY(®) = \/{d5 (a)|a € T}
A7 (&) = \/{d5 (a)la € V}

maximum®X — degree of a
maximumJX — degree of a
maximumgX — degree of a
maximumZ? — degree of a
maximumJ¥ — degree of a

maximumF® — degree of a.

Definition 4.12. The order of SVING & is presented by
0(6) = (03(8),0X(8),05(8),0¢(8),05 (&), 05 ())

where

OX(8) = Z TX(a) FTX —order of a

acy

0%(®) = Z T¥(a) TY - order of a

acY

OX(®) = Z JX(a) JX —order of a

acy

0¥ (®) = Z 3%(a) 3Y — order of a

a€eY

03(6) = Z §X(a) FX — order of a

acey

O‘gy(@) = Z FY(a) §Y — order of a.

a€Y

Definition 4.13. The size of SVING & is determined by
S(®) = (SX(®), 5X(®), SX(8), 5% (8), 55 (&), S§ ()

where
SY(B) =D TX(a,b)
ab
SY(®) = T¥(a,b)
ab

SX(®) = 3 F(a,b)
ab

TX —size of a

JX — size of a

X —size of a

ST (6)=> T(a,b)

a#b
S (&) =Y 3%(a,b)
a#b
SY(8)=> §"(a,b)
ab

T
¥

3‘1’

— size of a

— size of a

— size of a
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Example 4.14. Consider SVING & in Figure 1
The degree of all nodes of &,6(®), S(®),0(6) and A(&) are computed.

de(a) = (0.4,0.9,1.2,0.8,0.5,0.2)

de(b) = (0.4,0.9,1.2,0.8,0.4,0.2)
de(c) = (0.4,1,1.2,0.8,0.5,0.2)
§() = (0.4,0.9,1.2,0.8,0.4,0.2)
A(®) = (0.4,1,1.2,0.8,0.5,0.2)
O(®) = (0.9,0.8,1,1.1,0.9,0.5)
S(6) = (0.6,1.4,1.8,1.2,0.7,0.3).

Definition 4.15. If the degree of any node in SVING & be ¢ = (£, €5, £3, £4, £5, &5).
Then & is called to be a ¢-regular SVING (RSVING).

If the TD of any node in & is the same.Then & is called a totally regular
SVING (TRSVING).

Theorem 4.16. Let & = (M, N) be a SVING. Then M is a constant
function (CF) if and only if the following are equivalent:

(1) & is a RSVING.
(2) & is a TRSVING.

Proof. Since M is a CF and & is a RSVING, the rest follow.
tdg(a) = dg(a) + M(a) for all a€Y
- th(U,) — (Eh E27 E37 E47 E57 Eﬁ) + (cla €2, €3, C4, C5, CG)

Hence & is a TRSVING.

Then (1) = (2) is proved.

Now, suppose that & is a £- TRSVING.
Then

tde(a) = (£], €, €5, €y b, &) forallae Y
de(u) +M(a) = (€, by, t, &y, b, 8) foralla eV
= de(a) + (c1, 02, ¢3, ¢4, 5, ¢6) = (€1, €y, b5, €, €5, 8)  foralla € Y
= d@(a) = (E/l — Cl,EIQ — CQ,E; — C3,E; — C4,E;—) — C5,E% — C6>
So & is a RSVING.
Thus (2) = (1) is proved.
Hence (1) and (2) are equivalent.

On the contrary, suppose (1) and (2) are equivalent and 91 is not a CF.
Therefore M(a) # M(b) for atleast one pair of vertices a,b € Y.
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Let & be a RSVING. Then dg(a) = de(b) = £
So

tdg(a) =t + M(a)
and
tdg(b) = €+ M(b)

Since M(a) # M(b), we have tde(a) # tds(b). So & is not TRSVING
which is a contradiction to our assumption.

Now, let & be a TRSVING. Then

tdg(a) = tde(b)
dg(a) +M(a) = de(b) + M(b)
de(a) — de(b) = M(B) — M(a)
= d(a) # d(b)
So & is not RSVING which is a contradiction to our assumption. Hence
I is a CF. 0

Definition 4.17. If & be an SVING on a regular graph &*. Then & is
called a partially regular SVING(PRSVING).

Definition 4.18. A SVING & = (9,0) is called a fully regular SV-
ING(FRSVING), If & is both RSVING and PRSVING.

Theorem 4.19. The size of a (b1, ..., ¥¢)-reqular SVING & is obtained
by

ph Pls,

@)= (5. B

where p = |Y|.

Proof. The size of & is

S(®) = (3 Ty(a.b). 3 Mla,b), S F(a.b). 3 Tha,b). S 3(a.b), Y §%(a.h))

a#b a#b a#b a#b a#b a#b
we have
> do(a) =203 TH(a,b), Y Tj(a.0), Y Fx(a,b), Y Tm(a,b), Y In(a:b), Y Fn(a,b))
acl a#b a#b a#b a#b ab a#b

= 25(®)
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Since & is (1,...,¥)-regular, ds(a) = (t1,..., %) for every a € U.
So

29(6) = de(a)

acy
=) (t,..., k)
a€y
= (pEl,...,pEG).
Hence S(Qﬁ):(%,...,&). O

2
Theorem 4.20. In the (ri,...,76)-TRSVING &, the following state-
ment is satisfied.

25(8) + O(®) = (pr1, ..., pre) where p = |Y].

Corollary 4.21. Assume that & be a (v1,...,t6)-RSVING and (ti,...,t5)-
TRSVING. Then

O(®) = (p(ts —t1),...,p(ts — v6))

Proof. from and
= (pfl, . ,pt(;) — (ptl, . ,ptﬁ)
= (p(t1 —v1),...,p(ts —v6))
O

Definition 4.22. The edge degree of an edge ab(ED) in the SVING
& = (M, N) is expressed by

de(ab) = (d¥_(ab),dX_(ab),dX (ab),ds, (ab),d5, (ab),d3, (ab))

where
dx (ab) = dy (a) +d5  (b) — 2T5(ab)
dy (ab) = dX (a)+dX (b) — 235 (ab)
dX (ab) = dy (a) + d5 (b) — 23 (ab)
dy, (ab) = di, (a) + dg, (b) — 2T (ab)
dy, (ab) = d3, (a) + d5, (b) — 2Tgy(ab)
dg,, (ab) = d5, (a) + d5,, (b) — 235 (ab).
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Definition 4.23. The total edge degree of an edge ab (TED) in the
SVING & = (91, ) is presented by

tdg(ab) = (td¥ (ab),td} (ab),tdy (ab),tds, (ab),tds, (ab),tdg, (ab))
where
tdém(ab) = dém (ab) + T (ab)
= d¥ (a)+d¥ (b) — 2Ty (ab) + Ty(ab)
= dX_ (a) +d¥ (b) —TX(ab)

tdy, (ab) = d3_(ab) + I (ab)
= d%‘m (a) + d%(sm (b) — 233, (ab) + T3, (ab)
=dj (u) +d5 (b) — T5(ab)

tdX (ab) = d (ab) + §y(ab)
=dy (a) +dg (b) — 235 (ad) + Ty (ab)
= dX, (a) +d¥, (b) — §(ab)

tdy, (ab) = dy, (ab) + Tyy(ab)
= dy, (a) +d{,_(b) — 2T5(ab) + Tyy(ab)
= dg,, (u) + dg,, (b) — Ty (ab)

tdy, (ab) = d3, (ab) + Jg(ab)
= dy, (a) + d3, (b) — 235 (ab) + Ty (ab)
= dy,, (a) + d3,, (b) — T(ab)

td? (ab) = d¥, (ab) + F(ab)
=dy (a) +dg, (b) — 2§%(ab) + F5(ab)
— d¥ (a) + ¥ (b) — §h(ab).

Definition 4.24. If the ED of any edge in SVING & be [ = ({3, Io, I3, l4, [5, ),
then & is said to be an edge regular SVING of degree [ (ERSVING).

If TED of any edge in & be the same [, then & is said to be a totally
edge regular SVING (TERSVING).
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5. IRREGULAR SVING

Finally, we discuss the concept of irregularity in SVING, and establish
the corresponding theorems.

Definition 5.1. If in the SVING & there is a node that is adjacent
to nodes with distinct degrees, then & is called to be Irreqular SVING
(ISVING).

Definition 5.2. If in the SVING & there is a node that is adjacent to
nodes with distinct total degrees, then & is said to be Totally Irregular
SVING (TISVING).

Example 5.3. Considera SVING & such that U = {a,b,c,d} , € =
{ab, bc, ac}. From figure 2

0.4,0,3,0.1,05,0.6,0.7] [0.5,0.1,0.3,0.4,0.6,0.4)

a [0.4,0,5,0.3,0.5,0.6,0.4) b
. .
P
(0.4 rd
e
/'//
p
7
s (0.5,0.3,0.4,0,3,0,5,0.2)
P
pd
e
-
P
[

4

10.6,0.3,0.2,0.1,0.5,0.1]

FIGURE 2. Example of Irregular SVING &.

de(a) = (0.8,1.0,0.5,0.9,1.1,0.5)
de(b) = (0.9,0.8,0.7,0.8,1.1,0.6)
de(c) = (0.9,0.8,0.6,0.7,1.0,0.3)
tde(a) = (1.2,1.3,0.6,1.4,1.7,1.2)
tde(b) = (1.4,0.9,1.0,1.2,1.7,1.0)
tde(c) = (1.5,1.1,0.8,0.8,1.5,0.4)

Hence, & is an ISVING.
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Definition 5.4. If in the connected SVING & the degree of each pair of
adjacent nodes be different, then & is called to be a neighbourly irregular
SVING (NISVING).

Definition 5.5. If in the connected SVING & the TD of each pair of
adjacent nodes be distinct, then & is called to be a neighbourly totally
irregular SVING (NTISVING).

Definition 5.6. A connected SVING & is called a strongly irregular
SVING (SISVING), If the degree of every each pair of nodes be distinct.

Definition 5.7. A connected SVING & is called a strongly totally ir-
reqular SVING (STISVING), If the TD of every each pair of nodes be
distinct.

Definition 5.8. A connected SVING @& is called a highly irregular SV-
ING (HISVING) If each node is next to the nodes with different degrees.

Definition 5.9. A connected SVING & is called a highly totally irregular
SVING (HTISVING) If each node is next to the nodes with different TD.

Definition 5.10. If in the connected SVING & the ED of each pair
of adjacent edges be different, then & is said to be a neighbourly edge
irregular SVING (NEISVING).

Definition 5.11. If in the connected SVING & the TED of each pair
of adjacent edges be different, then & is said to be a neighbourly edge
totally irregular SVING (NETISVING).

Example 5.12. Consider SVING & with U = {a,b,c¢,d} and & =
{ab, be, cd, ad} in figure E

de(a) = (0.3,0.8,1,0.8,0.4,0.2)
de(b) = (0.3,0.8,1,0.8,0.4,0.2)
de(c) = (0.3,0.8,1,0.8,0.4,0.2)
de(d) = (0.3,0.8,1,0.8,0.4,0.2)
de(ab) = (0.5,1.2,1.5,1.2,0.6,0.3)

<

s(bc) = (0.2,0.8,1,0.8,0.4,0.2)
s(cd) = (0.4,0.8,1,0.8,0.4,0.2)
s(ad) = (0.4,0.8,1,0.8,0.4,0.2).
Here, & is a NEISVING. TED of the edges as follows:
tdg(ab) = (0.6,1.6,2,1.6,0.8,0.4)
tdg(bc) = (0.4,1.2,1.5,1.2,0.6,0.3)
tde(cd) = (0.5,1.2,1.5,1.2,0.6,0.3)
tde(ad) = (0.6,1.2,1.5,1.2,0.6,0.3).

QO
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(0.2,0.3,0.5,0.3,0.4,0.3) (0.2,0.4,0.3,0.4,0.2,0.1)

a b

(0.1,0.4,0.5,0.4,0.2,0.1)

(10Z0%0'50%02'0)

(0.2,04,05,04,02,0.1)

d (0.1,0.4,0.5,0.4,0.2,0.1)

(0.2,0.4,0.3,0.4,0.2,0.1) (0.2,0.3,0.5,0.3,0.4,0.3)

F1GURE 3. Both NEISVING and NETISVING

We can see that & is NETISVING.
Hence, & is both NEISVING and NETISVING.

Example 5.13. NEISVING do not need to be NETISVING. see figure

(0.4,02,0.5,0.2,0.5,0.3)

b

(0.3,0.2,05,02,0.4,0.3)

(0.4,0.3,0.1,0.5,0.6,0.7) (0.5,0.4,0.3,0.1,02,0.2)

FIGURE 4. & is a NISVING, but & is not a NTISVING
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de(d) = (0.8,0.9,1.3,0.8,1.0, 1)
de(a) = (0.3,0.3,0.4,0.5,0.4,0.5)
de (b) = (0.3,0.2,0.5,0.2,0.4,0.3)
de(c) = (0.2,0.4,0.4,0.1,0.2,0.2)
de (bd) = (0.5,0.7,0.8,0.6,0.6,0.7)
de (ad) = (0.5,0.6,0.9,0.3,0.6, 0.5)
de(cd) = (0.6,0.5,0.9,0.7,0.8,0.8).

tdg(bd) = (0.8,0.9,1.3,0.8,1,1)

tdg(ad) = (0.8,0.9,1.3,0.8,1,1)

tdg(cd) = (0.8,0.9,1.3,0.8,1,1).
Here,

de(ad) # de(bd) # de(cd).
Hence, & is a NEISVING. But it is not a NETISVING.

Example 5.14. Consider & = (9,M7) be a SVING such that U =
{a,b,c,d}. see figure

10.7,0.2,0.2,0.3,0.4,0.05] 0.6,0.2,0.3,0.6,0.8,0 4] 0.50.1,0.20.3,0.9,0.1) [0.4,0.20.3,0.1,0.4,0.4]
a b c d
. . . .
[0.1,0.2,0.40.3,0.4,0.1) 0.2,0 40.8,0.60.80.2) [0.1,0.2,0.40.3,0 .40.1)

FIGURE 5. & is a NETISVING, but & is not a NEISVING

de(a) = (0.1,0.2,0.4,0.3,0.4,0.1)
de(b) = (0.3,0.6,1.2,0.9,1.2,0.3)
de(c) = (0.3,0.6,1.2,0.9,1.2,0.3)
de(d) = (0.1,0.2,0.4,0.3,0.4,0.1)
de (ab) = (0.2,0.4,0.8,0.6,0.8,0.2)
de (bc) = (0.2,0.4,0.8,0.6,0.8,0.2)
de(cd) = (0.2,0.4,0.8,0.6,0.8,0.2)

tde(ab) = (0.3,0.6,1.2,0.9,1.2,0.3)
tde(bc) = (0.4,0.8,1.6,1.2,1.6,0.4)
tde(cd) = (0.3,0.6,1.2,0.9,1.2,0.3).
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Here, dg(ab) = dg(bc) = dg(cd). Hence, & is not a NEISVING. But &
is a NETISVING.

Theorem 5.15. Let & = (MM, N) be a connected SVING and N is a
CF. Then & is a NEISVING if and only if & is a NETISVING.

Proof. Assume that 9 is a CF. Let (ab) = (c1,-- - ,cg), for all ab € €,
where cq, - - -, cg are constant. Let & be a NEISVING. Let ab and bc be
a pair of adjacent edges, then

dg(ab) # dg(bc) <= dg(ab) + (c1, ..., c6) # dg(be) + (c1, ..., ¢6)
(dém(ab),d%(m b),d ( b), dgm(ab) djm(ab) dgm(ab)) (c1,...,¢p)

(a
£ (dTm (bc),d)j(m( c), Sm(bc)’dfm (bc),djm (bc),dgm(bc)) (c1y...,¢6)
(
)

X
= (dy,(ab) +c1,d5 (ab) + c2,d5 (ab) + e, dy, (ab) + cy,dy, (ab) + c5, dy, (ab) + c)

# (d¥, (be) + c1, dX(be) + ca, dX_ (be) + c3, i, (be) + ca, 5, (be) + s, dg, (be) + co)

= (dX (ab) + TX n(ab), d§m(ab) + Ty (ab), d§m (ab) + Ty (ab),
dy (ab) + Ty(ab), d3, (ab) + Iy (ab), d3, (ab) + Fy(ab))

# (dX_ (be) +TX(be), dX_ (be) + 5 (be), dX (be) + F(be),

dy, (be) + Tyi(be), dy, (be) + T (be), dy, (be) + Fa(be))

= (tdX, (ab),tdX (ab),tdy (ab),tds, (ab),tds, (ab),tds, (ab))
# (tdx_(be),tdX_(be),tdy (be),tdg, (be),tds, (be), tdg, (be))

< tdg(ab) # tde(be).

Therefore ED of every pair of adjacent edges is different iff TED of every
pair of adjacent edges is different. Hence, & is a NEISVING iff & is a
NETISVING. O

Remark 5.16. If a connected SVING & be both NEISVING and NETISV-
ING, then it is not necessary for 91 to be a CF.

Example 5.17. Consider & = (9,91) be an SVING as shown in figure
. We have
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(0.6,0.2,0.3,0.1,0.4 0.4) (0.7,02,02,0.3,05,05 (05,01,0.2,03,04,0.1) (0.4,0.2,0.3,0.1,0.5,0.4)
u ¥ W x

. . - ]
0.4,02,03,03,04,04] ([0502,04,03,04,01] (0.4,02,03,03,04,0.4

FIGURE 6. 91 is not a constant function.

de(u) = (0.4,0.2,0.3,0.3,0.4,0.4)
de(z) = (0.4,0.2,0.3,0.3,0.4,0.4)
de(v) = (0.9,0.4,0.7,0.6,0.8,0.5)
de(w) = (0.9,0.4,0.7,0.6,0.8,0.5)

de(uv) = (0.5,0.2,0.4,0.3,0.4,0.1)
de(vw) = (0.8,0.4,0.6,0.6,0.8,0.8)
de(wz) = (0.5,0.2,0.4,0.3,0.4,0.1)

tde ( (0.9,0.4,0.7,0.6, 0.8,0.5)
de (vw) = (1.3,0.6,1,0.9,1.2,0.9)
de(wz) = (0.9,0.4,0.7,0.6,0.8,0.5).

uv)

~+

Here, dg(uv) # dg(vw) and dg(vw) # dg(wx). Hence, & is a NEISV-
ING. Also, tdg(uv) # tds(vw) and tdg(vw) # tds(wx). Hence, & is a
NETISVING. But 91 is not CF.

Theorem 5.18. Let & = (MM, N) be a connected SVING and N is a
CF. If & is a SISVING, then & is a NEISVING.

Proof. Let & = (M, N) be a connected SVING. Assume that 0N is CF.
Let 9(uv) = (cy,...,cq), for each uv € €, such that cy,--- ,cg are con-
stants. Let uv and vtv be any two adjacent edges in &. Also let &
is SISVING. Then the degree of each pair of nodes in & is different.
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Therefore
de(u) # de(v) # ds (1)
— (dX (), d5 (w),dY (w),dg, (w),d5, (u),d5, ()
# (d (v),d} (v),d5 (v),d3, (0),d5, (b),dg, (0))
# (dy, (w),d} (w),dy (w),dg, (0),d5, (v),dy, (w0))
— (d¥ (), dX (w),d¥ (w),dg, (w),d5, (w),d5, (u))
+(dX (0),d3 (v),dX (v),d3, (0),d5) (b),d3, (0)) = 2(c1,. .., c6)
# (d¥, (0),dX (v),d} (v),dg, (v),d5, (b),ds, (0))
+(dX (0),d3 (w),dX (w),d3, (),d5, (1),dg, () —2(c1,. .., cq)
= (dg,, () +d3_ (v) — 2c1, d%(m () +d5  (0) — 2¢2,d5 (1) + d%?m (b) — 2cs,
dz,, (u) + d3,, (0) — 2¢4, d3, (u) + d‘jym( ) — 25, dg, () + d, (b) — 2cq)
# (dy,, (0) +dz, () = 2c1,d3 (0) +d5 (w) — 2ca,d5, (0) +d5 () — 2c3,
d3,,(0) + dg,, (w) — 2cq,d5, (v )+dj (o) — 205,dgm( )+d§A(m) — 2¢)
= (dy,, (u) +d3 (v) = 2%5(uv), d5 (u) +dy (0) — 205 (u0),dy (1) +d5 (v) — 255 (uv),
ds,, (u) + d3,, (0) — 2T (wv), d5, (u) + d5, (b) — 205 (u0), d5, (u) + dg, (0) — 235 (uv))
# (dy,, (0) + dy () — 2%5(ow), dy (v) +d5 () — 235 (o), d5 (0) +dy (1) — 255 (0w),
d3,, (0) + dg,, (w) — 2T5(ow), d5, (v) + d5, (w) — 235 (vw), dy, (0) + dg, (1) — 2F5(vw))
— (dX, (uv),dX (uv),dY (uv),ds, (uv),dy, (uo),dg, (uv))
# (dX_(ow),dX (ow),dy (ow),ds, (vw),d5 (vw), dg, (bt)).
de (uv) # de (i)

Therefore the ED of each pair of adjacent edges is different. Hence, &
is a NEISVING. O

Theorem 5.19. Let & = (M, N) be a connected SVING and N is a
CF. If & is a SISVING, then & is a NETISVING.

Theorem 5.20. Let & = (MM, N) be a connected SVING and N(uv) =
(c1,...,¢c6) be CF. If & is RSVING, then & is TERSVING.

Proof. Let & = (MM, N) be a (,...,¥¢)-regular SVING and DN(uv) =
(c1,...,c6) for all uv € &, where c¢y,...,cs are constants. We have to
prove that & is TERSVING. Therefore,

td@(un) = (2?1 — Cq, 2?2 — Cg, 2?3 — C3, 2?4 — C4, 2?5 — Cs, 296 — CG).

Hence, ® is TERSVING. O
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Remark 5.21. The converse of the theorem M is not true.

6. CONCLUSION

As a powerful tool for dealing with ambiguous data, neutrosophic
sets have many applications in computer science, medicine, etc. In this
paper, the notion of SVINS is propounded. Then, by combining this
concept with graph theory, SVING is introduced. SVING has many
applications in various fields. For example it can be referred to its various
applications in Computer Science etc. Also, the concepts of degree, total
degree of each node in SVINGs are presented. Then, irregularity and
neighbourly irregularity on the SVING were expressioned and the issues
are investigated.
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