
Caspian Journal of Mathematical Sciences (CJMS)
University of Mazandaran, Iran
http://cjms.journals.umz.ac.ir
https://doi.org/10.22080/cjms.2024.28196.1733

Caspian J Math Sci. 14(1)(2025), 30-41 (Research Article)

Solving nonlinear partial differential equations of
fractional order using an analytical method

Mahdi Karder 1
1 Department of Mathematics, Faculty of Basic Sciences,

University of Zabol, Zabol, Iran

Abstract. In this article, we use an analytical method based on
the solutions of the Riccati equation to solve nonlinear partial differ-
ential equations of fractional order. In this method, we first convert
the fractional partial differential equations into an ordinary differ-
ential equation using Riemann-Liouville derivatives and a suitable
transformation, then we consider the solutions of these equations
as a finite series and using the solution of the equation Riccati’s
differential, we get the desired solutions. In this method, different
types of solutions such as trigonometric, hyperbolic and exponen-
tial solutions are obtained. The results show that the method used
in this article is very useful and effective for obtaining the solutions
of fractional partial differential equations.

Keywords: Riemann-Liouville fractional derivative, Mittag lef-
fler -Leffler function, Klein-Gordon equation, biological population
model equation.

2000 Mathematics subject classification: 35XX; 35QXX.

1Corresponding author: mahdi.karder@uoz.ac.ir
Received: 11 December 2024
Revised: 11 December 2024
Accepted: 23 December 2024
How to Cite: Karder, Mahdi. Solving nonlinear partial differential equations of
fractional order using an analytical method, Casp.J. Math. Sci.,14(1)(2025), 30-41.
This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2025 by University of Mazandaran. Subbmited for possible open access
publication under the terms and conditions of the Creative Commons Attribution(CC BY)
license(https://craetivecommons.org/licenses/by/4.0/)

30

http://cjms.journals.umz.ac.ir
https://doi.org/10.22080/cjms.2024.28196.1733


Solving nonlinear partial differential equations 31

1. Introduction

Mathematical models of scientific events are usually expressed by non-
linear differential equations. These equations play an important role in
physics, engineering and applied mathematics to describe various types
of physical mechanisms of natural phenomena in the fields of applied
sciences, biochemistry, dynamic systems, etc. In recent years, a lot of
research has been done to obtain analytical solutions of nonlinear dif-
ferential equations, and effective and efficient methods for solving these
types of equations have been presented so that we can use their solutions
to investigate the behavior and properties of real phenomena.

In many of these methods, partial differential equations are converted
to ordinary differential equations using a suitable transformation. Some
of these methods are:

Sine-cosine method [14], Miura transform method [15], Darbox trans-
form method [12], Hirota transform method [2], homogeneous balance
method [6], homotopy perturbation method [4], G′

G2 -expansion method
[8], exponential function method [10], Kudryashev method [11], Fan sub-
equation method [17] and so on. In the last few decades, fractional dif-
ferential equations have been the research of many scientists due to their
many applications in science and engineering. These equations are based
on integrals and derivatives of fractional order. Fractional differential
equations have many applications in physics, chemistry, economics, med-
ical engineering, biological sciences, image processing, etc. There are
several definitions regarding the concepts of integral and derivative of
non-integer order, the most important of which are Riemann-Liouville
derivative, Caputo derivative, Hilfer derivative, and Grand-Letnikoff de-
rivative. In this article, we examine two fractional differential equations
as follows and obtain their analytical solutions.

Klein-Gordon fractional differential equation:

∂2 αu

∂t2 α
− ∂2 αu

∂x2 α
+ γu+ βu3 = 0 0 < α < 1, (1.1)

where α and β are constant numbers.
Fractional differential equation of biological population model:

∂2 αu

∂t2 α
−

(
u2
)
xx

−
(
u2
)
yy

− h
(
u2 − r

)
= 0 0 < α < 1, (1.2)

which ∂αu
∂tα is the Riemann-Liouville derivative as follows

∂αu

∂tα
=

1

Γ(1− α)

d

dt

∫ t

0
(t− η)−α [u (η)− u (0)] dη, (1.3)

and
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∂αu

∂tα
=
(
uα−n (t)

)n
n ≤ α < n+ 1, n ≥ 1. (1.4)

Some of the useful and interesting properties of this derivative are as
follows: 

∂αtθ

∂tα = Γ(θ+1)
Γ(θ−α+1) t

θ−α,
∂α

∂tα [f (t) g (t)] = g (t) ∂αf(t)
∂tα + f(t)∂

αg(t)
∂tα

∂α

∂tα [f(g (t))] = f ′
g [g (t)]

∂α

∂tα g (t) ,

(1.5)

where Γ(.) is Euler’s gamma function, which is defined as follows:

Γ (z) =

∫ ∞

0
e−ttz−1dt . (1.6)

In the Klein-Gordon equation, the fraction is one of the most im-
portant mathematical models in quantum. This equation appears in
relativity physics and describes the phenomenon of wave propagation.
Also, this equation has many uses in the fields of plasma physics and
optics. The fractional Klein-Gordon equation has been investigated by
many researchers. Among others, we can refer to the fractional equa-
tion method [5], Kordyashev’s improved method [3], and the variation
repetition method [16].

The equation of the biological population model has also been studied
by many scientists with methods such as the fractional sub-equation
method [9], the method of repeating changes [17], and the homotopy
analysis method [13].

This article is written as follows:
1. In section 2, we describe the analytical method presented for solving
non-linear partial differential equations of fractional order.

2. In section 3, we solve the given fractional partial differential equa-
tions with the described method.

3. In section 4, the conclusion of the article is given.

2. Description of the analytical method for solving
nonlinear partial differential equations of fractional

order

In order to obtain the solutions of nonlinear partial differential equa-
tions of fractional order, we act as follows:

Step 1- Suppose the fractional differential equation is as follows:

P

(
u,

∂αu

∂xα
,
∂αu

∂tα
,
∂2 αu

∂x2 α
,
∂2 αu

∂t2 α
, · · ·

)
= 0 (2.1)
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With a suitable transformation, this equation becomes an ordinary dif-
ferential equation in terms of u = u(ξ) as follows:

Q
(
u, u′, u′′, u′′′, · · ·

)
= 0. (2.2)

Step 2- We consider the solutions of equation (2.2) as follows:

u (ξ) =

n∑
i=0

ai(φ (ξ))i an ̸= 0 (2.3)

where ai’s are the constants that we have to calculate and φ(ξ) applies
in the Riccati equation as follows:

r1φ
′ (ξ)− r2φ

2 (ξ)− r3φ (ξ)− r4 = 0. (2.4)

The solutions to equation (2.4) are as follows:
Case 1. For r = r23 − 4r2r4 > 0 and r3 ̸= 0 we have:

φ (ξ) = − r3
2r2

−
√
r

2r2

c1sinh
(√

r
2r1

ξ
)

+ c2cosh
(√

r
2r1

ξ
)

c1cosh
(√

r
2r1

ξ
)

+ c2sinh
(√

r
2r1

ξ
) .

Case 2. For r = r23 − 4r2r4 < 0 and r3 ̸= 0 we have:

φ (ξ) = − r3
2r2

−
√
−r

2r2

c2cos
(√

−r
2r1

ξ
)

− c1sin
(√

−r
2r1

ξ
)

c1cos
(√

−r
2r1

ξ
)

+ c2sin
(√

−r
2r1

ξ
) .

Case 3. For r = r23 − 4r2r4 = 0 and r3 ̸= 0 we have:

φ (ξ) = − r3
2r2

+
c2

c1 + c2ξ
.

Case 4. For t = r2r4 < 0 and r3 = 0 we have:

φ (ξ) = −
√
−t

r2

c1sinh
(√

−t
r1

ξ
)
+ c2cosh

(√
−t
r1

ξ
)

c1cosh
(√

−t
r1

ξ
)
+ c2sinh

(√
−t
r1

ξ
) .

Case 5. For t = r2r4 > 0 and r3 = 0 we have:

φ (ξ) = −
√
t

r2

c2cos
(√

t
r1
ξ
)

− c1sin
(√

t
r1
ξ
)

c1cos
(√

t
r1
ξ
)

+ c2sin
(√

t
r1
ξ
) .

Case 6. For r4 = 0 we have:

φ (ξ) =
c1r

2
3exp

(
− r3

r1
ξ
)

−r1r2 + c1r1r3exp
(
− r3

r1
ξ
) ,
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Case 7. For r3 ̸= 0 and r2 = 0 we have:

φ (ξ) = −r4
r3

+ c1exp

(
−r3
r1
ξ

)
.

Case 8. For r2 = r3 = 0 we have:

φ (ξ) = c1 +
r4
r1
ξ.

Case 9. For r1 = r2 and r3 = r4 = 0 we have:

φ (ξ) = − 1

c1 + ξ
.

The number n in equation (2.3) is obtained by balancing between the
highest order of the derivative and the highest nonlinear term in equa-
tion (2.2).

Step 3. By inserting relation (2.3) in equation (2.2) with the value
of n obtained in step 2, equation (2.2) is obtained as a polynomial in
terms of powers of φ(ξ). By setting the power coefficients of φ(ξ) equal
to zero, a system is obtained in terms of the constants ai(1 ≤ i ≤ n)
and ri(1 ≤ i ≤ 4).

Step 4. By solving the algebraic system obtained in step 3 with the
help of Mathematica software, we place the obtained answers in equation
(2.3).

3. Applications of the presented method for solving
nonlinear partial differential equations of fractional

order

3.1. Klein-Gardan partial differential equation of fractional or-
der. In this section, we consider the Klein-Gardan differential equation
as follows:

∂2 αu

∂t2 α
− ∂2 αu

∂x2 α
+ γu+ βu3 = 0 0 < α < 1, (3.1)

where γ and β are fixed numbers. Using conversion

u (x, t) = u (ξ) ; ξ =
kxα

Γ(α+ 1)
− c tα

Γ (α+ 1)
, (3.2)

where c is the wave speed and based on relations (1.3) to (1.6) of equation
(3.1) it becomes the following ordinary differential equation:(

c2 − k2
)
u′′ (ξ) + γu+ βu3 = 0. (3.3)

By balancing between the sentences u3 and u′′, we can write:
3 n = n+ 2 ⇒ n = 1.
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Therefore from (2.3) we have:
u (ξ) = a0 + a1φ (ξ) . (3.4)

By placing relation (3.4) in (3.3) based on step 3, we have the following
equations:

γ a0 + β a30 +
(c2−k2)r3 r4 a1

r21
= 0,

γ a1 + 3 β a20 a1 +
(c2−k2)r23 a1

r21
+

2 (c2−k2) r2 r4 a1

r21
= 0,

3 β a0 a21 +
3 (c2−k2)r2 r3 a1

r21
= 0,

β a31 +
2 (c2−k2) r22 a1

r21
= 0,

By solving this system, we get the following solutions for equation
(3.3).
a) The first set of answers is:

r1 ̸= 0, r2 ̸= 0, r3 = 0, r4 ̸= 0, c =

√
k2 − r21γ

2r2r4
, a0 = 0, a1 =

√
r2γ

r4β
,

(3.5)
According to the conditions obtained for ri(1i4), according to the fourth
and fifth states of the solutions of equation (2.4), the solutions of equa-
tion (3.1) based on equation (3.4) are obtained as follows:

u1 (x, t) =

√
−γ

β

c1sinh
[√

−r2r4
r1

(
(kxα−ctα)
Γ(α+1)

)]
+ c2cosh

[√
−r2r4
r1

(
(kxα−ctα)
Γ(α+1)

)]
c1cosh

[√
−r2r4
r1

(
(kxα−ctα)
Γ(α+1)

)]
+ c2 sinh

[√
−r2r4
r1

(
(kxα−ctα)
Γ(α+1)

)] .
(3.6)

By arbitrary selection of coefficients, some special solutions can be ob-
tained as follows:

u2 (x, t) =

√
−γ

β
tanh

[√
−r2r4
r1

(
(kxα − ctα)

Γ (α+ 1)

)]
; c1 ̸= 0. c2 = 0,

(3.7)

u3 (x, t) =

√
−γ

β
coth

[√
−r2r4
r1

(
(kxα − ctα)

Γ (α+ 1)

)]
; c1 = 0. c2 ̸= 0,

(3.8)

u4 (x, t) = −
√

γ

β

−c1sin
[√

r2r4
r1

(
(kxα−ctα)
Γ(α+1)

)]
+ c2cos

[√
r2r4
r1

(
(kxα−ctα)
Γ(α+1)

)]
c1cos

[√
r2r4
r1

(
(kxα−ctα)
Γ(α+1)

)]
+ c2sin

[√
r2r4
r1

(
(kxα−ctα)
Γ(α+1)

)] .

(3.9)
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In this case, the following solutions can be obtained by choosing the
coefficients as desired.

u5 (x, t) =

√
γ

β
tan

[√
r2r4
r1

(
(kxα − ctα)

Γ (α+ 1)

)]
; c2 = 0, c1 ̸= 0, (3.10)

u6 (x, t) = −
√

γ

β
cot

[√
r2r4
r1

(
(kxα − ctα)

Γ (α+ 1)

)]
; c1 = 0, c2 ̸= 0. (3.11)

b) The second set of answers is:

r1 ̸= 0, r2 ̸= 0, r3 ̸= 0, r4 = r4, r23 − 4r2r4 ̸= 0,

c =

√
k2 +

2r21γ

r23 − 4r2r4
, a0 =

√
2r2r4 (k2 − c2)− r21γ

r1
√
β

,

a1 =
2r2

√
2r2r4 (k2 − c2)− r21γ

r1r3
√
β

, (3.12)

According to the first, second and sixth cases, from the solutions of
equation (2.4), the solutions of equation (3.1) are obtained as follows:

u7 (x, t) =

√
2r2r4 (k2 − c2)− r21γ

r1
√
β

+
2r2

√
2r2r4 (k2 − c2)− r21γ

r1r3
√
β

×

− r3
2r2

−
√
r

2r2

c1sinh
[ √

r
2 r1

(
(kxα−ctα)
Γ(α+1)

)]
+ c2cosh

[√
r

2r1

(
(kxα−ctα)
Γ(α+1)

)]
c1cosh

[ √
r

2 r1

(
(kxα−ctα)
Γ(α+1)

)]
+ c2sinh

[ √
r

2 r1

(
(kxα−ctα)
Γ(α+1)

)]


(3.13)

Our special solutions in this case are:

u8 (x, t) =

√
2r2r4 (k2 − c2)− r21γ

r1
√
β

+
2r2

√
2r2r4 (k2 − c2)− r21γ

r1r3
√
β

×
[
− r3
2r2

−
√
r

2r2
tanh

[ √
r

2 r1

(
(kxα − ctα)

Γ (α+ 1)

)] ]
; c2 = 0, c1 ̸= 0, (3.14)

u9 (x, t) =

√
2r2r4 (k2 − c2)− r21γ

r1
√
β

+
2r2

√
2r2r4 (k2 − c2)− r21γ

r1r3
√
β

×
[
− r3
2r2

−
√
r

2r2
coth

[ √
r

2 r1

(
(kxα − ctα)

Γ (α+ 1)

)] ]
; c1 = 0, c2 ̸= 0, (3.15)
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u10 (x, t) =

√
2r2r4 (k2 − c2)− r21γ

r1
√
β

+
2r2

√
2r2r4 (k2 − c2)− r21γ

r1r3
√
β

×

− r3
2r2

−
√
−r

2r2

−c1sin
[√

−r
2 r1

(
(kxα−ctα)
Γ(α+1)

)]
+ c2cos

[√
−r

2r1

(
(kxα−ctα)
Γ(α+1)

)]
c1cos

[√
−r

2 r1

(
(kxα−ctα)
Γ(α+1)

)]
+ c2sin

[√
−r

2 r1

(
(kxα−ctα)
Γ(α+1)

)]
 ,

(3.16)

u11 (x, t) =

√
2r2r4 (k2 − c2)− r21γ

r1
√
β

+
2r2

√
2r2r4 (k2 − c2)− r21γ

r1r3
√
β

×
[
− r3
2r2

+

√
−r

2r2
tan

[√
−r

2 r1

(
(kxα − ctα)

Γ (α+ 1)

)] ]
; c2 = 0, c1 ̸= 0,

(3.17)

u12 (x, t) =

√
2r2r4 (k2 − c2)− r21γ

r1
√
β

+
2r2

√
2r2r4 (k2 − c2)− r21γ

r1r3
√
β

×
[
− r3
2r2

−
√
−r

2r2
cot

[√
−r

2 r1

(
(kxα − ctα)

Γ (α+ 1)

)] ]
; c1 = 0, c2 ̸= 0, (3.18)

u13 (x, t) =

√
2r2r4 (k2 − c2)− r21γ

r1
√
β

+
2r2

√
2r2r4 (k2 − c2)− r21γ

r1r3
√
β

×

 c1r
2
3exp

[
−r3
r1

(
(kxα−ctα)
Γ(α+1)

)]
−r1r2 + c1r1r3exp

[
−r3
r1

(
(kxα−ctα)
Γ(α+1)

)]
 . (3.19)

3.2. Fractional order biological population model equation. In
this section, we consider the equation of the biological population model
as follows:

∂αu

∂tα
=

(
u2

)
xx

+
(
u2

)
yy

+ h
(
u2 − r

)
(3.20)

where h and r are real numbers. By using the following transformation

u (x, y, t) = u (ξ) ; ξ = νx+ iνy − ctα

Γ (α+ 1)
(3.21)

on which v, c are constant and i2 = −1, equation (3.20) is transformed
as follows:

cu′ + hu2 − hr = 0. (3.22)
By balancing and using relation (2.3) we can write:

u (ξ) = a0 + a1φ (ξ) , (3.23)
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Now, by inserting (3.23) into equation (3.22) based on step 3 of the
system, we have the following equations:

− h r + h a20 +
c r4 a1

r1
= 0,

c r3 a1
r1

+ 2 h a0 a1 = 0,

c r2 a1
r1

+ h a21 = 0.

By solving this system, we have the following solutions for equation
(3.22): a) The first set of solution is:

r1 = r2, r2 ̸= 0, r3 = 0, r4 ̸= 0, c =
i hr1

√
r

√
r2r4

, a0 = 0, a1 =
hr1r

cr4
.

(3.24)
Therefore, the solutions of equation (2.4) can be obtained:

u1 (x, y, t) = −hr1r
√
−r2r4

cr2r4

c1sinh
[√

−r2r4
r1

(
νx+ iνy − ctα

Γ(α+1)

)]
+ c2cosh

[√
−r2r4
r1

(
νx+ iνy − ctα

Γ(α+1)

)]
c1cosh

[√
−r2r4
r1

(
νx+ iνy − ctα

Γ(α+1)

)]
+ c2sinh

[√
−r2r4
r1

(
νx+ iνy − ctα

Γ(α+1)

)]
(3.25)

Using arbitrary selection of coefficients, special solutions can be obtained
as follows:

u2 (x, y, t) = −hr1r
√
−r2r4

cr2r4
tanh

[√
−r2r4
r1

(
νx+ iνy − ctα

Γ (α+ 1)

)]
,

c1 ̸= 0, c2 = 0, (3.26)

u3 (x, y, t) = −hr1r
√
−r2r4

cr2r4
coth

[√
−r2r4
r1

(
νx+ iνy − ctα

Γ (α+ 1)

)]
,

c1 = 0, c2 ̸= 0, (3.27)

u4 (x.y.t) = −
hr1r

√
r2r4

cr2r4

−c1sin
[√

r2r4
r1

(
νx+ iνy − ctα

Γ(α+1)

)]
+ c2cos

[√
r2r4
r1

(
νx+ iνy − ctα

Γ(α+1)

)]
c1cos

[√
r2r4
r1

(
νx+ iνy − ctα

Γ(α+1)

)]
+ c2sin

[√
r2r4
r1

(
νx+ iνy − ctα

Γ(α+1)

)]
(3.28)
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With arbitrary selection of coefficients, we have

u5 (x, y, t) =
hr1r

√
r2r4

cr2r4
tan

[√
r2r4
r1

(
νx+ iνy − ctα

Γ (α+ 1)

)]
,

c1 ̸= 0, c2 = 0, (3.29)

u6 (x.y.t) = −
hr1r

√
r2r4

cr2r4
cot

[√
r2r4
r1

(
νx+ iνy − ctα

Γ (α+ 1)

)]
,

c1 = 0, c2 ̸= 0. (3.30)

b) The second set of solutions is:

r1 ̸= 0, r2 ̸= 0, r3 = 0, r4 = 0, h ̸= 0, r = 0, a0 = 0, a1 =
cr2
hr1

.

(3.31)
Therefore, from the ninth state, we have the following solution to equa-
tion (2.3):

u7 (x, y, t) =
cr2
hr1

1

c1 + (νx+ iνy − ctα

Γ(α+1))
. (3.32)

c) The third set of solutions to (3.22) is:

r1 ̸= 0, r2 ̸= 0, r3 ̸= 0, r4 ̸= r4, r23 − 4r2r4 ̸= 0, a0 = − cr3
2 hr1

,

a1 = − cr2
hr1

. (3.33)

Therefore, from the first and second cases, we have the solutions of
equation (2.3) as follows:

u8 (x, y, t) = − cr3
2 hr1

+
cr2
hr1[

r3
2r2

+

√
r

2r2

c1sinh
[ √

r
2 r1

(
νx+ iνy − ctα

Γ(α+1)

)]
+ c2cosh

[ √
r

2 r1

(
νx+ iνy − ctα

Γ(α+1)

)]
c1cosh

[ √
r

2 r1

(
νx+ iνy − ctα

Γ(α+1)

)]
+ c2sinh

[ √
r

2 r1

(
νx+ iνy − ctα

Γ(α+1)

)]
 .

(3.34)



40 Mahdi Karder

Special solutions in this case are:

u9 (x, y, t) = − cr3
2 hr1

+
cr2
hr1

[
r3
2r2

+

√
r

2r2
tanh

[ √
r

2 r1

(
νx+ iνy − ctα

Γ (α+ 1)

)]
],

c1 ̸= 0, c2 = 0, (3.35)

u10 (x, y, t) = − cr3
2 hr1

+
cr2
hr1

[
r3
2r2

+

√
r

2r2
coth

[ √
r

2 r1

(
νx+ iνy − ctα

Γ (α+ 1)

)]
],

c1 = 0, c2 ̸= 0, (3.36)

u11 (x, y, t) = − cr3
2 hr1

+
cr2
hr1[

r3
2r2

+

√
−r

2r2

−c1sin
[√

−r
2 r1

(
νx+ iνy − ctα

Γ(α+1)

)]
+ c2cos

[√
−r

2 r1

(
νx+ iνy − ctα

Γ(α+1)

)]
c1cos

[√
−r

2 r1

(
νx+ iνy − ctα

Γ(α+1)

)]
+ c2sin

[√
−r

2 r1

(
νx+ iνy − ctα

Γ(α+1)

)]


(3.37)
In this case, the following special solutions can be obtained by choosing
the coefficients as desired.

u12 (x, y, t) = − cr3
2 hr1

+
cr2
hr1

[
r3
2r2

−
√
−r

2r2
tan

[√
−r

2 r1

(
νx+ iνy − ctα

Γ (α+ 1)

)]
],

c1 ̸= 0, c2 = 0, (3.38)

u13 (x, y, t) = − cr3
2 hr1

+
cr2
hr1

[
r3
2r2

+

√
−r

2r2
cot

[√
−r

2 r1

(
νx+ iνy − ctα

Γ (α+ 1)

)]
],

c1 ̸= 0, c2 = 0. (3.39)

4. Conclusion

In this article, an analytical approach based on the solution of the Ric-
cati equation is used to solve the nonlinear partial differential equation
with fractional order. In this approach, we first convert the fractional
partial differential equation into an ordinary differential equation using a
suitable transformation; Then we consider its answers as a series. In this
method, different forms of solutions are obtained, including trigonomet-
ric, hyperbolic and exponential solutions. The results indicate that the
approach used in this article is very useful and effective for determining
the solution of fractional partial differential equations.
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