- Morgenstern, J. (2020). Aerosols, Droplets, and Airborne Spread: Everything you could possibly want to know. First10EM Blog. doi:10.51684/firs.17317.
- Yan, J., Grantham, M., Pantelic, J., Bueno de Mesquita, P. J., Albert, B., Liu, F., Ehrman, S., Milton, D. K., Adamson, W., Beato-Arribas, B., Bischoff, W., Booth, W., Cauchemez, S., Ehrman, S., Enstone, J., Ferguson, N., Forni, J., Gilbert, A., … Tellier, R. (2018). Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community. Proceedings of the National Academy of Sciences, 115(5), 1081–1086. doi:10.1073/pnas.1716561115.
- Asadi, S., Wexler, A. S., Cappa, C. D., Barreda, S., Bouvier, N. M., & Ristenpart, W. D. (2019). Aerosol emission and superemission during human speech increase with voice loudness. Scientific Reports, 9(1), 9 2348 ,. doi:10.1038/s41598-019-38808-z.
- Chao, C. Y. H., Wan, M. P., & Sze To, G. N. (2008). Transport and removal of expiratory droplets in hospital ward environment. Aerosol Science and Technology, 42(5), 377–394. doi:10.1080/02786820802104973.
- Beans, C. (2020). Fluid dynamics work hints at whether spoken word can spread COVID-19. National Academy of Sciences, Washington, United States.
- Tellier, R. (2009). Aerosol transmission of influenza A virus: A review of new studies. Journal of the Royal Society Interface, 6(SUPPL. 6), 783– 790,. doi:10.1098/rsif.2009.0302.focus.
- Stetzenbach, L. D., Buttner, M. P., & Cruz, P. (2004). Detection and enumeration of airborne biocontaminants. Current Opinion in Biotechnology, 15(3), 170–174. doi:10.1016/j.copbio.2004.04.009.
- Bourouiba, L. (2016). A Sneeze. New England Journal of Medicine, 375(8), e15. doi:10.1056/nejmicm1501197.
- Nicas, M., Nazaroff, W. W., & Hubbard, A. (2005). Toward Understanding the Risk of Secondary Airborne Infection: Emission of Respirable Pathogens. Journal of Occupational and Environmental Hygiene, 2(3), 143–154. doi:10.1080/15459620590918466.
- Lindsley, W. G., Pearce, T. A., Hudnall, J. B., Davis, K. A., Davis, S. M., Fisher, M. A., Khakoo, R., Palmer, J. E., Clark, K. E., Celik, I., Coffey, C. C., Blachere, F. M., & Beezhold, D. H. (2012). Quantity and size distribution of cough-generated aerosol particles produced by influenza patients during and after illness. Journal of Occupational and Environmental Hygiene, 9(7), 443–449. doi:10.1080/15459624.2012.684582.
- Morawska, L. (2006). Droplet fate in indoor environments, or can we prevent the spread of infection? Indoor Air, 16(5), 335–347. doi:10.1111/j.1600-0668.2006.00432.x.
- Cowling, B. J., Ip, D. K. M., Fang, V. J., Suntarattiwong, P., Olsen, S. J., Levy, J., Uyeki, T. M., Leung, G. M., Malik Peiris, J. S., Chotpitayasunondh, T., Nishiura, H., & Mark Simmerman, J. (2013). Aerosol transmission is an important mode of influenza A virus spread. Nature Communications, 4. doi:10.1038/ncomms2922.
- Kang, Z., Zhang, Y., Fan, H., & Feng, G. (2015). Numerical Simulation of Coughed Droplets in the Air-Conditioning Room. Procedia Engineering, 121, 114–121. doi:1016/j.proeng.2015.08.1031.
- Pendar, M.-R., & Páscoa, J. C. (2020). Numerical modeling of the distribution of virus carrying saliva droplets during sneeze and cough. Physics of Fluids, 32(8). doi:10.1063/5.0018432.
- Fiegel, J., Clarke, R., & Edwards, D. A. (2006). Airborne infectious disease and the suppression of pulmonary bioaerosols. Drug Discovery Today, 11(1–2), 51–57. doi:10.1016/s1359-6446(05)03687-1.
- Scharfman, B. E., Techet, A. H., Bush, J. W. M., & Bourouiba, L. (2016). Visualization of sneeze ejecta: steps of fluid fragmentation leading to respiratory droplets. Experiments in Fluids, 57(2), 1–9. doi:10.1007/s00348-015-2078-4.
- Gupta, J. K., Lin, C.-H., & Chen, Q. (2009). Flow dynamics and characterization of a cough. Indoor Air, 19(6), 517–525. doi:10.1111/j.1600-0668.2009.00619.x.
- Tölke, J. (2008). Implementation of a Lattice Boltzmann kernel using the Compute Unified Device Architecture developed by nVIDIA. Computing and Visualization in Science, 13(1), 29–39. doi:10.1007/s00791-008-0120-2.
- Elghobashi, S. (1994). On predicting particle-laden turbulent flows. Applied Scientific Research, 52(4), 309–329. doi:10.1007/BF00936835.
- Maxey, M. R., & Riley, J. J. (1983). Equation of motion for a small rigid sphere in a nonuniform flow. Physics of Fluids, 26(4), 883–889. doi:10.1063/1.864230.
- Lekien, F., & Marsden, J. (2005). Tricubic interpolation in three dimensions. International Journal for Numerical Methods in Engineering, 63(3), 455–471. doi:10.1002/nme.1296.
- Qian, Y. H., D’Humières, D., & Lallemand, P. (1992). Lattice BGK Models for Navier-Stokes Equation. Europhysics Letters (EPL), 17(6), 479–484. doi:10.1209/0295-5075/17/6/001.
- Yu, D., Mei, R., Luo, L.-S., & Shyy, W. (2003). Viscous flow computations with the method of lattice Boltzmann equation. Progress in Aerospace Sciences, 39(5), 329–367. doi:10.1016/s0376-0421(03)00003-4.
- Banari, A., Gehrke, M., Janßen, C. F., & Rung, T. (2020). Numerical simulation of nonlinear interactions in a naturally transitional flat plate boundary layer. Computers & Fluids, 203, 104502. doi:10.1016/j.compfluid.2020.104502
- Dudalski, N., Mohamed, A., Mubareka, S., Bi, R., Zhang, C., & Savory, E. (2020). Experimental investigation of far-field human cough airflows from healthy and influenza-infected subjects. Indoor Air, 30(5), 966–977. doi:10.1111/ina.12680.
- Mohamed, A. F. A. (2017). Experimental measurements of far field cough airflows produced by healthy and influenza-infected human subjects. Master Thesis, The University of Western Ontario, London, Canada
|