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 Abstract: 

Alzheimer's disease (AD) is a common neurodegenerative disorder that requires early diagnosis 

for effective treatment. MRI data provides valuable insights into brain structure, which can assist 

in diagnosing the disease. However, traditional diagnostic methods often face errors due to expert 

limitations and data uncertainty. To address this issue, we propose a Computer-Aided Diagnosis 

(CAD) system that can automatically identify the disease. Moreover, since MRI images 

inherently contain uncertainty, the proposed method offers a solution to minimize this uncertainty. 

In the proposed method, the information obtained from brain white matter (WM) and gray matter 

(GM) is combined after performing preprocessing, feature extraction, and selection steps. This 

combination is achieved using the Evidence Theory and Dempster-Shafer Theory (DST). In this 

theory, mass functions are employed instead of probability functions. Subsequently, three 

different classifiers are applied separately in the final stage to the combined data. Experimental 

results demonstrate that combining GM and WM data using DST achieves higher accuracy 

compared to using either data type alone. This fusion-based method presents a reliable and 

effective approach for improving Alzheimer's diagnosis. Our proposed method achieved 91% 

accuracy in three different binary classification cases using the LDA classifier when 

distinguishing between AD and Normal Control (NC) groups. This result, obtained by combining 

WM and GM data, demonstrated a significant improvement compared to using each data type 

independently.  
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1. Introduction 

 Alzheimer’s disease (AD) is the most common cause of 

dementia [1]. This disease leads to memory impairment and 

loss of mental ability. There is currently no treatment for 

Alzheimer’s disease [2], but an early diagnosis of this 

disease can reduce its speed of progression. One of the 

methods for diagnosing this disease, is using the images 

obtained through various medical imaging methods such as 

MRI. 

The analysis of the images obtained through methods such 

as MRI by a physician or a specialist is extremely fallible 

due to the large volume of data. In addition, MRI images are 

images with an element of uncertainty [3], which is caused 

by various factors, such as the effect of the partial volumes 

and noise. Hence, introducing a computer-aided diagnosis 

(CAD) system that can measure the changes in the brain 

following the onset of Alzheimer's disease is helpful. 

In general, a CAD system that diagnoses Alzheimer's 

disease based on MRI has four main steps. In step one, the 

input data (MRI images) is received. Preprocessing is 

performed in the second step to facilitate coordination 

between different individuals' brains and to compare 

different groups. In step three, the features and sizes are 

obtained from the resulting images, and in the final step, 

classification is carried out to identify Alzheimer's disease 

in the input data [4]. 

In this regard, in some studies, Alzheimer's disease was 

identified through the measurements of brain structures 

such as the entorhinal cortex (EC) and right and left 

amygdalae [5]. 

A structure such as the entorhinal cortex is not enough to 

diagnose Alzheimer’s, and the use of a set of structures can 

improve the diagnosis accuracy. Hence, various studies 

were carried out based on the brain white matter and gray 

matter density maps. These studies extracted features on the 

voxel level using methods such as VBM and used them to 

diagnose Alzheimer’s disease [6-8]. 

https://cste.journals.umz.ac.ir/
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/
https://foreign.umz.ac.ir/
https://cste.journals.umz.ac.ir/
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Since the more realistic CAD system is the most favorable, 

uncertainty modeling in a CAD system can improve system 

efficiency. Data fusion is one of the uncertainty modeling 

methods. Moreover, there are various data fusion methods, 

including the evidence theory. The evidence theory has been 

used for data fusion in numerous studies [9-11]. This theory 

is also utilized in studies on Alzheimer’s disease [12]. 

The rest of this paper is arranged as follows: In section two, 

the research literature, tools, and materials are introduced. 

The third section describes the proposed method. The fourth 

section also presents the tables of the results and the 

analyses. Finally, the paper ends with the conclusion 

section.  

2. Materials and Methods 

2.1. Database 

Data used in this study was obtained from the ADNI 

database(http://www.loni.ucla.edu/ADNI), which is a part 

of the LONI IDA user environment [13]. The participants in 

this project, which was launched in 2004, included patients 

with Alzheimer’s disease and MCI and healthy individuals 

from North America [14]. This research database includes 

three groups: AD, CN, which is considered a controlled 

normal or healthy group, and MCI groups. In fact, MCI 

could be considered the middle stage between aging and 

dementia, including Alzheimer’s disease. The group 

classification of this data is also carried out based on the 

CDR and MMSE scores gained by the participants.  

The research data in this paper are obtained from sMRI 

images with a weight of T1 and the ADNI1-Screening 

research phase. Moreover, 600 participants took part in this 

study. Table 1, presents the study data specifications. 

Table 1. Demographic data of patients in the database (ADNI 

1075-T1) 

Diagnosis Number Gender(M/F) MMSE 

AD 200 96/104 29 1 

MCI 200 80/120 26 2 

CN 200 100/100 23 2 

In the LONI database, the MRI images are exposed to three 

pre-processing steps [15]. These steps include: Grad Warp, 

B1 non-uniformity, and N3[16].  

2.2. Feature Extraction (Principal Component Analysis) 

PCA (Principal Component Analysis) [17] is a method for 

downsizing and extracting the best data features so that 

fewer features represent all features. PCA is, in fact, a 

method in which the inputs are mapped to a new space using 

a rotation matrix. Data scattering increases in the 

transformed space. This method is also used to analyze 

neurological images to reduce the image dimensional space 

[18]. 

Assume X represents the input instances, such that N 

shows the number of data and m is the dimensional space. 

In fact, matrix X is a m N  matrix.  

(1) 𝑋 ∈ 𝑙𝑅𝑚 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑁]; 

The mean of data also has to be zero.  

(2) 𝐸{𝑋} =
1

𝑁
∑ 𝑋𝑖 = 0;𝑁
𝑖=1    

However, if this condition is not met, the resulting mean of 

the data has to be subtracted from each individual data point. 

As a result, the input vectors are normalized. 

 A rotation matrix is needed to rotate the axes and enter a 

new feature space. The rotation matrix is obtained by 

obtaining the covariance matrix of the input data and the 

eigenvalues and eigenvectors using this matrix. To this end, 

the covariance matrix of input data is calculated via 

Equation 3: 

(3) ∑𝑋 =
1

𝑁
∑ 𝑥𝑖𝑥𝑖

𝑇𝑁
𝑖=1 =

1

𝑁
𝑋𝑋𝑇   

The covariance matrix is square, and its value is assumed 

to equal R. In this case, the eigenvalues and eigenvectors of 

the covariance matrix are obtained via Equation 4: 

𝑅𝑞 = 𝜆𝑞  (4) 

In the equation above, q denotes the eigenvector and 
represents the eigenvalue. In this equation, there is a q value 

corresponding to each 𝜆 value. Eigenvectors are obtained 

when the 𝜆 values are sorted descending, and the 

eigenvectors corresponding to each 𝜆 are obtained. A new 

space is obtained by multiplying the 𝜆 values by the input 

data, which offers the highest data resolution.  

𝑋𝑋𝑇is a 𝑚 ×𝑚 matrix, where m denotes the size of each 

input data and equals 121×145×121. Besides, 𝑋𝑇𝑋 is a 

𝑁 × 𝑁 matrix (N show the number of instances) .If the size 

of N is considerably smaller than m, it is possible to reduce 

computational complexity by using the diagonalizing 𝑋𝑇𝑋 

instead of 𝑋𝑋𝑇 [19].  

Let 𝑣𝑖 show the eigenvectors of matrix 𝑋𝑋𝑇 , which is 

obtained as follow: 

𝑋𝑇𝑋𝑣𝑖 = 𝜇𝑖𝑣𝑖   (5) 

Equation 6 is obtained by multiplying the two sides of the 

Equation 5 by matrix X: 

(6) 𝑋𝑋𝑇𝑋𝑣𝑖 = 𝜇𝑖𝑋𝑣𝑖   

In this equation, 𝑋𝑣𝑖  shows the ∑𝑋 = 𝑋𝑋𝑇 eigenvectors. 

The size of the 𝐿 = 𝑋𝑇𝑋 matrix is 𝑁 × 𝑁, where 𝐿𝑖
𝑗
= 𝑋𝑖

𝑇𝑋𝑗 

and the 𝑣𝑙eigenvectors are calculated using L. These vectors 

are identified as 𝑢𝑙 Eigen Brains using a linear composition 

of N image sets [20, 21]. 

(7) 𝑢𝑙 = ∑ 𝑣𝑙𝑘𝑥𝑘
𝑁
𝑘=1    

2.3. Classifier  
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In machine learning classification methods, the goal is to 

identify the input patterns and instances with the aim of 

classifying the input instance into a class, which is 

considered the best class for the given instance as compared 

to the other classes. Bayes' theorem [22] uses the most 

probable class approach for the classification of the input 

data to attain this goal. 

The NBC (Naive Bayesian Classification) classifier is a 

classifier that follows Bayes' theorem [23]. In this classifier, 

it is assumed all the variables that are involved in this 

classification are independent pair-wise [24]. To calculate 

probability, it is enough to use the joint probability. It is 

reduced based on the independence of the variables and 

components using conditional probability. 

In addition to NBC, QDA and LDA is also a classifier of 

the DA (Discriminant Analysis) family, which follows the 

Bayesian rule. DA was originally introduced by Geisser 

(1964) and Keehn(1965) based on Bayesian estimations 

[25]. The decision boundary in the QDA classifier is 

nonlinear [26]. 

2.4. Evidence Theory  

Dempster-Shafer's theory (DST), or the evidence theory, is 

an extended version of the classical probability theory [27]. 

This theory, is a flexible and effective mathematical tool for 

presenting and combining ignorant information [27, 28]. In 

the evidence theory, it is assumed a universal set of mutually 

exclusive elements known as the Frame Of  Discernment 

(FOD) is written as 𝛺 = {𝜃1, 𝜃2, 𝜃3, . . . , 𝜃𝑛}. Each   subset can 

be interpreted as a possible answer to a question. In 

addition, only one of these subsets is correct for each 

question. The frame of discernment (FOD) power set (2Ω) 
consists of elements that contain the answer to all the 

questions possibly raised in the frame of discernment. The 

evidence theory defines three important functions: the Basic 

Probability Assignment (BPA) or the Mass Function, the 

Belief Function, and the Plausibility Function. 

The mass function, which is denoted by  , shows the 

degree of the belief of a witness in a subject. The mass 

function is a map of the power set of the frame of 

discernment with a closed interval of 0 and 1. Therefore, the 

mass of the empty element is zero and the sum of the masses 

equals one. In other words: 

𝜇: 2𝛺 → [0,1]  

where 𝜇(∅) = 0 & 𝛴𝑖⊆𝛺𝜇(𝐴) = 1 
(8) 

The sum of the masses (the allocated basic probabilities) 

of all sets like B that meet condition 8 forms the belief of 

set A, Equation 9. The belief of set A forms the lower 

boundary of the uncertainty interval, which includes the 

exact probability of the given set (with regard to classical 

probability) [27, 29]. 

𝐵𝑒𝑙(𝐴) = ∑ 𝜇(𝐵)𝐵|𝐵⊆𝐴 ,𝐵𝑒𝑙(∅) = 0 , 𝐵𝑒𝑙(𝛺) = 1 (9) 

One of the important advantages of the evidence theory is 

its ability to combine belief structures. The result of this 

combination generally reduces the belief uncertainty range. 

Since this advantage leads to the development of a model 

that contains the opinions of all the witnesses, it is 

substantially important. Dempster's rule of combination is a 

method for combining the mass functions of the 

independent resources on a frame of discernment based on 

the orthogonal sum of the mass functions. Consider two 

belief structures with mass functions 𝜇1and 𝜇2. Function 

𝜇12 is the orthogonal sum of two belief structures and it is 

denoted by (𝜇1⨁𝜇2). Besides, 𝜇1 is calculated as follows, 

using Dempster's rule of combination: 

𝜇12(𝐴) =
∑ 𝜇1(𝐵)𝜇2(𝐶)𝐵∩𝐶=𝐴

1−𝐾12
 𝐴 ≠ ∅ , 𝜇12(∅) = 0 (10) 

𝐾12 = ∑ 𝜇1(𝐵)𝜇2(𝐶)𝐵∩𝐶=∅   (11) 

Since Dempster's rule of combination has two major 

advantages, namely commutativity and associativity [27], 

Equations 10 and 11 can be extended such that: 

𝜇12...𝑛(𝐴) =
∑ 𝜇1(𝐴1)𝜇2(𝐴2)...𝜇𝑛(𝐴𝑛)𝐴1∩𝐴2...𝐴𝑛=∅

1−𝐾12...𝑛
  

𝐴 ≠ ∅ , 𝜇12...𝑛(∅) = 0 
(12) 

𝐾12...𝑛 = ∑ 𝜇1(𝐴1)𝐴1∩𝐴2...𝐴𝑛=∅ 𝜇2(𝐴2). . . 𝜇𝑛(𝐴𝑛)  (13) 

The denominators in Equations 12 and 13, i.e. terms 1 −

𝐾12 and 1 − 𝐾12...𝑛 , are called the normalization factors. 

Moreover, 𝐾12 indicates the degree of inconsistency of two 

belief structures, while two belief structures are combinable 

when 𝐾12 ≠ 1. The Proposed Method  

The block diagram in Figure 1 shows the CAD system 

proposed in this paper for the automated classification of 

Alzheimer’s disease.

 

Figure 1. Block diagram of the proposed method.
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Preprocessing is the first step in the CAD system. The MRI 

images used in this paper were preprocessed in SPM12 

software using the DARTEL algorithm, indicating the 

diffeomorphic anatomical matching using Lie exponential 

algebra [30, 31]. In sum, the preprocessing steps taken in 

this paper are as follows: 1) first, reorientation is performed 

to change the position of the brain in each person for the 

approximate matching of the images to the standard space. 

It is registered using the 9-parameter affine transformation 

to the MNI space. 2) The next step involves automated 

segmentation. The results of this step are six images 

including images of the white matter, gray matter, 

cerebrospinal fluid, the hard tissue, the soft tissue around 

the brain, and the background image. The white matter and 

gray matter images are used in the next steps. 3) The rigidly 

aligned version of the segmented images of the white matter 

and gray matter obtained in the previous step, was 

generated. 4) The template was created, which is named 

DARTEL, and the obtained flow fields were applied to the 

modulated 3D T1-weighted images of single subjects 

(generated by the segmentation step)  to  warp them to  the 

common DARTEL space and then modulated using the 

Jacobian determinants. 5) The modulated 3D T1-weighted 

images from DARTEL were normalized to the MNI 

template. In this stage, the size of all images in the 3-

dimensional space is changed to 121 145  121. 6)The last 

step in preprocessing involves smoothing using the 8-

millimeter Gaussian kernel [31].  

The computation load can be reduced by applying a mask. 

This mask is obtained by calculating the mean of all the 

tissue images of the healthy individuals and keeping the 

voxels that have intensities over 10% higher than the 

maximum intensity of the mean image; therefore, the size 

of each image matrix is decreased from 2122945 to 356733 

and 564735 for the white matter and the gray matter tissue 

images, respectively. In the next step, features with the 

highest potential for differentiating between different 

classes are selected by applying PCA to the input data. 

Figures 2-a and 2-b, shows the data of the gray matter and 

white matter images using two PCA scores. Following the 

application of PCA, data classification is carried out using 

the QDA, LDA, and NBC classifiers. Finally, the 

information obtained from each classifier, applied 

separately to gray matter and white matter, is fused using 

evidence theory to minimize uncertainty and improve 

diagnostic reliability. As for the current problem, the goal is 

to identify and decide on the data considering the two 

selected classes. In this study, three two-class categories, 

namely {𝐴𝐷, 𝐶𝑁}, {𝐴𝐷,𝑀𝐶𝐼}, and {𝑀𝐶𝐼, 𝐶𝑁}, are used. In 

this study, the probability functions generated by each 

classifier for both white matter and gray matter are 

converted into mass functions based on evidence theory.

  
(a) (b) 

Figure 2. Representation of all data using only the two first Scores of PCA: (a) White matter; (b) Gray matter.

The value allocated to the nonexclusive (indefinite) mass 

in the current space is defined by the distance between the 

probabilities of two propositions 

({𝐴𝐷, 𝐶𝑁}, {𝐴𝐷,𝑀𝐶𝐼}, {𝑀𝐶𝐼, 𝐶𝑁}). In fact this conversion 

is performed using a thresholding process, where the 

distance between two propositions serves as the 

thresholding mechanism. Three states are defined for the 

size of the distance between these two propositions: the 

perfect uncertainty (PU), semi-uncertainty (SU), and no 

uncertainty (NU) state [32]. The following explanation 

illustrates this conversion process: 

The distance between two probabilities allocated to two 

propositions is shown by  . The probability values 

allocated to the first and second classes are denoted by 
1P

and 
2P , respectively. Moreover, the mass sizes allocated to 

the first, the second, and common classes shared by the first 

and second classes are shown by m1, m2, and m12, 

respectively. Therefore, the three states are defined as 

follows: 

1) The alpha for values greater than or equal to 0.8 (𝛼 ≥
0.8): 

This state is considered the NU (No Uncertainty) state 

wherein: 

{

𝑚1 = 𝑝1
𝑚2 = 𝑝2
𝑚12 = 0

  (14) 

2) The alpha for values between 0.8 and 0.2 (0.8 < 𝛼 <
0.2): 

This state is considered the SU (Semi Uncertainty) state 

wherein: 
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(15) 𝑝1 < 𝑝2&𝜆 =
𝑝1

𝑝2
 𝑤ℎ𝑒𝑟𝑒

{
 

 𝑚1 = 𝑝1 −
𝜆

2

𝑚2 = 𝑝2 −
𝜆

2

𝑚12 = 𝜆

 

3) The alpha for values less than or equal to 0.2 (𝛼 ≤ 0.8) 
: 

This state is considered the PU (Perfect Uncertainty) state 

wherein: 

(16) 

{
 
 

 
 𝑚1 =

𝑝1

2

𝑚2 =
𝑝2

2

𝑚12 =
𝑝1+𝑝2

2

  

Subsequently, the mass functions obtained from the 

classifications of both matter types are fused to enhance 

diagnostic accuracy and reduce uncertainty. This fusion 

process leads to improved results as it combines the insights 

derived from two distinct data sources, providing a more 

comprehensive and reliable diagnosis. 

3. Results 

The system's performance proposed in this study is 

estimated using the k-fold method. In the k-fold method, 

data is randomly and equally divided into k separate subsets 

and training and testing are carried out k times [33]. In this 

study, k is set to 5, and 160 training data and 40 testing data 

are allocated to each training round to validate the model.  

The effectiveness of a CAD system is assessed with regard 

to the accuracy criterion. In addition to accuracy, specificity 

and sensitivity are the other criteria for assessing the 

system’s performance. Accuracy, specificity, and sensitivity 

are defined as follows: 

𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  

(17) 𝑆𝐸𝑁𝑆 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  

𝑆𝑃𝐸𝐶 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
  

This study was conducted separately for each classifier, 

and the results were classified into two classes. 

3.1. Classification Using Bayesian Classifier 

Figures 3-a to 3-c, are the accuracy values corresponding 

to each PCA component for both binary classification 

scenarios and when using the Bayesian classifier. Based on 

the figure, we can observe that for most PCA components 

and across all three binary classification scenarios, 

combining the WM and GM output results yields higher 

accuracy compared to using WM or GM alone. The results 

presented in Table 2 show the accuracy values for three 

binary states using five PCA components when white 

matter, gray matter, and their combinations are used. 

   
(a) (b) (c) 

Figure 3. The accuracy values for the three binary classification cases were determined using white matter (red color), gray matter 

(blue color), and the proposed method (purple color) for 15 PCA components with Bayesian as the classifier. 

Table 2. Sensitivity, accuracy, and specificity values (%) of WM, GM, and the proposed method for five components of PCA and 

three two-class states while using Bayesian as a classifier. 

SENS SPEC ACC 
GROUPS 

Proposed Method GM WM Proposed Method GM WM Proposed Method GM WM 

90 88 66 81 78 48 87 82 58 AD/CN 

84 81 72 72 72 63 79 78 68 AD/MCI 

75 72 60 66 66 57 71 70 59 MCI/CN 

The proposed method's accuracy in classifying groups CN 

and AD was 87%, while it was 79% and 71% in the two-

class AD/MCI and MCI/CN states. In classifying groups 

AD and CN, the proposed method improved approximately 

6% and 29% compared to using gray matter and white 

matter alone, respectively.  

3.2. Classification Using DA(Quadratic and Linear) 

Classifier 

Tables 3 and 4 present the results obtained from applying 

the LDA and QDA classifiers for white matter, gray matter, 

and the proposed method using 5 PCA components. By 

observing these results, we can infer and conclude that the 
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classifiers mentioned have also demonstrated satisfactory 

performance in disease detection for all three binary 

classification cases. Figures 4 and 5 also present the 

accuracy values for 15 PCA components for both classifiers. 

From the figures, it can be observed that the proposed 

method can lead to improved accuracy by fusing and 

combining white matter and gray matter data.

Table 3. Sensitivity, accuracy, and specificity values (%) of WM, GM, and the proposed method for five components of PCA and 

three two-class states while using LDA as a classifier. 

SENS SPEC ACC 
GROUPS 

Proposed Method GM WM Proposed Method GM WM Proposed Method GM WM 

94 85 72 88 82 66 91 83 69 AD/CN 

85 82 73 78 79 64 82 81 68 AD/MCI 

79 75 73 67 70 63 73 72 66 MCI/CN 

Table 4. Sensitivity, accuracy, and specificity values(%) of WM, GM, and the proposed method for five components of PCA and 

three two-class states while using QDA as a classifier. 

SENS SPEC ACC 
GROUPS 

Proposed Method GM WM Proposed Method GM WM Proposed Method GM WM 

88 85 64 85 82 58 86 83 61 AD/CN 

79 76 70 76 73 64 77 76 66 AD/MCI 

79 79 58 71 68 54 74 73 58 MCI/CN 

 

   
(a) (b) (c) 

Figure 4. The accuracy values for the three binary classification cases were determined using white matter (red color), gray matter 

(blue color), and the proposed method (purple color) for 15 PCA components with LDA as the classifier. 

   
(a) (b) (c) 

Figure 5. The accuracy values for the three binary classification cases were determined using white matter (red color), gray matter 

(blue color), and the proposed method (purple color) for 15 PCA components and using QDA as the classifier. 

In AD/CN classification, the proposed method achieved an 

8% and 22% increase in accuracy for gray and white 

matters, respectively, when using the LDA classifier. 

Moreover, in the QDA classifier, this increase is 3% and 

25% for gray matter and white matter, respectively.  

Improvements in accuracy can also be observed for the 

other two binary classification cases. 

Table 5 shows a comparison between the results of the 

proposed method for gray matter and a few competing 

studies. 

Table 5. Comparison between proposed method and competing studies 

Performance 
Study group Algorithm 

Number of data 
Year Reference 

Acc. Sens. Spec. CN MCI AD 

91 94 88 AD/CN LDA 200 200 200 2025 Proposed Method 
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82 85 78 AD/MCI 

73 79 67 MCI/CN 

84.17 88.83 79 AD/CN 

SVM 61 87 83 2016 Zu et al. [34]  65.21 77.81 42.52 AD/MCI 

70.38 78.17 60.22 MCI/CN 

84.17 88.83 79 AD/CN 

SVM 61 87 83 2017 Beheshti et al. [35] 65.21 77.81 42.52 AD/MCI 

70.38 78.17 60.22 MCI/CN 

89.69 86.87 92.58 AD/CN ANN+BGRU 229 - 128 2018 Cui et al. [36]  
87.39 89.58 85.82 AD/CN 

SVM+RF+KNN 227 396 189 2019 Vaithinathan and Parthiban [37] 63.41 57.29 65.35 AD/MCI 

64.74 45.61 72.44 MCI/CN 

86.68 95.47 91.68 AD/CN 

SR-DBN+ELM 142 82 116 2020 Zhou et al. [38] 72.98 85.65 80.35 AD/MCI 

91.58 79.74 88.25 MCI/CN 

84 - - AD/CN 

Radiometric+CNN 853 948 602 2024 Zarei et al. [39] 58 - - AD/MCI 

72 - - MCI/CN 

4. Conclusion  

In this study, the objective is to employ the evidence theory 

and Dempster-Shafer theory to enhance accuracy. This 

theory helps reduce uncertainty in studies related to imaging 

and disease diagnosis. MRI images are often subject to 

uncertainty due to various factors; thus, considering this 

uncertainty can enable a more reliable and comprehensive 

diagnostic process. As mentioned, MRI images inherently 

contain some degree of uncertainty. In this study, data 

obtained from white matter and gray matter were combined 

to minimize uncertainty and increase certainty.  

The results indicate that applying this theory in the 

proposed method can significantly improve accuracy in 

various binary classification scenarios. Finally, it is 

noteworthy that the proposed method can be applied to 

different approaches for diagnosing Alzheimer's disease or 

other research domains, as our study and other related 

studies have demonstrated that this theory has performed 

successfully in most cases.  
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