- Abdel-Rahman, M.M. (2021). Review of Soil Improvement Techniques. Advancements in Geotechnical Engineering. Sustainable Civil Infrastructures. Springer, Cham, Switzerland. doi:10.1007/978-3-030-62908-3_14.
- Fondjo, A. A., Theron, E., & Ray, R. P. (2021). Stabilization of Expansive Soils Using Mechanical and Chemical Methods: A Comprehensive Review. Civil Engineering and Architecture, 9(5), 1289–1294. doi:10.13189/cea.2021.090503.
- Barman, D., & Dash, S. K. (2022). Stabilization of expansive soils using chemical additives: A review. Journal of Rock Mechanics and Geotechnical Engineering, 14(4), 1319–1342. doi:10.1016/j.jrmge.2022.02.011.
- Malik, P., & Mishra, S. K. (2023). A comprehensive review of soil strength improvement using geosynthetics. Materials Today: Proceedings. doi:10.1016/j.matpr.2023.05.710.
- Chatrabhuj, & Meshram, K. (2024). Use of geosynthetic materials as soil reinforcement: an alternative eco-friendly construction material. Discover Civil Engineering, 1(1), 41. doi:10.1007/s44290-024-00050-6.
- Umar, M., Kassim, K. A., & Ping Chiet, K. T. (2016). Biological process of soil improvement in civil engineering: A review. Journal of Rock Mechanics and Geotechnical Engineering, 8(5), 767–774. doi:10.1016/j.jrmge.2016.02.004.
- Wani, K. M. N. S., & Mir, B. A. (2020). Microbial geo-technology in ground improvement techniques: a comprehensive review. Innovative Infrastructure Solutions, 5(3), 82. doi:10.1007/s41062-020-00335-6.
- Zhang, N., & Wang, Z. (2017). Review of soil thermal conductivity and predictive models. International Journal of Thermal Sciences, 117, 172–183. doi:10.1016/j.ijthermalsci.2017.03.013.
- Gupta, S., & Kumar, S. (2023). A state-of-the-art review of the deep soil mixing technique for ground improvement. Innovative Infrastructure Solutions, 8(4), 129. doi:10.1007/s41062-023-01098-6.
- Huang, Y., & Wang, L. (2016). Experimental studies on nanomaterials for soil improvement: a review. Environmental Earth Sciences, 75(6), 1–10. doi:10.1007/s12665-015-5118-8.
- Onyelowe, K. C. (2019). Review on the role of solid waste materials in soft soils reengineering. Materials Science for Energy Technologies, 2(1), 46–51. doi:10.1016/j.mset.2018.10.004.
- Shinde, B., Sangale, A., Pranita, M., Sanagle, J., & Roham, C. (2024). Utilization of waste materials for soil stabilization: A comprehensive review. Progress in Engineering Science, 1(2–3), 100009. doi:10.1016/j.pes.2024.100009.
- Ahmad, A., Sutanto, M. H., Harahap, I. S. H., Al-Bared, M. A. M., & Khan, M. A. (2020). Feasibility of Demolished Concrete and Scraped Tires in Peat Stabilization - A Review on the Sustainable approach in Stabilization. 2020 2nd International Sustainability and Resilience Conference: Technology and Innovation in Building Designs, 1–5. doi:10.1109/IEEECONF51154.2020.9319953.
- Shaheen, S. M., Hooda, P. S., & Tsadilas, C. D. (2014). Opportunities and challenges in the use of coal fly ash for soil improvements - A review. Journal of Environmental Management, 145, 249–267. doi:10.1016/j.jenvman.2014.07.005.
- Iravanian, A., & Haider, A. B. (2020). Soil Stabilization Using Waste Plastic Bottles Fibers: A Review Paper. IOP Conference Series: Earth and Environmental Science, 614(1), 12082. doi:10.1088/1755-1315/614/1/012082.
- Kazmi, D., Williams, D. J., & Serati, M. (2020). Waste glass in civil engineering applications—A review. International Journal of Applied Ceramic Technology, 17(2), 529–554. doi:10.1111/ijac.13434.
- Rai, A. K., Singh, G., & Tiwari, A. K. (2020). Comparative study of soil stabilization with glass powder, plastic and e-waste: A review. Materials Today: Proceedings, 32, 771–776. doi:10.1016/j.matpr.2020.03.570.
- Mistry, M. K., Shukla, S. J., & Solanki, C. H. (2021). Reuse of waste tyre products as a soil reinforcing material: a critical review. Environmental Science and Pollution Research, 28(20), 24940–24971. doi:10.1007/s11356-021-13522-4.
- Sotayo, A., Green, S., & Turvey, G. (2015). Carpet recycling: A review of recycled carpets for structural composites. Environmental Technology & Innovation, 3, 97–107. doi:10.1016/j.eti.2015.02.004.
- Wang, Y. (1999). Utilization of recycled carpet waste fibers for reinforcement of concrete and soil. Polymer-Plastics Technology and Engineering, 38(3), 533–546. doi:10.1080/03602559909351598.
- Ghiassian, H., Poorebrahim, G., & Gray, D. H. (2004). Soil reinforcement with recycled carpet wastes. Waste Management & Research, 22(2), 108–114. doi:10.1177/0734242X04043938.
- Miraftab, M., & Lickfold, A. (2008). Utilization of carpet waste in reinforcement of substandard soils. Journal of Industrial Textiles, 38(2), 167–174. doi:10.1177/1528083708091064.
- Shahnazari Habib, Ghiasian H., Nourzad A., Shafiei A., Tabarsa A.R.*, J. R. (2009). Shear Modulus of Silty Sand Reinforced by Carpet Waste Strips. Journal of Seismology and Earthquake Engineering, 11(3), 133-142. https://www.jsee.ir/article_240594.html
- Mirzababaei, M., Miraftab, M., Mohamed, M., & McMahon, P. (2013). Unconfined Compression Strength of Reinforced Clays with Carpet Waste Fibers. Journal of Geotechnical and Geoenvironmental Engineering, 139(3), 483–493. doi:10.1061/(asce)gt.1943-5606.0000792.
- Mirzababaei, M., Miraftab, M., Mohamed, M., & McMahon, P. (2013). Impact of Carpet Waste Fibre Addition on Swelling Properties of Compacted Clays. Geotechnical and Geological Engineering, 31(1), 173–182. doi:10.1007/s10706-012-9578-2.
- Choobbasti, A. J., Samakoosh, M. A., & Kutanaei, S. S. (2019). Mechanical properties soil stabilized with nano calcium carbonate and reinforced with carpet waste fibers. Construction and Building Materials, 211, 1094–1104. doi:10.1016/j.conbuildmat.2019.03.306.
- Eshghi, P., & Shalkoohy, A. J. (2022). Laboratory evaluation of the effect of polymer carpet waste on geotechnical properties of Bandar Anzali sandy soil. Iranian Journal of Engineering Geology, 15(1), 131–134.
- Eshghi, P., Niri, H. G., & Pourdada, A. (2025). Assessing the impact of recycled carpet waste (RCW) on unconfined compressive strength (UCS) and ultrasonic pulse velocity (UPV) in cement-stabilized sandy soil: an experimental study. Journal of Building Pathology and Rehabilitation, 10(1), 1–13. doi:10.1007/s41024-025-00577-w.
- ASTM D422-63(2007). (2014). Standard Test Method for Particle-Size Analysis of Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D0422-63R07.
- ASTM D2487-17e1. (2025). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, Pennsylvania, United States. doi:10.1520/D2487-17E01.
- ASTM D854-14. (2023). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer (Withdrawn 2023). ASTM International, Pennsylvania, United States. doi:10.1520/D0854-14.
- ASTM D4318-17e1. (2018). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D4318-17E01.
- ASTM D698-12e2. (2021). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International, Pennsylvania, United States. doi:10.1520/D0698-12E02.
- ASTM D2166/D2166M-13. (2016). Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM International, Pennsylvania, United States. doi:10.1520/D2166_D2166M-13.
- ASTM D3080/D3080M-11. (2020). Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions (Withdrawn 2020). doi:10.1520/D3080_D3080M-11.
- Sim, J., & Prabhu, V. (2018). The life cycle assessment of energy and carbon emissions on wool and nylon carpets in the United States. Journal of Cleaner Production, 170, 1231–1243. doi:10.1016/j.jclepro.2017.09.203.
- Simon, A., Tripathi, A., Surehali, S., & Neithalath, N. (2023). Carpet fiber recycling in regular-use concrete mixtures and associated life cycle analysis. Waste Management Bulletin, 1(3), 103–114. doi:10.1016/j.wmb.2023.07.005.
- Ryłko-Polak, I., Komala, W., & Białowiec, A. (2022). The Reuse of Biomass and Industrial Waste in Biocomposite Construction Materials for Decreasing Natural Resource Use and Mitigating the Environmental Impact of the Construction Industry: A Review. Materials, 15(12), 4078. doi:10.3390/ma15124078.
- Maitlo, G., Ali, I., Maitlo, H. A., Ali, S., Unar, I. N., Ahmad, M. B., Bhutto, D. K., Karmani, R. K., Naich, S. ur R., Sajjad, R. U., Ali, S., & Afridi, M. N. (2022). Plastic Waste Recycling, Applications, and Future Prospects for a Sustainable Environment. Sustainability (Switzerland), 14(18), 11637. doi:10.3390/su141811637.
- Parvaresh, F., & Amini, M. H. (2024). Application of circular economy for sustainable waste management in the carpet industry. International Journal of Research in Industrial Engineering, 13(2), 188–206. doi:10.22105/riej.2024.426147.1405.
- Zaman, A. U. (2016). A comprehensive study of the environmental and economic benefits of resource recovery from global waste management systems. Journal of Cleaner Production, 124, 41–50. doi:10.1016/j.jclepro.2016.02.086.
- Peng, X., Jiang, Y., Chen, Z., Osman, A. I., Farghali, M., Rooney, D. W., & Yap, P. S. (2023). Recycling municipal, agricultural and industrial waste into energy, fertilizers, food and construction materials, and economic feasibility: a review. Environmental Chemistry Letters, 21(2), 765–801. doi:10.1007/s10311-022-01551-5.
- Chen, L., Yang, M., Chen, Z., Xie, Z., Huang, L., Osman, A. I., Farghali, M., Sandanayake, M., Liu, E., Ahn, Y. H., Al-Muhtaseb, A. H., Rooney, D. W., & Yap, P.-S. (2024). Conversion of waste into sustainable construction materials: A review of recent developments and prospects. Materials Today Sustainability, 27, 100930. doi:10.1016/j.mtsust.2024.100930.
- Wang, M., He, X., & Yang, K. (2023). Mechanical Properties and Damage Characteristics of Coal-Based Solid Waste Paste Filling Materials with Different Moisture Content. Sustainability (Switzerland), 15(2), 1523. doi:10.3390/su15021523.
- Abdulkareem, O. A., Mustafa Al Bakri, A. M., Kamarudin, H., Khairul Nizar, I., & Saif, A. A. (2014). Effects of elevated temperatures on the thermal behavior and mechanical performance of fly ash geopolymer paste, mortar and lightweight concrete. Construction and Building Materials, 50, 377–387. doi:10.1016/j.conbuildmat.2013.09.047.
- Xuan, W., Chen, X., Yang, G., Dai, F., & Chen, Y. (2018). Impact behavior and microstructure of cement mortar incorporating waste carpet fibers after exposure to high temperatures. Journal of Cleaner Production, 187, 222–236. doi:10.1016/j.jclepro.2018.03.183.
- Mohammadhosseini, H., Lim, N. H. A. S., Sam, A. R. M., & Samadi, M. (2018). Effects of Elevated Temperatures on Residual Properties of Concrete Reinforced with Waste Polypropylene Carpet Fibres. Arabian Journal for Science and Engineering, 43(4), 1673–1686. doi:10.1007/s13369-017-2681-1
|