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Abstract: 

The study of groundwater levels is of paramount importance due to its critical role in water 
resource management, agriculture, and ecosystem sustainability. This study uses machine 

learning algorithms to predict groundwater levels in observation wells across Tehran. A range of 
input parameters, including satellite-derived data from GRACE, GLDAS, and ERA5, were 
employed to train models for estimating groundwater level fluctuations. The primary aim was to 
evaluate and compare the performance of 12 different machine learning models, including 
Random Forest, AdaBoost, Support Vector Machine, and Artificial Neural Networks, among 
others, in terms of their prediction accuracy. The results indicated that ensemble-based models 
generally outperformed individual algorithms, achieving the highest coefficients of determination 
(R²) and the lowest error metrics. Spatial analysis of the errors revealed that the northern part of 

the study area experienced higher prediction errors than the southern region, likely due to more 
significant groundwater level fluctuations, influenced by regional climatic conditions and 
topography. Furthermore, the study demonstrated that combining various input parameters, such 
as terrestrial water storage, total soil moisture, and precipitation, improved the accuracy of the 
groundwater level predictions. The models were evaluated using standard error metrics, including 
Mean Error (ME), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Pearson 
Correlation Coefficient (R), with results showing strong agreement between predicted and 
observed data. The findings suggest that machine learning models, especially those leveraging 

high-resolution satellite and reanalysis data, can be highly effective for groundwater level 
prediction and management in regions with limited in-situ measurement data. This study provides 
valuable insights into the application of machine learning for groundwater monitoring, with 
promising results for future implementation in water resource management. 
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1. Introduction 

Groundwater (GWS) is one of the most important sources 

of freshwater in the world and plays a vital role in human 

life. Due to its stability, ease of extraction, widespread 

availability, and generally good quality, groundwater has 

been widely utilized by people. groundwater is considered 

the only reliable water source in many water-stressed 

regions—such as the semi-arid and arid areas of Asia, the 

Middle East, North Africa, and Mediterranean countries—

as surface water bodies, whether seasonal or permanent, are 

often absent [1].  

In these regions, where agricultural activities and food 

production predominantly drive water demand, 

groundwater accessibility is intrinsically linked to food 

security and, consequently, to national and regional socio-

political stability. However, intensive and unsustainable 

groundwater abstraction has resulted in severe 

consequences, groundwater level declines, water quality 

degradation, and the manifestation of geohazards such as 

underground funnels and ground subsidence [2]. 

Despite these mounting challenges, groundwater remains 

a critical buffer against water scarcity, particularly under 

climatic variability and limited surface water availability. 

Therefore, accurate monitoring and effective groundwater 

management at regional scales are paramount. Traditionally, 

groundwater assessment and management have relied on 

observation wells, a method that is not only time-consuming 

but also constrained by economic limitations and 

insufficient spatial coverage. 

In recent years, the emergence of advanced technologies—

such as Interferometric Synthetic Aperture Radar (InSAR), 

Global Positioning System (GPS), and Gravity Recovery 

https://cste.journals.umz.ac.ir/
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and Climate Experiment (GRACE) satellites—has 

revolutionized the way hydrological and climatic 

parameters are monitored. These remote sensing platforms 

enable high-resolution, continuous space-time observation 

of various environmental indicators, providing an 

unprecedented opportunity to monitor changes over both 

spatially extensive and data-scarce regions. The launch of 

the GRACE satellite mission on March 17, 2002, marked a 

significant turning point in global hydrological monitoring. 

It enabled the large-scale assessment of terrestrial water 

storage changes (∆TWS), offering a powerful tool for 

detecting and analyzing regional and global groundwater 

depletion [3-5]. Furthermore, by integrating data from 

hydrological models, groundwater storage changes 

(∆GWS) can be inferred from GRACE-based ∆TWS 

observations [6]. 

Accurate prediction and estimation of groundwater level 

fluctuations are critically important for effective water 

resource planning and management. Reliable forecasts 

enable informed decision-making and support the 

sustainable use of these valuable subsurface reserves. As a 

foundational step, sustainable groundwater management 

must be designed to allow for intelligent utilization of the 

resource while preserving ecological integrity. By 

anticipating patterns of groundwater level variation, it 

becomes significantly easier to strategically plan water use, 

optimize allocation, and prevent over-extraction, thereby 

reducing the risk of long-term environmental degradation. 

Moreover, accurate predictions can play a key role in 

preventing future water crises. For instance, if it is known 

that a significant decline in groundwater resources will 

occur during a specific period, mitigation strategies such as 

improving water use efficiency in agriculture or utilizing 

alternative water resources can be designed. These 

proactive measures can help alleviate the economic and 

social impacts of such a crisis. 

In addition, maintaining groundwater quality is essential. 

Excessive groundwater depletion can lead to the intrusion 

of saline water into aquifers, ultimately degrading the 

quality of water resources. This issue is especially critical in 

areas where agriculture heavily depends on groundwater. 

Therefore, forecasting these changes provides valuable 

information for engineers and resource managers, enabling 

them to take preventative actions to avoid contaminant or 

salinity intrusion into aquifers [7].  

In long-term planning, predicting groundwater levels 

assists urban planners, farmers, and developers in making 

informed decisions. This includes the optimal selection of 

locations for residential developments, industrial 

expansion, or agricultural land use, ensuring that the 

balance between natural resources and human needs is 

maintained [8]. In this regard, researchers have made efforts 

to provide forecasts and estimations of groundwater level 

fluctuations using a variety of techniques, such as statistical 

methods, machine learning, and deep learning [9-12]. 

Amiri et al. (2023) conducted a study to predict 

groundwater level fluctuations by combining deep learning 

techniques with the GSM numerical model. After evaluating 

various machine learning models, they demonstrated that 

ensemble models outperformed traditional models in terms 

of performance [13]. 

Soltani and Azari (2022) utilized satellite data and machine 

learning algorithms to predict terrestrial water storage 

anomalies (TWSA) in the Urmia Lake Basin. Based on 

climatic change projections, the study's findings indicate 

that TWSA will decrease compared to the historical average 

during the periods 2021-2040 and 2041-2060. Additionally, 

due to changes in TWSA, groundwater availability (GWA) 

is expected to significantly decrease in the future [14]. 

Kardan et al. (2019) conducted a study to predict aquifer 

status using Bayesian networks and artificial neural 

networks (ANNs). The results of their study demonstrated 

that Bayesian network models outperformed both ANN and 

mathematical models. Furthermore, their findings indicate 

that Bayesian networks are effective tools for predicting 

groundwater levels [12]. 

In another study, Azizi et al. (2023) employed a hybrid 

modeling approach by integrating wavelet transform with 

machine learning algorithms to simulate and forecast 

groundwater levels in the Sahneh plain. The results 

demonstrated the hybrid model's high accuracy in 

predicting groundwater fluctuations, confirming its 

effectiveness for complex hydrogeological systems [15].  

Improving the accuracy of groundwater level prediction 

remains a major challenge due to the system’s complexity 

and data uncertainty. Employing advanced methods such as 

wavelet transform for data preprocessing and integrating 

system dynamics concepts into the training process of 

machine learning models may help enhance prediction 

performance and better reflect the real behavior of 

groundwater systems [16, 17].  

In this study, machine learning and deep learning 

techniques were employed to predict the groundwater level 

using data from observation wells located within the study 

area in Tehran Province. 

2. Case study 

Tehran Province, covering an area of approximately 

13,000 km² and home to over 15 million people, is located 

in the northern part of the Central Iranian Plateau. The 

province is bordered by the Alborz Mountain range to the 

north and surrounded by the Central Desert of Iran from the 

north and south, respectively. Geographically, it lies 

between 35°30′N and 35°42′N latitude and 50°55′E and 

51°23′E longitude. The average annual precipitation is 

about 280 mm, while the annual evaporation exceeds 250 

mm. The mean annual temperature is approximately 17°C, 

with recorded extremes ranging from -15°C to 43°C [18]. 

According to the latest data provided by the Iran Water 

Resources Management Company, by the end of 2017, more 

than 4,000 wells had been operating in Tehran Province, 

supplying water for irrigation, drinking, industrial, and 

other uses. Over the years of groundwater extraction, the 

total groundwater storage in the province has decreased by 

approximately 4 billion cubic meters [19]. 
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This region is highly dependent on groundwater resources 

for domestic, agricultural, and industrial purposes. In fact, 

more than 50% of the drinking water supply for the city of 

Tehran is derived from groundwater sources. In recent 

years, continued drought, rapid population growth due to 

migration, and over-extraction of groundwater to meet 

increasing demands for livelihood and production have led 

to a water supply crisis and the emergence of land 

subsidence phenomena. The unsustainable exploitation of 

these resources has resulted in the designation of many 

plains in the region as overdrawn or restricted zones. 

Therefore, assessing and monitoring groundwater storage at 

the local scale in this region is of critical importance. The 

location of the study area and the observation wells are 

illustrated in Figure 1. 

Figure 1. Study Area and Location of Observation Wells in Tehran Province, Iran 

3. Data Collection and Analysis 

This study aims to estimate groundwater level fluctuations 

across Tehran Province by integrating satellite-based 

observations with advanced machine learning and deep 

learning techniques. To achieve this objective, a 

comprehensive set of hydrological and remote sensing 

datasets was employed. These include monthly variations of 

Total Water Storage (TWS) derived from GRACE and 

GRACE Follow-On missions, along with surface and 

subsurface runoff parameters, soil moisture, canopy water 

content, snow water equivalent (SWE), evapotranspiration, 

and precipitation, sourced from various global and regional 

databases. 

The predicted groundwater levels generated by the models 

were subsequently validated against in-situ measurements 

from observational wells to assess the accuracy and 

reliability of the estimations. The Table 1 summarizes the 

input variables used in the groundwater level estimation 

framework, along with their spatial resolution, 

measurement units, and respective data sources. Subsequent 

sections provide detailed descriptions of each data source 

and its relevance to the modelling process.

Table 1. Summary of the datasets used in the groundwater level estimation process 

Variable Symbol 

Spatial & 

Temporal 

Resolution 

Unit Data Source 
Time 

Span 

Terrestrial Water 

Storage 
TWS 1° × 1°, Monthly cm GRACE & GRACE-FO (https://www2.csr.utexas.edu/grace/) 

2002–

2023 

Surface Runoff 𝑄𝑆 
0.25° × 0.25°, 

Monthly 
kg·m⁻² GLDAS/NOAH v2.1 (https://disc.gsfc.nasa.gov/dataset) 

2002–

2023 

Subsurface Runoff 𝑄𝐺  
0.25° × 0.25°, 

Monthly 
kg·m⁻² GLDAS/NOAH v2.1 (https://disc.gsfc.nasa.gov/dataset) 

2002–

2023 

Total Soil Moisture 𝑆𝑀𝑇𝑜𝑡  
0.25° × 0.25°, 

Monthly 
kg·m⁻² GLDAS/NOAH v2.1 (https://disc.gsfc.nasa.gov/dataset) 

2002–

2023 

Canopy Water 𝐶𝑊 
0.25° × 0.25°, 

Monthly 
kg·m⁻² GLDAS/NOAH v2.1 (https://disc.gsfc.nasa.gov/dataset) 

2002–

2023 

Snow Water 

Equivalent 
𝑆𝑊𝐸 

0.25° × 0.25°, 

Monthly 
kg·m⁻² GLDAS/NOAH v2.1 (https://disc.gsfc.nasa.gov/dataset) 

2002–

2023 

Evapotranspiration 𝐸 
0.25° × 0.25°, 

Monthly 
m 

ERA5 (https://cds.climate.copernicus.eu/datasets/reanalysis-era5-

single-levels-monthly-means) 

2002–

2023 

Precipitation 𝑃𝑟 
0.25° × 0.25°, 

Monthly 
m 

ERA5 (https://cds.climate.copernicus.eu/datasets/reanalysis-era5-

single-levels-monthly-means) 

2002–

2023 

Observational Wells — Monthly m IWRM (http://wrs.wrm.ir/amar/register.asp) 
2001–

2022 

http://wrs.wrm.ir/amar/register.asp
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3.1. Groundwater Well Data 

Monthly groundwater level measurements from 

observation wells were obtained from the official website of 

the Iran Water Resources Management Company 

(http://wrs.wrm.ir) [19]. These data span from 2001 to 2022 

(corresponding to the Persian calendar years 1380 to 1401). 

In total, data are available for approximately 350 

observation wells located across ten defined hydrological 

subregions: Eyvanaki, Namak Lake, Damavand, 

Firouzkouh, Saveh, Garmsar, Mobarakiyeh, Hoomand-

Abasard, Varamin, and Tehran-Karaj. 

Preliminary evaluation of the raw data revealed that, in 

some wells, measurements were available only for limited 

periods. Additionally, several wells exhibited large data 

gaps or missing values, rendering them unsuitable for robust 

time series analysis. In certain cases, monthly groundwater 

level fluctuations exceeded 2 meters, likely due to 

measurement or recording errors; such anomalies were 

either corrected or excluded from the analysis. 

Following a rigorous quality control procedure—including 

filtering, outlier detection, and continuity checks 

implemented in MATLAB—only those wells with 

consistent and sufficiently long time series (spanning 

approximately two decades from 2002 to 2022) were 

retained. This time period was selected to ensure 

comparability with the temporal coverage of satellite-based 

GRACE and GRACE Follow-On datasets. 

Ultimately, after applying various filters and conducting 

the Mann-Kendall trend test, observation wells exhibiting a 

significant increasing trend inconsistent with the general 

behavior of the dataset were excluded. As a result, the 

number of wells was reduced to 29. The spatial distribution 

of these wells is illustrated in Figure 1. The Z-values 

obtained from the Mann-Kendall test at a 5% significance 

level (α = 0.05) for the observation wells are presented in 

Figure 2. 

 

Figure 2. Variations in Mann-Kendall Z-values for different observation wells

According to Figure 2, the Mann-Kendall test reveals 

negative Z-values for the majority of observation wells, 

indicating a declining trend in groundwater levels across 

Tehran Province. Moreover, the significantly negative Z-

values observed in a substantial number of wells reflect a 

strong downward trend. 

Subsequently, cumulative and monthly variations in 

average groundwater level across all wells are illustrated in 

the following figure. Based on this figure, the cumulative 

monthly groundwater level change over the 20-year period 

from 2003 to 2023 exceeds 8 meters. A slight increase in the 

trend was observed between 2003 and 2007, followed by a 

noticeable and intensifying decline in subsequent years. 

The range of monthly groundwater level fluctuations in 

Tehran Province is approximately ±0.8 meters, with wider 

variability observed at the beginning and end of the time 

series and narrower fluctuations in the mid-years. 

Additionally, the average groundwater level change for 

Tehran Province is estimated at approximately -0.03meters. 

3.2. GRACE and GRACE-FO Data  

GRACE data are provided at five processing levels: Level-

0, Level-1A, Level-1B, Level-2, and Level-3. These 

datasets can be obtained from three main data centers: the 

Center for Space Research (CSR), the German Research 

Centre for Geosciences (GFZ), and the Jet Propulsion 

Laboratory (JPL). Each of these institutions employs 

different algorithms to convert GRACE raw data into Level-

3 products. In this study, following a thorough evaluation, 

monthly Level-3 data from the Center for Space Research 

(CSR) at the University of Texas have been utilized to 

estimate groundwater storage variations derived from 

GRACE (Total Water Storage – TWS). The time series of 

satellite-derived data from GRACE and GRACE-FO is 

presented in Figure 4. 

According to Figure 4, the temporal coverage of GRACE 

data spans from April 2002 to June 2017, while GRACE 

Follow-On (GRACE-FO) data cover the period from June 

2018 to the present. As observed, there is an 11-month gap 

between the end of the GRACE mission and the beginning 

of GRACE-FO. A declining trend in Total Water Storage 

(TWS) is evident in both GRACE and GRACE-FO data, 
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with a steeper decline observed in the post-2018 period 

covered by GRACE-FO. 

Figure 5 illustrates the month-to-month variations in TWS, 

showing the differences between each month and its 

preceding month. 

 

Figure 3. (a) Cumulative changes in groundwater level of 

observation wells, and (b) Monthly groundwater level 

fluctuations in Tehran Province 

Figure 4. Time series of monthly TWS variations derived 

from the GRACE satellite 

 
Figure 5. Monthly variations in Total Water Storage (TWS) 

derived from the GRACE satellite. 

As observed, the monthly variations in TWS for the years 

prior to 2017 remain within a range of ±10 centimeters. 

However, in recent years, this variation has significantly 

increased, reaching up to more than 30 centimeters per 

month. 

Subsequently, the annual variations in TWS, along with its 

cumulative values for the specified period, are presented 

below. 

 

Figure 6. Annual variations in Total Water Storage (TWS) 

derived from the GRACE satellite. 

3.3. GLDAS Data 

The Global Land Data Assimilation System (GLDAS) was 

developed through collaboration between scientists from 

NASA, the Goddard Space Flight Center (GSFC), the 

National Oceanic and Atmospheric Administration 

(NOAA), and the National Centers for Environmental 

Prediction (NCEP) to generate land surface parameters [20]. 

GLDAS includes three land surface models (Mosaic, 

NOAH, and CLM), watershed land surface models, and 

hydrological (VIC) models. 

This study used monthly data with a spatial resolution of 

0.25° × 0.25° from the GLDAS/NOAH model to obtain soil 

moisture, snow water equivalent (SWE), canopy water 

(CW), and runoff data. These data are available from the 

Goddard Earth Sciences Data and Information Services 

Center (GES DISC) [21]. 

Version 2.1 of the GLDAS dataset includes various 

parameters, from which surface runoff (Qs), subsurface 

runoff (Qg), canopy water (CW), soil moisture (SM) at 

different depths (0–10, 10–40, 40–100, and 100–200 cm), 

and snow water equivalent (SWE) were used in this study. 

The data obtained from GLDAS 2.1 are measured in 

kilograms per square meter. To convert the GLDAS 2.1 data 

to centimeters of water, it should be multiplied by 0.1. 

Additionally, the runoff and groundwater flow data are 

provided as three-hour averages, and thus, these values 

should be multiplied by 8 × 30. 

3.4. ERA5 Precipitation and Evaporation Data 

Undoubtedly, precipitation and evaporation are key factors 

controlling the water balance, playing a significant role in 

streamflow, its conversion into groundwater flow, and the 

replenishment of groundwater aquifers. Given the 

importance of these parameters, it is crucial to examine their 

variations. One of the widely used data sources for studying 

spatial and temporal changes in precipitation and 

evaporation is the ERA5 database, which provides data with 
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a spatial resolution of 0.25 degrees. The units of 

precipitation and evaporation are given in meters per day, 

and to convert these values to centimeters per month, they 

are multiplied by 30 × 100. 

4. Methodology 

This study aims to estimate the groundwater table levels of 

selected observation wells in cells 3, 4, and 10. These cells 

were chosen due to their extensive coverage from south to 

north. The first step involves gathering and analyzing input 

data, followed by developing a prediction model, which 

must be appropriately selected based on the dependence of 

the target variable. The target variable, or the variable to be 

predicted in this study, is the groundwater table level of the 

observation wells. 

In general, the data considered as inputs for the machine 

learning-based models include Terrestrial water 

storage(TWS), cumulative surface runoff(Qs), subsurface 

runoff(Qg), snow water equivalent (SWE), total soil 

moisture at different depths from 0 to 200 cm(SM), canopy 

water(CW), precipitation(P), and evaporation(E). 

Due to the expected limitations in model accuracy when 

relying solely on coarse-scale input data for groundwater 

level prediction, this study utilizes high-resolution datasets 

(0.25-degree spatial resolution) to improve modeling 

precision. The integration of finer spatial data enhances the 

reliability of the predictive models and supports more 

accurate groundwater monitoring, which is essential for 

effective water resource planning and sustainable 

management. 

All input parameters used in this study have a spatial 

resolution of 0.25 degrees and a temporal resolution at the 

monthly scale. Since the original TWS data are provided at 

a coarser resolution of 1° × 1°, they were downscaled to 

0.25-degree resolution to ensure consistency across all 

inputs. The downscaling procedure for TWS is described in 

detail by Mosavimehr and Kavianpour [22], and the results 

of their study were utilized in this research. Following a 

correlation analysis between groundwater levels in the 

selected wells and the input parameters, the optimal 

combination of predictors was selected for each well based 

on its spatial location. Table 2 presents the selected input 

variable combinations used to develop machine learning 

models for the three representative wells located in cells 3, 

4, and 10. It is worth noting that input parameters with low 

correlation to the target variable were excluded from the 

modelling process. 

Using this combination of input variables and 12 different 

methods, the monthly variations in groundwater table levels 

for the selected observation wells in cells 3, 4, and 10 were 

predicted. The methods employed in this study to predict the 

average changes in groundwater levels include: Linear 

Regression [23] (LR), Ridge Regression [24] (Ridg), Lasso 

Regression [25] (Lasso), Support Vector Machine [26] 

(SVM), Decision Tree [27] (DT), Artificial Neural Network 

[28] (ANN), Bagging Regressor [29] (BR), Random Forest 

[30] (RF), AdaBoost Algorithm [31] (Ada Boost), Gradient 

Boosting Algorithm [32] (GB), Stochastic Gradient 

Boosting [33] (SGB), and Extreme Gradient Boosting [34] 

(XGB). These methods are summarized with their 

abbreviations in the corresponding tables.  

Table 2. Optimal combinations of input variables selected for 

machine learning model development, based on correlation 

analysis for three representative observation wells located in 

cells 3, 4, and 10. 

Model No. Input variables 

Cell 10 𝑇𝑊𝑆𝐽𝑃𝐿 , 𝑆𝑊𝐸, 𝑆𝑀𝑇𝑜𝑡  

Cell 3 𝑇𝑊𝑆𝐽𝑃𝐿 , 𝑆𝑀𝑇𝑜𝑡  

Cell 4 𝑇𝑊𝑆𝐽𝑃𝐿 , 𝑆𝑀𝑇𝑜𝑡  

It is important to note that, the data were randomly split 

into training and test samples for modeling purposes, with 

75% of the data used for training and the remaining 25% 

reserved for testing the models [35-37]. Also, it is worth 

noting that all machine learning models were coded using 

the Python Scikit-learn library [38-40]. 

To evaluate the performance of the developed models in 

predicting groundwater level, four statistical metrics were 

employed: Mean Error (ME), Mean Absolute Error (MAE), 

Root Mean Square Error (RMSE), and Pearson Correlation 

Coefficient (R). These metrics are defined as follows: 

ME =
∑ (𝑦𝑖

′−𝑦𝑖)𝑛
𝑖=1

𝑛
  (1) 

MAE =
∑ |yi

′−yi|n
i=1

n
  (2) 

RMSE = √
∑ (yi

′−yi)2n
i=1

n
  (3) 

R =
∑ (n

i=1 yi−y̅)(yi
′−y̅′)

√∑ (yi−y̅)2n
i=1 √∑ (yi

′−y̅′)2n
i=1

  (4) 

where 𝑦𝑖 and  𝑦̅ denote the i-th observed value and the mean 

of the observed values, respectively, 𝑦𝑖
′and 𝑦′̅  represent the 

i-th predicted value and the mean of the predicted values, 

respectively, N is the total number of samples. 

In general, lower values of ME, MAE, and RMSE, and a 

correlation coefficient (R) closer to 1 indicate better model 

performance and higher predictive accuracy. 

5. Results and Discussion 

After model development, the performance of various 

machine learning models was evaluated for three selected 

wells using four statistical metrics: Coefficient of 

Determination (R²), Mean Error (ME), Mean Absolute Error 

(MAE), and Root Mean Square Error (RMSE). These 

metrics were calculated under different scenarios and are 

presented in Tables 3, 4, 5, and 6, respectively. It is worth 

noting that all values presented in the tables are expressed 

in meters. 
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Table 3. Coefficient of Determination (R²) Values for the Selected Wells and the 12 Prediction Methods 

 

Table 4. Mean Error (ME) Values for the Selected Wells and the 12 Prediction Methods 

 

Table 5. Mean Absolute Error (MAE) Values for the Selected Wells and the 12 Prediction Methods 

 

Table 6. Root Mean Square Error (RMSE) Values for the Selected Wells and the 12 Prediction Methods 

 

Based on the results presented in the above table, it can be 

observed that ensemble-based learning methods generally 

provide relatively better performance. The highest 

coefficient of determination (R²) was obtained by the 

Stochastic Gradient Boosting (SGB) model. Additionally, 

this model also yielded the lowest error values across the 

evaluated metrics. Therefore, the SGB model is identified 

as the most effective model for monthly groundwater level 

estimation across different locations. 

A comparison of the spatial distribution of errors indicates 

that the northern part of the study area exhibits higher error 

values compared to the southern part. This may be attributed 

to the more significant fluctuations in groundwater levels in 

that region, which are likely influenced by differences in 

precipitation patterns, geographical location, and elevation 

compared to the southern zones. 

To facilitate a better understanding of the tabulated results, 

corresponding bar charts are also provided in Figures 7 to 

10. 

 

Figure 7. Bar Chart of R² Values Across Different Cells (Selected Wells) and the 12 Prediction Methods. 

Cell LR Ridg Lasso SVR DT ANN BR RF Adb GB SGB XG

C10 0.820 0.820 0.820 0.383 0.838 0.828 0.856 0.852 0.868 0.869 0.842 0.847

C3 0.744 0.744 0.744 0.752 0.855 0.744 0.815 0.780 0.849 0.895 0.897 0.857

C4 0.844 0.844 0.845 0.705 0.848 0.340 0.857 0.852 0.793 0.849 0.852 0.807

Cell LR Ridg Lasso SVR DT ANN BR RF Adb GB SGB XG

C10 0.564 0.564 0.564 5.641 0.456 0.626 0.507 0.526 2.128 1.141 1.212 1.361

C3 0.169 0.169 0.169 1.598 0.044 0.169 -0.046 0.003 -0.134 0.044 0.080 -0.045

C4 -0.035 -0.035 -0.034 0.148 -0.084 -1.524 -0.059 -0.060 -0.126 -0.071 -0.058 -0.082

Cell LR Ridg Lasso SVR DT ANN BR RF Adb GB SGB XG

C10 4.643 4.643 4.643 12.065 4.113 4.559 3.782 3.793 4.127 3.779 3.991 4.322

C3 1.380 1.380 1.380 2.526 1.081 1.380 1.201 1.321 1.109 0.956 0.965 1.015

C4 0.718 0.718 0.718 1.662 0.678 26.249 0.676 0.706 0.761 0.703 0.700 0.748
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Figure 8. Bar Chart of ME Values Across Different Cells (Selected Wells) and the 12 Prediction Methods. 

 

Figure 9. Bar Chart of MAE Values Across Different Cells (Selected Wells) and the 12 Prediction Methods 

 

Figure 10. Bar Chart of RMSE Values Across Different Cells (Selected Wells) and the 12 Prediction Methods 
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As illustrated in the above figures, the SGB model 

demonstrated the best performance, with the lowest error 

values and the highest R². However, the performance 

difference between the SGB model and other ensemble-

based models is not substantial. 

A comparison between the Mean Error (ME) and the Mean 

Absolute Error (MAE) for the SGB and Decision Tree (DT) 

models reveals that the ME value for the SGB model is 

higher than that of the DT model, whereas the MAE of the 

SGB model is lower than that of the DT. This discrepancy 

suggests that the DT model exhibits a more symmetrical 

error distribution, while the SGB model tends to 

underestimate the actual values for the majority of the data 

points. 

The performance comparison of various models across the 

selected cell indicates that there is no significant difference 

in R² values. However, the figure also shows relatively 

higher error values for Cell 10, located in the northern part 

of the study area. 

5.1. Groundwater Level Prediction for the Selected Well 

in Cell 10 

As shown in Tables 4 to 7, which presents the performance 

of various algorithms for this model, the AdaBoost (Ada) and 

Gradient Boosting (GB) algorithms exhibit the highest R² 

values and the lowest error values. Therefore, they provide 

the most accurate predictions of groundwater level 

fluctuations. 

It is worth noting that the error values reported in the table 

are expressed in meters. 

Table 7. Prediction Model Performance for Cell 10 During the 

Testing Period. 

Furthermore, Figures 11 and 12 present the scatter plots of 

observed groundwater level fluctuations (from monitoring 

wells) versus the predicted values for the Ada and GB 

algorithms, respectively. 

In addition, Figure 13 illustrates the time series of observed 

versus predicted groundwater levels during the testing 

period. 

Overall, a strong correlation is observed between the 

predicted and actual groundwater levels in Cell 10, as 

indicated by the high R² values in the scatter plots. 

Additionally, Figure 13 demonstrates that the selected 

models have successfully captured the overall trend of 

groundwater level fluctuations with a satisfactory degree of 

accuracy. Notably, the models also perform reasonably well 

in predicting extreme values. However, as previously 

mentioned, these models tend to slightly underestimate the 

extreme values, which is a commonly observed behavior in 

machine learning-based prediction models. 

 

Figure 11. Scatter Plot of Observed vs. Predicted Groundwater 

Levels for the Ada Model 

 

Figure 12. Scatter Plot of Observed vs. Predicted 

Groundwater Levels for the GB Model 

 

Figure 13. Time Series of Observed vs. Predicted 

Groundwater Levels for the Ada and GB Models 

5.2. Groundwater Level Prediction for the Selected Well 

in Cell 3 

As shown in Table 8, which presents the performance of 

various algorithms for this model, the AdaBoost (Ada) and 

Gradient Boosting (GB) algorithms achieved the highest R² 

values and the lowest error values. Therefore, they provide 

the most accurate predictions of groundwater level 
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LR 0.5642043 4.6431212 5.6458621 0.8201

Ridg 0.5642061 4.643116 5.6458574 0.8201

Lasso 0.5639028 4.6425839 5.6456411 0.8201

SVR 5.6414544 12.065095 13.924478 0.3832

DT 0.4563499 4.112835 5.3667233 0.8375

ANN 0.6258802 4.5594345 5.5368978 0.8275

BR 0.506542 3.7816679 5.0503464 0.8556

RF 0.5255296 3.7932911 5.1161387 0.8517

Ada 2.1276266 4.1272769 5.255509 0.8677

GB 1.1412259 3.7785109 4.9477727 0.8694

SGB 1.2120369 3.9913322 5.4655153 0.8416

XG 1.361111 4.3218163 5.4988643 0.8465
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variations. It should be noted that the error values reported 

in the table are expressed in meters. 

Table 8. Prediction Model Performance for Cell 3 During the 

Testing Period.   

Subsequently, Figures 14 and 15 illustrate the scatter plots 

of observed groundwater level fluctuations (from monitoring 

wells) versus the predicted values for the SGB and GB 

algorithms, respectively. Figure 16 presents the time series 

of observed versus predicted groundwater levels for these 

two models. 

 
Figure 14. Scatter Plot of Observed vs. Predicted 

Groundwater Levels for the SGB Model  

 

Figure 15. Scatter Plot of Observed vs. Predicted 

Groundwater Levels for the GB Model 

The highest coefficient of determination among the 

different wells is observed for Cell 3, with a value of 0.895. 

According to the above figures, the selected models provide 

reliable estimates of the monthly groundwater level for the 

well in question. It is noteworthy that the models 

demonstrate a strong capability in predicting extreme values 

accurately. 

 

Figure 16. Time Series of Observed vs. Predicted 

Groundwater Levels for the SGB and GB Models 

5.3. Groundwater Level Prediction for the Selected Well 

in Cell 4 

As shown in Table 9, which presents the performance of 

various algorithms for this model, the AdaBoost (Ada) and 

Gradient Boosting (GB) algorithms achieved the highest R² 

values and the lowest error values. Therefore, they provide 

the most accurate predictions of groundwater level 

variations. It should be noted that the error values in the table 

are expressed in meters. 

Table 9. Prediction Model Performance for Cell 4 During the 

Testing Period. 

Subsequently, Figures 17 and 18 show the scatter plots of 

observed groundwater level fluctuations (from monitoring 

wells) versus the predicted values for the Bagging Regressor 

(BR) and Random Forest (RF) algorithms, respectively. 

Figure 19 displays the time series of observed values versus 

predicted groundwater levels for these two models. 

The results for the well located in Cell 4 are similar to those 

of Cell 3. Although the BR and RF models performed best 

for this cell, the differences in performance among the 

ensemble-based models are relatively negligible and can be 

considered insignificant. 
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Figure 17. Scatter Plot of Observed vs. Predicted 

Groundwater Levels for the BR Model 

 

Figure 18. Scatter Plot of Observed vs. Predicted 

Groundwater Levels for the RF Model 

 

Figure 19. Time Series of Observed vs. Predicted 

Groundwater Levels for the BR and RF Models 

6. Conclusions  

Accurate prediction of groundwater level variations is 

crucial for sustainable water resource management, 

particularly in arid and water-stressed regions. Satellite-

based observations, such as Total Water Storage (TWS) data 

from GRACE and GRACE-FO missions, offer valuable 

large-scale insights into terrestrial water dynamics, including 

subsurface changes. When integrated with advanced 

machine learning and deep learning algorithms, these 

datasets significantly improve the capability to model, 

predict, and track groundwater fluctuations over time. The 

synergy between remote sensing data and data-driven 

approaches enhances both spatial and temporal accuracy, 

thereby supporting evidence-based decision-making and 

long-term groundwater planning. 

To this end, various machine learning-based models, 

including Random Forest, AdaBoost, and Convolutional 

Neural Networks (CNN), were employed to predict and 

estimate groundwater level fluctuations in observational 

wells across the study area in Tehran Province. The input 

data for these models consisted of aggregated climatic 

parameters obtained from GLDAS and ERA5 datasets, and 

the models’ performance was evaluated to identify the most 

accurate predictive approach. In this study, different 

combinations of input variables were tested to enhance the 

accuracy of groundwater level estimations. Subsequently, 

the trained models were applied using high-resolution input 

data for final prediction and estimation of groundwater levels 

in the selected wells. 

The main limitation of this study was the restricted 

availability of in-situ measurements, as the existing data 

were limited to a sparse and irregular network of 

observational wells. Nevertheless, the comparison between 

the predicted values and well observations showed a strong 

agreement, confirming the effectiveness of the proposed 

methodology. The results revealed a consistent declining 

groundwater level trend across the study area. 

The study achieved reliable prediction performance by 

applying 12 different machine learning algorithms and 

testing various combinations of input parameters. The 

analysis indicated that models incorporating variables such 

as terrestrial water storage, total soil moisture, and snow 

water equivalent (in the northern areas), or precipitation (in 

the southern parts), yielded the most accurate groundwater 

level forecasts. 

Comparison of different machine learning models for 

estimating groundwater levels in the observation wells 

revealed that ensemble-based approaches generally 

outperformed other methods. These models achieved the 

highest coefficients of determination (R²) and the lowest 

error metrics among the evaluated techniques. Moreover, 

spatial analysis of model errors indicated that prediction 

errors were larger in the northern part of the study area 

compared to the southern region. This discrepancy is likely 

due to more pronounced groundwater level fluctuations in 

the north, influenced by distinct climatic conditions, higher 

precipitation variability, and notable differences in elevation 

and geographic setting relative to the southern zones. 

As observed, the parameters of soil moisture and terrestrial 

water storage show the highest correlation with groundwater 

level for wells located in the southern regions. In contrast, in 

the northern regions, in addition to the aforementioned 

parameters, snow water equivalent also shows a significant 

correlation with monthly groundwater levels. 

Ultimately, the evaluation of various models for direct 

groundwater level prediction at individual wells using 

satellite-derived and reanalysis input data demonstrates a 

satisfactory level of accuracy, highlighting the potential of 

these approaches for reliable groundwater monitoring. 
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