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1. Introduction

The concept of Intuitionistic Fuzzy Sets (IFSs, for short) was intro-
duced by Atanassov (in 1983) as an extension of Zadeh’s classical fuzzy
set theory, allowing for better representation of uncertainty by using
both membership and the non-membership value. IFSs are known as the
complement of the membership degree, offering a more flexible model of
vagueness. They are widely applied in various branches of mathematics,
including algebra and lattice theory, graph theory, network analysis, etc.
The notions of lattice and complete lattice were first presented by Gar-
rett Birkhoff, who also developed the fundamental properties of lattice
in Birkhoff’s book ”Lattice Theory” (1940), and Øystein Ore in 1930.
Later in 1983 and 1986, Atassanov and Stoeva integrated two concepts
of IFSs and lattice theory, named ILFSs, which provided a more gen-
eralized framework for handling uncertainty by including lattice-based
membership and non-membership functions. In this paper, the concept
of an ILF subspace is extended to Novikov algebras. In section 2, ILF
ideals and ILF subalgebras of Novikov algebras are defined, and some
fundamental properties are discussed. In section 3, we show that addi-
tion, product and intersection of ILF ideals are ILF ideals [resp. ILF
subalgebras], but the union of ILF ideals may not be an ILF ideal. In
section 4, we show that the quotient algebra X/A of a ILF ideal A is iso-
morphic to the algebra X/XA of a non-ILF ideal XA. In section 5, it is
showed that if f : X1 −→ X2 is an ILF Novikov algebra homomorphism,
then the preimage of an ILF ideal is an ILF ideal [resp. ILF subalgebra].
When f is surjective, a homomorphic image is an ILF ideal. Moreover,
the addition, product and intersection of ILF ideals in X1 are preserved
by f .

2. preliminaries

In this part, some essential definitions and notions of ILFSs are pre-
sented.
Definition 2.1. A fuzzy set (or fuzzy subset) is a pair (S, µ) where
S is a non-empty set and µ : S → [0, 1] is a membership function. The
set of all fuzzy subsets of S is denoted by [0, 1]S .
Definition 2.2. A bounded lattice L = (L,∧,∨, 0, 1) is an algebraic
structure such that the symbol ∨ denotes maximum and ∧ denotes min-
imum and for every x ∈ L, the conditions x∧ 1 = x, x∨ 1 = 1, x∧ 0 = 0
and x∨ 0 = x satisfy, where the constants 0, 1 of the lattice L represent
the upper bound (top) and the lower bound (bottom).
Definition 2.3. Let S be a non-empty set and L be a non-trivial com-
plete distributive lattice (in particular L = [0, 1]), then an L-fuzzy set
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µ in S is characterised by a map µ : S → L and the set of all L-fuzzy
subsets in S is denoted by LS .

Definition 2.4. A pre-Lie algebra X is a vector space with a binary
operation (x, y) 7→ x.y satisfying (x.y).z−x.(y.z) = (y.x).z− y.(x.z) for
all x, y, z ∈ X. The algebra X is called Novikov, if (x.y).z = (x.z).y for
all x, y, z ∈ X. Throughout this paper X is a Novikov algebra over a
field F , unless explicitly stated otherwise.

Definition 2.5. An ILF set (or subset), briefly an ILFS of a non-void
set S is the form A = {(x, µA(x), νA(x))|x ∈ S} (shortly A = (µA, νA)
or A), where the maps µA : S → [0, 1] and νA : S → [0, 1] are L-fuzzy
subsets of S such that µA(x) denotes the membership degree and νA(x)
denotes the non-membership degree and 0 ≤ µA(x) + νA(x) ≤ 1, for
every x ∈ S. The set of all ILFSs of S is denoted by ILFS(S).

Definition 2.6. The addition and multiplication of two ILF set A =
(µA , νA) and B = (µB , νB ) are extented to two operations on LX , de-
noted by + and × as follows:

(i)(µA + µB )(x) = sup{µA(a) ∧ µA(b) : a+ b = x},

(ii)(µA × µB )(x) = sup{µA(a) ∧ µA(b) : a.b = x},
and

(i)(νA + νB )(x) = inf{νA(a) ∨ νA(b) : a+ b = x},

(ii)(νA × νB )(x) = inf{νA(a) ∨ νA(b) : a.b = x}.
for all A,B ∈ LX and x, a, b ∈ X. The scalar multiplication kx for
k ∈ F and x ∈ X is extended to an action of feild F on LX as follows:

(kµA)(x) =

 µA(k
−1x) if k 6= 0

1 if k = 0, x = 0
0 if k = 0, x 6= 0

and

(kνA)(x) =

 νA(k
−1x) if k 6= 0

0 if k = 0, x = 0
1 if k = 0, x 6= 0

Definition 2.7. Let S be a nonempty set and A = (µA, νA), B =
(µB, νB) be two ILFSs of S, then for every x ∈ S we have:
(i) A ⊆ B ⇐⇒ µA(x) ≤ µB(x) and νA(x) ≥ νB(x);
(ii) A = B ⇐⇒ µA(x) = µB(x) and νA(x) = νB(x);
(iii) Ac = (νA, µA);
(iv) A ∩B = {(x, µA(x) ∧ µB(x), νA(x) ∨ νB(x))|x ∈ S};
(v) A ∪B = {(x, µA(x) ∨ µB(x), νA(x) ∧ νB(x))|x ∈ S}.
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Definition 2.8. Let {Ai = (µAi , νAi)}i∈I be a family of ILFSs of S,
then

∩
i∈I Ai = (µ∩i∈IAi , ν∩i∈IAi) = {(x,

∧
i∈I µAi(x),

∨
i∈I νAi(x))|x ∈

S} and
∪

i∈I Ai = (µ∪i∈IAi , ν∪i∈IAi) = {(x,
∨

i∈I µAi(x),
∧

i∈I νAi(x))|x ∈
S}. By A(x) = t, we mean µA = t and νA = 1− t.
Definition 2.9. Let V be a vecter space over a field F. An ILFS A =
(µA, νA) of V is called an ILF subspace satisfying:

(i) µA(0) = 1, νA(0) = 0;

(ii)
{

µA(x+ y) ≥ µA(x) ∧ µA(y);
νA(x+ y) ≤ νA(x) ∨ νA(y), for every x, y ∈ V.

(iii)
{

µA(rx) ≥ µA(x);
νA(rx) ≤ νA(x), for every x ∈ V and r ∈ F.

Definition 2.10. Let G be a group. An ILFS A = (µA , νA) of G is
called an ILF subgroup of G if the following conditions hold for every
x, y ∈ G:

(i)
{

µA(xy) ≤ µA(x) ∧ µA(y);
νA(xy) ≤ νA(x) ∨ νA(y);

(ii)
{

µA(x
−1) ≥ µA(x) (consequently µA(x

−1) = µA(x);
νA(x

−1) ≥ νA(x) (consequently νA(x
−1) = νA(x)).

Definition 2.11. Let S be a non-empty set. An ILF subspace A =
(µA , νA) is called an ILF ideal of S, if it satisfies the following properties
for every x, y ∈ S:

(1)
{

µA(x− y) ≥ µA(x) ∧ µA(y);
νA(x− y) ≤ νA(x) ∨ νA(y).

(2)
{

µA(xy) ≥ µA(x) ∨ µA(y);
νA(xy) ≤ νA(x) ∧ νA(y).

Definition 2.12. Let A = (µA, νA) be an ILF ideal. For every x ∈ X,
the ILF subset x + A : X → L, defined by (x + A)(y) = A(y − x) is
called coset of the ILF ideal A.
Definition 2.13. An ILF subspace A = (µA, νA) is called an ILF sub-
algebra of S, if it satisfies the following properties for every x, y ∈ S:

(i)
{

µA(x− y) ≤ µA(x) ∨ µA(y);
νA(x− y) ≥ νA(x) ∧ νA(y).

(ii)
{

µA(xy) ≤ µA(x) ∧ µA(y);
νA(xy) ≥ νA(x) ∨ νA(y).

Definition 2.14. Let A = (µA, νA) and B = (µB, νB) be two IFLSs,
then (A ⊕ B)(x) = (µA⊕B(x), νA⊕B(x)) where µA⊕B(x) =

∨
{µA(a) ∧

µB(b)|a+b = x} and νA⊕B(x) =
∧
{νA(a)∨νB(b)|a+b = x} for all x ∈ S.

Also (A ⊗ B)(x) = (µA⊗B(x), νA⊗B(x)) where µA⊗B(x) =
∨
{µA(a) ∧

µB(b)|a.b = x} and νA⊗B(x) =
∧
{νA(a) ∨ νB(b)|a.b = x} for all x ∈ S.
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Definition 2.15. The algebra X/A of an ILF ideal A is called the quo-
tient algebra of Novikov algebra X. An addition, a scalar multiplication
and a multiplication operations of the cosets are defined as follows:
(i)(x+A)⊕ (y +A) = (x+ y) +A
(ii)k � (x+A) = kx+A
(iii)(x+A)⊗ (y +A) = (x.y) +A for all k ∈ F , x, y ∈ A.
The addition, the scalar multiplication and the multiplication operation
of the cosets in Definition 2.15 are well defined by Definition 2.14.

Definition 2.16. Let X1, X2 be two Novikov algebras and A = (µA, νA)
be an ILFS of X1. A map f : X1 −→ X2 has a natural extention
f̃ : ILFX1 −→ ILFX2 , f̃(A) = (µ̃, ν̃) s.t

µ̃(y) =

{
sup{µA(x) | x ∈ f−1(y)}, f−1(y) 6= ∅
0 , f−1(y) = ∅

and

ν̃(y) =

{
inf{νA(x) | x ∈ f−1(y)}, f−1(y) 6= ∅
1 , f−1(y) = ∅

for all A ∈ ILFX1 and y ∈ X2. f̃(A) is called the homomorphic image
of A.

Definition 2.17. Let X1 and X2 be two Novikov algebras and f :
X1 −→ X2 be an algebra homomorphism. The preimage of B, denoted
by f−1(B), is the form of f−1(B) = (µ−1

B , ν−1
B ) ∈ LX1 , where µ−1

B (x) =

µB(f(x)) and ν−1
B (x) = νB(f(x)) for all x ∈ X1.

Definition 2.18. Let f : X1 −→ X2 be an algebra homomorphism. An
ILF subset A = (µA , νA) in X1 is called f-variant if for any x, y ∈ X1 ,
f(x) = f(y) implies A(x) = A(y) (i.e. µA(x) = µA(y) and νA(x) =
νA(y)).

3. main result

In the following part, we presented several theorems and lemmas
that play a crucial role in establishing the theoretical foundations of
our study.

Lemma 3.1. Let V be a vecter space over a field F . An ILFS A =
(µA, νA) of V is an ILF subspace if and only if
(i) µA(0) = 1, νA(0) = 0;

(ii)
{

µA(kx+ ly) ≥ µA(x) ∧ νA(y);
νA(kx+ ly) ≤ νA(x) ∨ νA(y).
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Remark 3.2. Let V be a vecter space over a field F. For every k ∈
F, x ∈ V . We have A(kx) = A(x) whenever A is an ILF ideal (or ILF
subalgebra) of X.

Lemma 3.3. Let {Ai = (µAi , νAi)}i∈I be a family of ILF subspaces of
X, then

∩
i∈I Ai is an ILF subspace of X.

Proof. Let A =
∩

i∈I Ai = (µA, νA). Obviously µA(0) =
∧

i∈I µAi(0) = 1
and νA(0) =

∨
i∈I νAi(0) = 0. Now let x, y ∈ X and k, l ∈ F . Then

µA(kx+ly) =
∧

i∈I µAi(kx+ly) ≥
∧

i∈I(µAi(x)∧µAi(y)) = (
∧

i∈I µAi(x))∧
(
∧

i∈I µAi(y)) = µA(x) ∧ µA(y). Similary νA(kx+ ly) ≤ νA(x) ∨ νA(y).
So by Lemma 3.1, A =

∩
i∈I Ai is an ILF subspace of X. □

Lemma 3.4. Let A = (µA, νA) and B = (µB, νB) be two ILF subspaces
of X. Then A⊕B is also an ILF subspace of X.

Proof. µA⊕B(0) =
∨
{µA(x)∧ µB(y)|x+ y = 0} ≥ µA(0)∧ µb(0) = 1. So

µA⊕B(0) = 1. Also νA⊕B(0) =
∧
{νA(x) ∨ νB(y)|x + y = 0} ≤ νA(0) ∨

νB(0) = 0 and so νA⊕B(0) = 0. Now let x, y ∈ X and k, l ∈ F . Then
µA⊕B(kx + ly) =

∨
{µA(t) ∧ µB(u)|t + u = kx + ly} ≥ (

∨
{µA(t1) ∧

µA(u1)|t1 + u1 = x}) ∧ (
∨
{µA(t2 ∧ µB(u2|t2 + u2 = y)}) = µA⊕B(x) ∧

µA⊕B(y). Also νA⊕B(kx + ly) =
∧
{µA(t) ∨ νB(u)|t + u = kx + ly} ≤

(
∧
{νA(t1) ∨ νA(u1)|t1 + u1 = x}) ∨ (

∧
{νA(t2 ∨ νB(u2|t2 + u2 = y)})

= νA⊕B(x) ∨ νA⊕B(y). So by Lemma 3.1, A⊕ B is an ILF subspace of
X. □

Theorem 3.5.
(i) Let A = (µA, νA) be an ILF ideal and B = (µB, νB) be an ILF
subalgebra of X. Then A⊕B = (µA⊕B, νA⊕B) is also an ILF subalgebra
of X.

(ii) Let {Ai = (µAi , νAi)|i ∈ I} be a set of ILF subalgebras of X. Then
the

∩
i∈I Ai of X is also an ILF subalgebra of X.

Proof.
(i) A ⊕ B is an ILF subspace of X by Lemma 3.4. Let x, y ∈ X, then
µA⊕B (x.y) ≥ sup{µA(x1 .y) ∧ µB (x2 .y)} : x1 + x2 = x}
≥ sup{(µA(x1) ∨ µA(y)) ∧ (µB (x2) ∧ µB (y)) : x1 + x2 = x}
= sup{(µA(x1)∧µB (x2)∧µB (y))∨(µA(y)∧µB (x2)∧µB (y)) : x1+x2 = x}
≥ sup{(µA(x1) ∧ µB (x2) ∧ µB (y)) : x1 + x2 = x}
= (µA⊕B )(x) ∧ µB (y) ≥ µA⊕B (x) ∧ µA⊕B (y). Also
νA⊕B (x.y) ≤ inf{νA(x1 .y) ∨ νB (x2 .y)} : x1 + x2 = x}
≤ inf{(νA(x1) ∨ νA(y)) ∨ (νB (x2) ∨ νB (y)) : x1 + x2 = x}
= inf{(νA(x1)∨νB (x2)∨νB (y))∧(νA(y)∨νB (x2)∨νB (y)) : x1 +x2 = x}
≤ inf{(νA(x1) ∨ νB (x2) ∨ νB (y)) : x1 + x2 = x} = (νA⊕B )(x) ∨ νB (y) ≤
νA⊕B (x) ∨ νA⊕B (y). Thus A⊕B is an ILF subalgebra of X.
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(ii)
∩

Ai is an ILF subspace by lemma 3.3. Let x, y ∈ X, then

(µAi
)(x.y) = infi∈I{µAi

(x.y)} ≥ inf{µAi
(x) ∧ µAi

(y)}

= (
∩
i∈i

µAi
)(x) ∧ (

∩
i∈I

µAi
)(y).

Also

(νAi)(x.y) = supi∈I{νAi(x.y)} ≤ inf{νAi(x) ∨ νAi(y)}

= (
∩
i∈i

νAi
)(x) ∨ (

∩
i∈I

νAi
)(y).

Thus
∩
Ai is an ILF subalgebra of X.

□

Theorem 3.6.
(i) Let A = (µA , νA) and B = (µB , νB ) be ILF ideals. Then A ⊕ B =
(µA⊕B, νA⊕B) is also an ILF ideal of X.

(ii) Let {Ai = (µAi , νAi)|i ∈ I} be a set of ILF ideals of X. Then the∩
i∈I

Ai of X is also an ILF ideal of X.
Proof.

(i) A⊕B is an L-fuzzy subspace by Lemma 3.4. Let x, y ∈ X, then

(µA⊕B)(x.y) ≥ sup{µA(x1.y) ∧ µB(x2.y)|x1 + x2 = x}

≥ sup{(µA(x1) ∨ µA(y)) ∧ (µB(x2) ∨ µB(y)) : x1 + x2 = x}

≥ sup{[(µA(x1) ∨ µA(y)) ∧ (µB(x2)] ∨ [(µA(y)) ∧ µB(y)] : x1 + x2 = x}

≥ sup{(µA(x1) ∧ µB(x2)) ∨ (µA(y)) ∧ µB(y)) : x1 + x2 = x} ≥

µA⊕B(x) ∨ (µA(y) ∧ µB(y)) ≥ µA⊕B(x)

for x1, x2 ∈ X. Similarly, we can prove that µA⊕B(x.y) ≥ µA⊕B(y).
Thus µA⊕B(x.y) ≥ µA⊕B(x) ∨ µA⊕B(y). Also

(νA⊕B)(x.y) ≤ inf{νA(x1.y) ∨ νB(x2.y)|x1 + x2 = x}

≤ inf{(νA(x1) ∧ νA(y)) ∨ (νB(x2) ∧ νB(y)) : x1 + x2 = x}

≤ inf{[(νA(x1) ∧ νA(y)) ∨ (νB(x2)] ∧ [(νA(y)) ∨ νB(y)] : x1 + x2 = x}

≤ inf{(νA(x1) ∨ νB(x2)) ∧ (νA(y)) ∨ νB(y)) : x1 + x2 = x} ≤

νA⊕B(x) ∧ (νA(y) ∨ νB(y)) ≤ νA⊕B(x)

for x1, x2 ∈ X. Similarly, we can prove that νA⊕B(x.y) ≤ νA⊕B(y).
Thus νA⊕B(x.y) ≤ νA⊕B(x) ∧ νA⊕B(y). Thus A ⊕ B is an ILF ideal of
X.
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(ii)
∩

i∈I Ai is an ILF subspace by Lemma 3.3. Let x, y ∈ X,then

(
∩
i∈I

µAi)(x.y) = infi∈I{µAi(x.y)} ≥ ∨{infi∈IµAi(x), infi∈IµAi(y)}

= (
∩
i∈I

µAi)(x) ∨ (
∩
i∈I

µAi)(y).

and (
∩

i∈I νAi)(x.y) = supi∈I{νAi(x.y)} ≤ ∧{supi∈IνAi(x), supi∈IνAi(y)}

= (
∩
i∈I

νAi)(x) ∧ (
∩
i∈I

νAi)(y).

□
Proposition 3.7. Let A = (µA , νA), B = (µB , νB ), C = (µC , νC ) be
three ILF ideals of X, then:
(i)(A⊗B)⊗ C = (A⊗ C)⊗B.
(ii)A⊗ (B ⊗ C) ⊆ ((A⊗B)⊗ C)⊕ (B ⊗ (A⊗ C))⊕ ((B ⊗A)⊗ C).
Proof. (i) Let x ∈ X, then

µ
(A⊗B)⊗C

(x) = sup{µA⊗B (m) ∧ µC (n)}|m.n = x}

= sup{sup{µA(a) ∧ µB (b) : a.b = m} ∧ µC (n)|m.n = x}
= sup{(µA(a) ∧ µB (b)) ∧ µC (n)|(a.b).n = x})
= sup{(µA(a) ∧ µC (n)) ∧ µB (b)|(a.n).b = x}

= sup{sup{µA(a) ∧ µC (n) : a.n = c} ∧ µB (b)|c.b = x}
= sup{µA⊗C (c) ∧ µB (b)|c.b = x} = µ

(A⊗C)⊗B
(x).

Also
ν
(A⊗B)⊗C

(x) = inf{νA⊗B (m) ∨ νC (n)}|m.n = x}
= inf{inf{νA(a) ∨ νB (b) : a.b = m} ∨ νC (n)|m.n = x}

= inf{(νA(a) ∨ νB (b)) ∨ νC (n)|(a.b).n = x})
= inf{(νA(a) ∨ νC (n)) ∨ νB (b)|(a.n).b = x}

= inf{inf{νA(a) ∨ νC (n) : a.n = c} ∨ νB (b)|c.b = x}
= inf{νA⊗C (c) ∨ νB (b)|c.b = x} = ν

(A⊗C)⊗B
(x).

for a, b, c,m, n ∈ X.

(ii) Let x ∈ X, then
µA⊗(B⊗C)(x) = sup{µA(m) ∧ µB⊗C(n)|m.n = x}

= sup{µA(m) ∧ sup{µB(b) ∧ µC(c)|b.c = n}|m.n = x}
= sup{µA(m) ∧ (µB (b) ∧ µC (c))|m.(b.c) = x}

= sup{((µA(m) ∧ µB (b)) ∧ µC (c)) ∧ (µB (b) ∧ (µA(m) ∧ µC (c)))

∧((µB (b) ∧ µA(m)) ∧ µC (c))|(m.b).c+ b.(m.c)− (b.m).c = x}
≤ sup{(sup(µA(m) ∧ µB (b)) ∧ µC (c)) ∧ (µB (b) ∧ sup(µA(m))
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∧µC (c)))∧(sup(µB (b)∧µA(m)))∧µC (c))|(m.b).c+b.(m.c)−(b.m).c = x}
= sup{((µA⊗B )(r)∧µC (c))∧(µB (b)∧(µA⊗C )(s))∧((µB⊗A)(t)∧µC (c))|r.c+b.s+t.c = x,

r = m.b, s = m.c, t = −b.m} ≤ sup{sup((µA⊗µB )(r)∧µC ))∧sup(µB (b)∧(µA⊗C (s))

∧sup((µB⊗µA)(t) ∧ µC (c))|r.c+ b.s+ t.c = x, r = m.b, t = −b.m}
= sup{(µA⊗B ∧µC )(u)∧ (µB ∧µA⊗C )(v)∧ (µB⊗A ∧µC )(w)|u+v+w = x,

u = r.c, v = b.s, w = t.c} = (µ
(A⊗B)⊗C

⊕ µ
B⊗(A⊗C)

⊕ µ
(B⊗A)⊗C

)(x)

for a, b, c,m, n, r, s, t, u, v, w ∈ X. Now, let x ∈ X, then
ν
A⊗(B⊗C)

(x) = inf{νA(m) ∨ νB⊗C (n)|m.n = x}

= inf{νA(m) ∨ inf{νB (b) ∨ νC (c)|b.c = n}|m.n = x}
= inf{νA(m) ∨ (νB (b) ∨ νC (c))|m.(b.c) = x}

= inf{((νA(m)∨νB (b))∨νC (c))∨(νB (b)∨(νA(m)∨νC (c)))∨((νB (b)∨νA(m))∨νC (c))

|(m.b).c+ b.(m.c)− (b.m).c = x}
≥ inf{(inf(νA(m)∨νB (b))∨νC (c))∨(νB (b)∨inf(νA(m))∨νC (c)))∨((νB (b)∨νA(m)))∨νC (c))

|(m.b).c+ b.(m.c)− (b.m).c = x}
= inf{((νA⊗B )(r) ∨ νC (c)) ∨ (νB (b) ∨ (νA⊗C )(s)) ∨ ((νB⊗A)(t) ∨ νC (c))

|r.c+ b.s+ t.c = x, r = m.b, s = m.c, t = −b.m}
≥ inf{inf((νA⊗B )(r)∨νC ))∨inf(νB (b)∨(νA⊗C (s))∨inf((νB⊗A)(t)∨νC (c))

|r.c+ b.s+ t.c = x, r = m.b, t = −b.m}
= inf{(νA⊗B ∨ νC )(u) ∨ (νB ∨ νA⊗C )(v) ∨ (νB⊗A ∨ νC )(w)

|u+ v + w = x, u = r.c, v = b.s, w = t.c}
= (ν

(A⊗B)⊗C
⊕ ν

B⊗(A⊗C)
⊕ ν

(B⊗A)⊗C
)(x)

for a, b, c,m, n, r, s, t, u, v, w ∈ X. □
Theorem 3.8. Let A = (µA , νA) be an ILF subspace of X and χILF

X
=

(χX , χ
c
X
). Then A is an ILF ideal of X if and only if χILF

X
⊗A ⊆ A and

A⊗ χILF
X

⊆ A for all x ∈ X.

Proof. (⇐) : Suppose that χILF
X ⊗A ⊆ A. Let x, y ∈ A. Then µA(x.y) ≥

(χX ⊗ µA)(x.y) = sup{χX (a) ∧ µA(b) : a.b = x.y}) ≥ χX (x) ∧ µA(y) ≥
µA(y). Also νA(x.y) ≤ (χc

X
⊗ νA)(x.y) = inf(χc

X
(a) ∨ νA(b)|a.b = x.y})

≤ χc
X
(x) ∨ νA(y) ≤ νA(y).

Thus A is an ILF ideal of X.
(⇒) : Suppose A = (µA, νA) is an ILF ideal of X. Put χILF

X
⊗ A =

(µ1, ν1) and A ⊗ χILF
X

= (µ2 , ν2). For x, y ∈ X we have µ1(x) =
sup{χX (a) ∧ µA(b)|a.b = x} = sup{µA(b)|a.b = x} ≤ µA(x). Sim-
ilary µ2(x) ≤ µ

A(x). Also ν1(x) = inf{χc
X
(a) ∨ νA(b)|a.b = x} =

inf{νA(b)|a.b = x} ≥ νA(x). Similary ν2(x) ≥ νA(x), so χILF
X

⊗ A ⊆ A

and A⊗ χILF
X

⊆ A. □
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Theorem 3.9. Let A = (µA , νA) and B = (µB , νB ) be two ILF ideals
of X. Then A⊗B is also an ILF ideal of X.

Proof. By Proposition 3.7(2), we have

χILF
X ⊗(µA⊗µB) ⊆ ((χILF

X ⊗µA)⊗µB)⊕(µA⊗(χILF
X ⊗µB))⊕((µA⊗χILF

X )µB)

⊆ (µA ⊗ µB)⊕ (µA ⊗ µB)⊕ (µA ⊗ µB) ⊆ (µA ⊗ µB).

and

χILF
X ⊗(νA⊗νB) ⊇ ((χILF

X ⊗νA)⊗νB)⊕(νA⊗(χILF
X ⊗νB))⊕((νA⊗χILF

X )νB)

⊇ (νA ⊗ νB)⊕ (νA ⊗ νB)⊕ (νA ⊗ νB) ⊇ (νA ⊗ νB).

By Proposition 3.7(1), it is obvious that

(µA ⊗ µB)⊗ χILF
X = (µA ⊗ χILF

X )⊗ µB ⊆ µA ⊗ µB.

and
(νA ⊗ νB)⊗ χILF

X = (νA ⊗ χILF
X )⊗ νB ⊇ νA ⊗ νB.

By Theorem 3.8, A⊗B is an ILF ideal of X. □

Proposition 3.10. Let A = (µA, νA) and B = (µB, νB) br two proper
ILF subspaces of X. Then the union of A and B cannot be an ILF
subspace.

Proof. Let A = (µA .νA) and B = (µB , νB ) be proper ILF subspaces of
X such that A(x) = 1 or B(x) = 1 for all x ∈ X. Let u, v ∈ X be
such that A(u) = 1, A(v) < 1, B(v) < 1, B(v) = 1, and consider uv. If
A(uv) = 1, then since A(u−1) = 1 we would have A(v) = A(u−1(uv)) ≥
min(A(u−1), A(uv)) = 1, contradition; A similar contradition is ob-
tained if B(uv) = 1. □

Remark 3.11. Let {Ai = (µAi
, νAi

)|i ∈ I} be a set of ILF ideals in X.
Then the ∪i∈IAi may not be an ILF ideal [resp. ILF subalgebra]. It can
be proved by the same method as the proof of Proposition 3.10.

Theorem 3.12. Let A = (µA, νA) be an ILF ideal of X, then x +
A = y + A if and only if A(x − y) = A(0), for x, y ∈ X. In this case
A(x) = A(y).
Proof. If x + µA = y + µA and x + νA = y + νA , then evaluating both
side of this equation at x we get µA(x − y) = µA(x − x) = µA(0) and
νA(x−y) = νA(x−x) = νA(0), thus we have A(x−y) = A(x−x) = A(0)
for x, y ∈ X. Conversely, If A(x− y) = A(0), then

(x+ µA)(z) = µA(z − x) = µA(z − y + y − x)

≥ µA(z − y) ∧ µA(y − x) = µA(z − y) = (y + µA)(z)
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for all z ∈ X. Thus x+ µA ≥ y + µA . By similar way y + µA ≥ x+ µA .
So x+ µA = y + µA . In the other hand

(x+ νA)(z) = νA(z − x) = νA(z − y + y − x)

≤ µA(z − y) ∨ νA(y − x) = νA(z − y) = (y + νA)(z),

for all z ∈ X. Thus x + νA ≤ y + νA . Similary y + νA ≤ x + νA . So
x+ νA = y + νA . □

Remark 3.13. Let A = (µA , νA) be an ILF of X, then XA = {x ∈
X|A(x) = 1; (µA(x) = 1, νA(x) = 0)} is an ILF ideal of X.

Remark 3.14. If A is an ILF ideal of X, then (x+A)(z) = A(y − x) for
all z ∈ y +XA. In particular, (x+A)(z) = A(x).

Proposition 3.15. Let A = (µA, νA) be an ILF ideal, then A(0) ≥
A(x) ≥ A(1) for all a ∈ X.

Proposition 3.16. Let A = (µA , νA) be an ILF ideal of X and x, y, u, v
be any elements in R. If x+A = u+A and y +A = v +A, then
(i)(x+ y) +A = (u+ v) +A;
(ii)(x.y) +A = (u.v) +A.

Proof. (i) Since by the Proposition 3.12, A(x−u) = A(y−v) = A(0), we
get µA(x+y−u−v) = µA(x−u+y−v) ≥ µA(x−u)∧µA(y−v) = µA(0)
and νA(x−u) = νA(y−v) = νA(0), we get νA(x+y−u−v) = νA(x−u+
y−v) ≤ νA(x−u)∨νA(y−v) = νA(0). Hence µA(x+y−u−v) = µA(0),
and νA(x+ y − u− v) = νA(0), therefore (x+ y) +A = (u+ v) +A.
(ii) µA(uv− xy) = µA(uv− uy+ uy− xy) ≥ µA [u(v− y)]∧ µA [(u− x)y]

≥ [µA(u) ∨ µA(v − y)] ∧ [µA(u− x) ∧ µA(y)]

= [µA(u) ∨ µA(0)] ∧ [µA(0) ∨ µA(y)] = µA(0).

and
νA(uv − xy) = νA(uv − uy + uy − xy)

≤ νA [u(v − y)] ∨ νA [(u− x)y]

≤ [νA(u) ∧ νA(v − y)] ∨ [νA(u− x) ∨ νA(y)]

= [νA(u) ∧ νA(0)] ∨ [νA(0) ∧ νA(y)] = νA(0).

Therefore A(uv − xy) = A(0) and xy +A = uv +A. □

Proposition 3.17. Let A = (µA, νA) be an ILF ideal and x1, x2, y1, y2, k
be any elements in X. If x1 +A = y1 +A and x2 +A = y2 +A, then
(i)(x1 + x2) +A = (y1 + y2) +A;
(ii)(x1.x2) +A = (y1.y2) +A;
(iii)kx1 +A = ky1 +A, for all k ∈ F .
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Proof. The proof of (i) and (ii) by proposition 3.16. it is sufficient to
prove (iii). Since µA(x1 − x2) = µA(k(x1 − x2)) = 0, we get that kx1 +
µA = ky1 + µA. Similary since νA(x1 − x2) = νA(k(x1 − x2)) = 1, we
get that kx1 + νA = ky1 + νA.

□

Theorem 3.18. Let A be a ILF ideal of X. The Novikov quotient
algebra X/A is isomorphic to the algebra X/XA.

Proof. Consider the surjective algebra homomorphism π : X −→ X/A
defines by π(x) : x + A. By Theorem 3.12, Ker(π) = XA. By the
fundamental theorem of homomorphisms, there exists an isomorphism
from X/XA to X/A. The isomorphic correspondence is given by x+A =
x+XA for x ∈ X.

□

4. ilf ideals on homomorphism

Example 4.1. Let f : Z → 2Z be a map such that f(x) = 2x and
A = (µA, νA) be an ILF set of Z such that

µA(x) =

{
0 , x ∈ 2Z
1/2 , x ∈ 2Z+ 1

and
νA(x) =

{
2/3 , x ∈ 2Z
2/5 , x ∈ 2Z+ 1

Then the homomorphic image of A is f̃(A) = (µ̃, ν̃) such that

µ̃(y) =

{
0 , y ∈ 4Z
1/2 , y ∈ 4Z+ 2

and
ν̃(y) =

{
2/3 , y ∈ 4Z
2/5 , y ∈ 4Z+ 2

Example 4.2. Let f : Z → 2Z again be a map that f(x) = 2x and
B = (µB , νB ) ⊆ ILF 2Z such that

µB (y) =

{
0 , y ∈ 4Z
1/2 , y ∈ 4Z+ 2

and

ν
B
(y) =

{
2/3 , y ∈ 4Z
2/5 , y ∈ 4Z+ 2
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Then f−1(B) = (µ̂, ν̂) such that µ̂(x) = µB (2x)

{
0 , x ∈ 2Z
1/2 , x 6∈ 2Z and

ν̂(y) = νB (2x) =

{
2/3 , y ∈ 2Z
2/5 , y 6∈ 2Z is the preimage of B.

Example 4.3. Let f : R → R such that f : 2x2+1 and A = (µA , νA) ⊆
ILFR such that

µA(x) =

{
1/4 , x ∈ Z
2/3 , x 6∈ Z

and
νA(x) =

{
1/3 , x ∈ Z
1/2 , x 6∈ Z

Vividly for all x, y ∈ R, f(x) = f(y) implies x = y, hence A is f −
variant.

Remark 4.4. In case f : X1 → X2 be monomorphism, it’s trivial that
every choosen ILF subset A on X1 is f-variant , otherwise A can either
be f-variant or not.

Example 4.5. Let f : R → R such that f : x2 + 1 and A = (µA , νA) ⊆
ILFR such that

µA(x) =

{
1 , x ≥ 1
1/3 , x < 1

and

νA(x) =

{
0 , x ≥ 1
1/2 , x < 1

Put x = 2 and y = −2 then f(2) = f(−2) though µA(2) 6= µA(−2).
Hence A(2) 6= A(−2) and A is not f-variant.

Remark 4.6. Let f : X1 −→ X2 be an algebra homomorphism and
A = (µA , νA) be an ILF subspace of X1 , then f(A) is not necessarily an
ILF subspace of X2 .

Example 4.7. Let f : Z → Z be an algebra homomorphism definded
as f(x) = 2x for all x ∈ Z and A = (µA , νA) be an ILF subspace of Z
such that
µA(x) =

{
1 , x ∈ 2Z
1/3 , x ∈ 2Z+ 1

and νA(x) =

{
0 , x ∈ 2Z
1/2 , x ∈ 2Z+ 1

Then f(A) = (µ̂, ν̂) is definded such that µ̂(y) =

{
1 , y ∈ 4Z
1/3 , y ∈ 4Z+ 2
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and ν̂(y) =

{
0 , y ∈ 4Z
1/2 , y ∈ 4Z+ 2

which is not an ILF subspace of Z. For instance, if we choose two dif-
ferent variables y, z ∈ 4Z+ 2 obviously µ̂(y + z) 6≤ µ̂(y) ∧ µ̂(z).

Remark 4.8. In case f : X1 → X2 be a algebra homomorphism and
A = (µA , νA) be an ILF ideal [resp. ILF subalgebra] of X1 , f(A) is not
necessarily an ILF ideal (ILF subalgebra) of X2.

Theorem 4.9. Let F be a field and f : X1 −→ X2 be an algebra
homomorphism. If B = (µB , νB ) is an ILF subalgebra of X2 , then
f̃−1(B) = (µ̃−1

B , ν̃−1
B ) is also an ILF subalgebra of X1 .

Proof. By Definition 2.16, for all k ∈ F and x, y ∈ X1 we have
(i)µ̃−1

B (x+ y) = µB (f(x+ y)) = µB (f(x) + f(y)) ≥ µB (f(x))∧µB (f(y))

≥ µ̃−1
B (x) ∧ µ̃−1

B (y),

(ii)µ̃−1
B (kx) = µB (f(kx)) = µB (kf(x)) ≥ µB (f(x)) = µ̃−1

B (x),

(iii)µ̃−1
B (x.y) = µB (f(x.y)) = µB(f(x).f(y)) ≥ µB (f(x)) ∧ µB (f(y))

≥ µ̃−1
B (x) ∧ µ̃−1

B (y)

(iv) ν̃−1
B (x+y) = νB (f(x+y)) = νB (f(x)+f(y)) ≤ νB (f(x))∨νB (f(y))

≤ ν̃−1
B (x) ∨ ν̃−1

B (y),

(v)ν̃−1
B (kx) = νB (f(kx)) = νB (kf(x)) ≤ νB (f(x)) = ν̃−1

B (x),

(vi)ν̃−1
B (x.y) = νB (f(x.y)) = νB (f(x).f(y)) ≤ νB (f(x)) ∨ νB (f(y))

≤ ν̃−1
B (x) ∨ ν̃−1

B (y).

□

Theorem 4.10. Let F be a field and f : X1 −→ X2 be an algebra
homomorphism. If B = (µB , νB ) is an ILF ideal of X2 , then f̃−1(B) =

(µ̃−1
B , ν̃−1

B ) is also an ILF ideal of X1 .

Proof. By Definition 2.16, for all k ∈ F and x, y ∈ X1 we have
(i)µ̃−1

B (x+ y) = µB (f(x+ y)) = µB (f(x) + f(y)) ≥ µB (f(x))∧µB (f(y))

≥ µ̃−1
B (x) ∧ µ̃−1

B (y),

(ii)µ̃−1
B (kx) = µB (f(kx)) = µB (kf(x)) ≥ µB (f(x)) = µ̃−1

B (x).

(iii)µ̃−1
B (x.y) = µB (f(x.y)) = µB(f(x).f(y)) ≥ µB (f(x)) ∨ µB (f(y))

≥ µ̃−1
B (x) ∨ µ̃−1

B (y)

(iv) ν̃−1
B (x+y) = νB (f(x+y)) = νB (f(x)+f(y)) ≤ νB (f(x))∨νB (f(y))

≤ ν̃−1
B (x) ∨ ν̃−1

B (y),
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(v)ν̃−1
B (kx) = νB (f(kx)) = νB (kf(x)) ≤ νB (f(x)) = ν̃−1

B (x),

(vi)ν̃−1
B (x.y) = νB (f(x.y)) = νB (f(x).f(y)) ≤ νB (f(x)) ∧ νB (f(y))

≤ ν̃−1
B (x) ∧ ν̃−1

B (y)

□

Proposition 4.11. Let A1 , A2 , ..., An be ILFSs of X and λ1 , λ2 , ..., λn

be scalares. The following assertions are equivalent.
(i)λ1A1 + λ2A2 + ...λnAn ⊆ A.
(ii) For all x1 , x2 , ..., xn ∈ X, we have

µA(λ1x1 + ...+ λnxn) ≥ min{µA1
(x1), ..., µAn

(xn)}.

Proof. (i) ⇒ (ii)

µA(λ1x1 + ...+ λnxn) ≥ µ
λ1A1+...+λnAn

(λ1x1 + ...+ λnxn)

≥ min{µ
λ1A1

(λ1x1), ..., µλnAn
(λnxn)}

≥ min{µA1
(x1), ..., µAn

(xn)}.
and

νA(λ1x1 + ...+ λnxn) ≤ ν
λ1A1+...+λnAn

(λ1x1 + ...+ λnxn)

≤ max{ν
λ1A1

(λ1x1), ..., νλnAn
(λnxn)}

≤ max{νA1
(x1), ..., νAn

(xn)}.
(ii) ⇒ (i) By rearing the order if necessary, we may assume that

λ1 6= 0 for i = 1, ..., k and λi = 0 for k < i ≤ n. Let x1 , ..., xk
be

elements of X.

µA(λ1x1+...+λ
k
x

k
) ≥ min{µA1

(x1), ..., µA
k
(x

k
), µA

k+1
(y1), ..., µAn

(y
n−k

)}.

Since µ0Aj
(0) = supy∈XµAj

(y), we get

µA(λ1x1+...+λ
k
x

k
) ≥ min{µA1

(x1), ..., µA
k
(x

k
), µ0Aα+1

(0), ..., µ0An
(0)}.

Now
µ

λ1A1+λnAn
(z) = supx1+...+x

k
=z [min µ

λ1A1
(x1), ..., µλnAn

(xn)]

= supx1+...+x
k
=z [min µ

λ1A1
(x1), ..., µλ

k
A
k
(x

k
), µ0A

k+1
(0), ..., µ0An

(0)]

= supx1+...+x
k
=z [min µA1

((1/λ1)x1), ..., µA
k
((1/λ

k
)x

k
), µ0A

k+1
(0), ..., µ0An

(0)}]

≤ supx1+...+x
k
=z µA(λ1(1/λ1)x1 + ...+ λ

k
(1/λ

k
)x

k
) = µA(z).

Also
νA(λ1x1+...+λ

k
x

k
) ≤ max{νA1

(x1), ..., νA
k
(x

k
), νA

k+1
(y1), ..., νAn

(y
n−k

)}.
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Since ν0Aj
(0) = infy∈XνAj

(y), we get

νA(λ1x1+ ...+λ
k
x

k
) ≤ max{νA1

(x1), ..., νA
k
(x

k
), ν0Aα+1

(0), ..., ν0An
(0)}.

Now
ν
λ1A1+λnAn

(z) = supx1+...+x
k
=z [min ν

λ1A1
(x1), ..., νλnAn

(xn)]

= supx1+...+x
k
=z [min ν

λ1A1
(x1), ..., νλ

k
A
k
(x

k
), ν0A

k+1
(0), ..., µ0An

(0)]

= infx1+...+x
k
=z [max νA1

((1/λ1)x1), ..., νA
k
((1/λ

k
)x

k
), ν0A

k+1
(0), ..., ν0An

(0)}]

≥ infx1+...+x
k
=z νA(λ1(1/λ1)x1 + ...+ λ

k
(1/λ

k
)x

k
) = νA(z).

□
Lemma 4.12. Let A = (µA , νA) is an ILF set of X. Then the following
are equivalent:
(i)A is an ILF subspace of X;
(ii)For all scalars k,m ∈ F , we have kA+mA ⊂ A;
(iii)For all scalars k,m ∈ F and all x, y ∈ X, we have: µA(kx+my) ≤
min{µA(x), µA(y)} and νA(kx+my) ≥ max{µA(x), µA(y)}.

Proof. Clearly, we have 1 → 2 holds. Also (2) and (3) are equivalent by
Proposition 4.11.
(ii) → (i)

µA + µA = 1µA + 1µA ⊂ µA ,

and
νA + νA = 1νA + 1νA ⊃ νA ;

also
kµA = kµA + 0µA ⊂ µA ,

and
kνA = kνA + 0νA ⊃ νA ,

□
Proposition 4.13. Let f be a linear map from X1 into X2 . If A =
(µA , νA) is an ILF subspace of X1 , then f(A) = (µ

f(A)
, ν

f(A)
) is an ILF

subspace of X2 . Similary, f−1(B) = (µ
f−1(B)

, ν
f−1(B)

) is an ILF subspace
of X2 whenever B = (µB , νB ) is an ILF subspace of X2 .

Proof. For k,m scalars we have
kµ

f(A)
+mµ

fA
= f(kµA +mµA) ⊂ µ

fA
,

and
kν

fA
+mν

fA
= f(kνA +mνA) ⊃ ν

fA
,

which shows f(A) is an ILF subspace of F. Also,
µ

f−1(B)
(kx+my) = µB (f(kx+my)) = µB (kf(x) +mf(y))
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≥ min{µBf(x), µBf(y)}
= min{µ

f−1(B)
(x), µ

f−1(B)
(y)},

and
ν
f−1(B)

(kx+my) = νB (f(kx+my)) = νB (f(kx+my)) = νB (kf(x)+mf(y))

≤ min{νBf(x), νBf(y)}
= min{ν

f−1(B)
(x), ν

f−1(B)
(y)}

. Hence f−1(B) is an ILF subspace by Lemma 4.12. □
Theorem 4.14. Let f : X1 −→ X2 be a surjective algebra homomor-
phism. If A = (µA , νA) is an ILF subalgebra of X1 , then f̃(A) is also an
ILF subalgebra of X2 .
Proof. Since f(0) = 0, µA(0) = 1 and νA(0) = 0 , it is clear that
f̃(A)(0) = 1 and f̃(νA)(0) = 0. By proposition 4.13 f̃(A) is an ILF
subspace of X2 .
Let x, y ∈ X2 . it is enough to show that f̃(A)(x.y) ≥ f̃(A)(x)∧ f̃(A)(y).

If x.y ∈ f(X1), assume thatf̃(µA)(x.y) < f̃(µA)(x) ∧ f̃(µA)(y). Then
f̃(µA)(x.y) < f̃(µA)(x) or f̃(µA)(x.y) < f̃(µA)(y).
We can choose a number t ∈ [0, 1] such that f̃(µ)(x.y) < t < f̃(µA)(x)

and f̃(νA)(x.y) < t < f̃(νA)(x). There exist an a ∈ f−1(x) ⊆ X1 ,
b ∈ f−1(y) ⊆ X1 such that µA(a) > t and µA(b) > t .
Since f(a.b) = f(a).f(b) = x.y , we have f−1(x.y) 6= � , and
f̃(µA)(x.y) = sup{µA(z) : z ∈ f−1(x.y)} ≥ µA(a.b) ≥ µA(a) > t >

f̃(µA)(x.y). That is a contradiction. Similary, if ν
f̃(A)

(x.y) ≥ ν
f̃(A)

(x) ∧
ν
f̃(A)

(y), then we get a contradiction. Hence, f̃(A) is an ILF subalgebra
of X2 . □
Theorem 4.15. Let f : X1 −→ X2 be a surjective algebra homomor-
phism. If A = (µA , νA) is an ILF ideal of X1 , then f̃(A) is also an ILF
ideal of X2 .
Proof. Since f(0) = 0, µA(0) = 1 and νA(0) = 0 , it is clear that
f̃(A)(0) = 1 and f̃(νA)(0) = 1. By proposition 4.13 f̃(A) is an ILF
subspace. Let x, y ∈ X2 . it is enough to show that f̃(A)(x.y) ≥
f̃(A)(x)∨f̃(A)(y). Assume thatf̃(µA)(x.y) < f̃(µA)(x)∨f̃(µA)(y). Then
f̃(µA)(x.y) < f̃(µA)(x) or f̃(µA)(x.y) < f̃(µA)(y) and f̃(νA)(x.y) >

f̃(νA)(x) or f̃(νA)(x.y) > f̃(νA)(y). Without loss of generality, we can
choose a number t ∈ [0, 1] such that f̃(µA)(x.y) < t < f̃(µA)(x) and
f̃(νA)(x.y) > t > f̃(νA)(x). There exist an a ∈ f−1(x) ⊆ X1 such that
µA(a) > t and νA(a) < t. Since f is surjective, there exist b ∈ X1 such
that A(b) = y. Since f(a.b) = f(a).f(b) = x.y , we have f−1(x.y) 6= � ,
and f̃(µA)(x.y) = sup{µA(z) : z ∈ f−1(x.y)} ≥ µA(a.b) ≥ µA(a) > t >
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f̃(µA)(x.y). That is a contradiction. Similary we can prove the other
case. Hence, f̃(A) is an ILF ideal in X2 . □
Theorem 4.16. (i) Let A = (µA , νA) be any ILF of a ring R and let
t = A(0). Then the ILF subset A∗ of R/At , defined by A∗(x+At) = A(x)
for all x ∈ R, is an ILF ideal of R/At .
(ii) If A = (µA , νA) is an ILF ideal of R and θ is an ILF ideal of R/A
such that θ(x + A) = θ(A) only when x ∈ A, then there exists an ILF
ideal A = (µA , νA) of R such that At = A, where t = A(0) and θ = A∗.
Proof. (i) Since A is an ILF ideal of R, Ai is an ILF ideal of R, too. Now
A∗ is well defined because x+µA = y+µA where x, y ∈ R → x− y ∈ µt

→ µA(x− y) = µA(0) → µA(x) = µA(y) → µ∗
A
(x+ µt) = µ∗

A
(y + µt).

Next, we show that µ∗
A

is an ILF ideal of R. To this end, for any x, y ∈ R,
we have µ∗

A
((x + µt) − (y + µt)) = µ∗

A
((x − y) + µt) = µA(x − y) ≥

min(µA(x), µA(y)) = min(µ∗
A
(x+µt), µ

∗
A
(x+µt)), and µA((x+µt)(y+

µt)) = µ∗
A
(xy+µt) = µA(xy) Also for every x, y ∈ R, x+νA = y+νA →

x − y ∈ νt → νA(x − y) = νA(0) → νA(x) = νA(y) → ν∗
A
(x + νt) =

ν∗
A
(y+ νt). Next, we show that ν∗

A
is an ILF ideal of R. To this end, for

any x, y ∈ R, we have ν∗
A
((x+νt)−(y+νt)) = ν∗

A
((x−y)+νt) = νA(x−y)

≤ max(νA(x), νA(y)) = max(ν∗
A
(x+ νt), ν

∗
A
(x+ νt)) and νA((x+ νt)(y+

νt)) = ν∗
A
(xy + νt) = νA(xy).

(ii) Define an ILF ideal A of R by A(x) = θ(x + A) for all x ∈ R. A
routine computation shows that A is an ILF ideals of R. Also, At = A,
since x ∈ µt ↔ µA(x) = µA(0) ↔ θ(x + A) = θ(A), x ∈ A. Finally
µ∗

A
= θ, because µ∗

A
(x+A) = µ∗

A
(x+ µt) = µA(x) = θ(x+A) and since

x ∈ νt ↔ νA(sx) = νA(0) ↔ θ(x + A) = θ(A), x ∈ A. Finally ν∗
A
= θ,

because ν∗
A
(x + A) = ν∗

A
(x + νt) = νA(x) = θ(x + A). So there exists

an ILF ideal A = (µA , νA) of R such that At = A, where t = A(0); and
θ = A∗. □
Theorem 4.17. Let f : X1 −→ X2 be an algebra homomorphism,
then (i) If A = (µA , νA), B = (µB , νB ) are ILF subalgebras of X1 , then
f̃(A⊕B) = f̃(A)⊕ f̃(B).
(ii) If {Ai : i ∈ I} be a set of ILF subalgebras of X1 , then f̃(

∩
i∈I

Ai) =∩
i∈I

f̃(Ai).
(iii) If A = (µA , νA), B = (µB , νB ) are ILF subalgebras of X1 , then
f̃(A⊗B) = f̃(A)⊗ f̃(B).
Proof. (i) and (ii) can be proved by the same method as the proof of
Theorem 4.16. It is sufficient to prove (iii). Let x ∈ X2 . We prove that
µ

f̃(A⊗B)
(x) = (µ

f̃(A)
⊗µ

f̃(B)
)(x) and (ν

f̃(A⊗B)
)(x) = (ν

f̃(A)
)(x)⊗(ν

f̃(B)
)(x).

If x = y.z ∈ f̃(X1), we have y /∈ f̃(X1) or z /∈ f̃(X1). By the proof of
theorem 4.16 we get f̃(µA ⊕ µB )(x) = 0 and (f̃(µA) ⊗ f̃(µB ))(x) =

f̃(µA)(x) ⊗ f̃(µB )(x) = sup{f̃(µA)(y) ∧ f̃(µB )(z) : x = y} = 0. and
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f̃(νA ⊕ µB )(x) = 1 and (f̃(νA) ⊗ f̃(νB ))(x) = f̃(νA)(x) ⊗ f̃(νB )(x) =

inf{f̃(νA)(y) ∨ f̃(νB )(z) : x = y.} = 1. Let x = y.z /∈ f(X1) or
f̃(µA ⊗ µB )(x) < f̃(µA)(x) ⊗ f̃(µB )(x) or f̃(νA ⊗ νB )(x) > f̃(νA)(x) ⊗
f̃(νB )(x). We can choose an element t ∈ L such that f̃(µA ⊗ µB )(x) <

t < f̃(µA)(x) ⊗ (µB )(x) or f̃(νA ⊗ νB )(x) > t > f̃(νA)(x) ⊗ (νB )(x),

respectively. Since f̃(µA)(x) ⊗ f̃(µB )(x) = sup{f̃(µA)(y) ∧ f̃(µB )(z) :

x = y.z} and f̃(νA)(x)⊗f̃(νB )(x) = inf{f̃(νA)(y)∨f̃(νB )(z) : x = y.z},
there exist y, z ∈ X2 such that x = y.z with f̃(µA)(y) > t , f̃(µB )(z) > t

or f̃(νA)(y) < t , f̃(νB )(z) < t. Since x ∈ f(X1), there exist an x1 ∈ X1

such that f(x1) = x and x1 = y1 .z1 for y1 ∈ f−1(y), z1 ∈ f−1(z)
with µA(y1) > t and µB (z1) > t and νA(y1) < t , νB (z1) < t. Since
f(y1 .z1) = f(y1).f(z1) = y.z = x, we have

f̃(µA ⊗ µB )(x) = sup{(µA ⊗ µB )(x1)|f(x1 = x}

= sup{µA(a) ∧ µB (b)|f(ab) = x}
≥ µA(y1) ∧ µB (z1) > t.

or
f̃(νA ⊗ νB )(x) = inf{(νA ⊗ νB )(x1)|f(x1) = x}

= inf{νA(a) ∨ νB : f(x1) = x}
≤ νA(y1) ∨ νB (z1) < t,

respectively. This is a contradiction. Similarly, for the case f̃(A ⊗
B)(x) > (f̃(A⊗ f̃(B))(x) or f̃(νA ⊗ νB )(x) < (f̃(νA ⊗ f̃(νB ))(x), we get
a contradiction. Hence f̃(A⊗B) = f̃(A)⊗ f̃(B). □
Theorem 4.18. Let f : X1 −→ X2 be a surjective algebra homomor-
phism, then (i) if A = (µA , νA), B = (µB , νB ) are ILF ideals of X1 then
f̃(A⊕B) = f̃(A)⊕ f̃(B).
(ii) if {Ai : i ∈ I} is a set of ILF ideals of X1 , then f̃(

∩
i∈I

Ai) =∩
i∈I

f̃(Ai).

(iii) if A = (µA , νA), B = (µB , νB ) are ILF ideals of X1 , then f̃(A⊗B) =

f̃(A)⊗ f̃(B).

Proof. (i) and (ii) can be proved by the same method as proof of The-
orem 4.16. It is sufficient to prove (iii). Let x ∈ X2 . We prove that
f̃(µA ⊗µB ) = (f̃(µA)⊗ f̃(µB ))(x) and f̃(νA ⊗νB ) = (f̃(νA)⊗ f̃(νB ))(x).

Assume that f̃(µA ⊗µB )(x) < (f̃(µA)⊗ f̃(µB ))(x) and f̃(νA ⊗ νB )(x) >

(f̃(νA)⊗f̃(νB ))(x). We can choose an element t ∈ L such that f̃(µA)(x)⊗
f̃(µB )(x) = sup{f̃(µA)(y) ∧ f̃(µB )(z) : x = y.z} and t ∈ L such that
f̃(νA)(x) ⊗ f̃(νB )(x) = inf{f̃(νA)(y) ∨ f̃(νB )(z) : x = y.z}, there ex-
ist y, z ∈ X2 , such that x = y.z with f̃(µA)(y) > t and f̃(µB )(z) > t.
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f̃(νA)(y) < t and f̃(νB )(z) < t. Since f is surjective, there exists a
x1 ∈ X1 , such that f(x1) = x and x1 = y1 .z1 for y1 ∈ f−1(y), z1 ∈ f−1(z)
with µA(y1) > t and µB (z2) > t and νA(y1) > t and µB (z2) > t.
Since f(y1 .z1) = f(y1).f(z1) = y.z = x, we have f̃(µA ⊗ µB )(x) =
sup{(µA ⊗µB )(x1) : f(x1)} = sup{sup{µA(a)∧µB (b) : f(x1) = f(a.b) =
x}} = sup{µA(a) ∧ µB (b) : f(a.b) = x}} ≥ µA(y1) ∧ µB (z2) > t, and
f̃(νA ⊗ νB )(x) = inf{(νA ⊗ νB )(x1) : f(x1)} = inf{inf{νA(a) ∨ νB (b) :
f(x1) = f(a.b) = x}} = inf{νA(a) ∨ νB (b) : f(a.b) = x}} ≤ νA(y1) ∨
νB (z2) < t. This is a contradiction. Similarly, for the case f̃(A⊗B)(x) >

(f̃(A)⊗ (̃B))(x), we get a contradiction. Hence f̃(A)⊗ f̃(B).
□

5. conclusion

In this paper, the concept of ILFSs of Novikov algebras is introduced.
ILFSs include deeper aspects of uncertainty and vagueness where tradi-
tional fuzzy sets may not fully succeed, by using membership and non-
membership degrees. Furthermore, the notions of ILF ideals and ILF
subalgebras are explored alongside essential and fundamental theorems
and lemmas. Also key properties of ILF algebras, including operations
such as intersection, sum, and product are investigated. Additionally,
significant conditions, such as when an ILF subspace is an ILF ideal
are discussed. Finally, homomorphisms on ILF ideals is introduced and
illustrative examples are also added.
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